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Featured Application: Hypertension detection analyzing the morphology of the PPG signal aided
by Machine Learning Techniques.

Abstract: In our modern digitalized world, hypertension detection represents a key feature that
enables self-monitoring of cardiovascular parameters, using a wide range of smart devices. Heart
rate and blood oxygen saturation rate are some of the most important ones, easily computed by
wearable products that are provided by the photoplethysmography (PPG) technique. Therefore, this
low-cost technology has opened a new horizon for health monitoring in the last decade. Another im-
portant parameter is blood pressure, a major predictor for cardiovascular characterization and health
related events. Analyzing only PPG signal morphology and combining the medical observation with
machine learning (ML) techniques, this paper develops a hypertension diagnosis tool, named the
ANC Test™. During the development process, distinguishable characteristics have been observed
among certain waveforms and certain types of patients that leads to an increased confidence level
of the algorithm. The test was enchanted by machine learning models to improve blood pressure
class detection between systolic normotensive and hypertensive patients. A total of 359 individual
recordings were manually selected to build reference signals using open-source available databases.
During the development and testing phases, different ML models accuracy of detecting systolic hy-
pertension scored in many cases around 70% with a maximum value of 72.9%. This was resulted from
original waveform classification into four main classes with an easy-to-understand nomenclature. An
important limitation during the recording processing phase was given by a different PPG acquisition
standard among the consulted free available databases.

Keywords: hypertension detection; photoplethysmography; machine learning; signal classification;
signal database

1. Introduction

The present technological trend of digitalization brings multiple advantages across
various domains where human activity is developing. One important domain is the
medical environment, where a new wide range of smart devices [1] has risen to aim at
self-monitoring. This shift in paradigm is given by the increase in popularity of wearable
devices which are capable of tracking cardiovascular markers. The most common ones are
represented by heart rate (HR) and blood oxygen saturation level (SpO2), followed by blood
pressure (BP) evaluation and even an electrocardiogram (ECG) [2,3]. A major contributor to
bring such monitoring features closer to user hand is represented by photoplethysmography
(PPG) techniques which gains interest and popularity in the last decade across scientific
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circles. The obtained electrical signal by illuminating capillaries contains an abundance of
cardiovascular information which waits to be interpreted. Except for the previous presented
parameters, this technique shows a good confidence level to detect changes in vasomotor
and respiratory activities. It was demonstrated that vasodilators or vasomotor drugs
modulate the morphology of PPG signals especially by the dicrotic wave behavior [4–6].
Additionally, the respiratory activity plays a major role since it modulates the signal where
a connection was found between modulation amplitude and hypertensive patients [7].
Therefore, based on this vasomotor activity, the trend of BP value can be extracted since it
is one of the critical health markers [8]. Therefore, multiple studies in this direction started
and some of them offer the reference to the used public databases such as China Database,
MIMIC III, CapnoBase, and University of Queensland Database [9–12].

Although the search to extract BP prediction from analysing PPG waveform is ap-
proached from multiple directions, existing studies do not take into consideration a solid
model which connects the mechanical nature of blood pressure with the optical nature of
photoplethysmography. Despite those mechanisms being still in debate, especially related
to the true origin of PPG and its morphology, it did not represent a blocking point to assess
cardiovascular characterization at some confidence level [13–15]. For example, in a cold
environment, vasoconstriction on peripheral area is triggered, thus the amplitude of PPG
signal decreases [16]. Another factor is detecting certain cardiovascular disorders such as
pulsus bisferiens [17] or pulsus alternans which are detected within waveform analysis
without knowing exactly the above-depicted models.

In this way, without focusing on the origin topic, we started to define at a first glance,
the desired level of cardiovascular information which can be extracted from the optical
signal. We identify three levels of prediction, depicted in Figure 1, as follows:

• Level 1—PPG signal can predict BP class (hypotensive, normotensive, hypertensive)
in an individual case. This prediction can be scaled-up to a larger population and
represent the first assessment in an advanced signal processing topic.

• Level 2—PPG signal can predict BP trend qualitatively (rising or falling) during a
certain time frame observation in an individual monitoring case. This level is proven
by drug administration during anaesthesia procedure and even by the respiratory
cycle where PPG waveform is modulated. This prediction can be also scaled-up
to a larger population but involves a large time of signal observation unlike in the
first level.

• Level 3—PPG signal can predict BP value. This level predicts the BP trend from
a qualitative mean. It is hard to achieve this prediction rate because a change of
+/−15 mmHg for example, brings up different waveform change in two different
persons. Work-around techniques such as PTT which fusions a second sensor like ECG
proves a good achievement at this step. This level also requires a calibration step since
PPG signal gives to the processing system only optical quantities. The most challenging
step is to extract cardiovascular information only from PPG signal standalone with just
one calibration procedure during the lifetime of the patient monitoring.

Figure 1. PPG performance level for BP assessment.
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By climbing the levels, the predicted value range narrows or others say the accuracy
increases. Therefore, more advanced signal analysis methods are required to extract this
important health metric.

2. Methods
2.1. Signals Selection

For having a large spectrum of PPG signal morphology, multiple databases should be
investigated. The topic addressed by the presented study is to funnel various waveforms
into a few main categories sorted by clearly defined criteria. In this way, specific key
metrics correlated to certain population group types can be identified. The first step into
this investigation was to visualize signals from available free-access databases. We found
recordings with different health metrics which are summarized in Table 1. The primary
criterion was for datasets to contain PPG signals and associated BP information. Three
recording databases have been used to highlight morphology key metrics, but only two
where used in the final algorithm development procedure. In total, 359 PPG recordings
with corresponding BP class have been used as described:

Table 1. Investigated datasets for PPG key metrics extraction.

Name of Database Label No. of Individual
Recordings BP Signal PPG Signal Age Weight Height

China Database [9] Dataset 1 219 Yes, oscillatory method Yes, between 3–6 periods Yes Yes Yes
MIMIC III [10] Dataset 2 140 Yes, invasive method Yes, between 5 and 20 periods No No No
CapnoBase [11] Dataset 3 42 No Yes, around 100 periods Yes Yes No

University of Queensland [12] N/A 32 Yes, intermittent 5 min
oscillatory Yes, around 1000 periods No No No

Dataset 1 contains a total of 219 recordings from volunteers where the BP distribution
is represented in Figure 2a. It is observable that distribution follows a Gaussian trend where
normotensive and hypertensive groups are balanced. The protocol of signal acquisition
uses a sampling frequency of 1 kHz where 3 clusters of 3 periods were electronically saved.
Blood pressure recordings were carried out by oscillometric methods while the patients
were sitting in a relaxed position.

Figure 2. Histogram of BP values for Dataset 1 (a) and Dataset 2 (b).

Dataset 2 contains a total of 12,000 recordings but by an iterative visual inspection it
was deduced that clusters of consecutive 10–30 recordings belonged to the same patients.
The protocol of signal acquisition uses a sampling frequency of 125 Hz where the periods
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vary from 5 to 20 cardiac cycles. Associated BP information was taken by an invasive
method using the catheter technique. The monitored patients were in an Intensive Care
Unit or in surgery procedure. Therefore, a manual dataset with the same label was created
with signals coming from each individual patient. With this procedure, a total number of
140 recordings were electronically sorted where the secondary criterion was to obtain a
uniform distribution among BP classes as shown in Figure 2b.

Dataset 3 contains a total number of 42 patients but since the BP information is missing
it was not used in the final step of the algorithm development. Its available information
was used only to help the presented investigation in the key metrics extraction procedure.

The last dataset which does not have an allocated label was used only for visualizing
the PPG morphology under the entire time frame of the surgery procedure. This dataset
helps to find the relevant key metrics for the next steps which will be presented.

It is important to note that signals come from motionless context since the patients
were being monitored in an Intensive Care Unit or in related stationary cases. However,
this topic does not represent a blocking point in healthcare algorithm development. During
24 h a person can certainly experience time frames where motionless events occur, such as
sleeping (around 8 h of stationary state), sitting in front of the desk, reading, waiting in
front of queue, and other related social activities. Therefore, these scenarios made a major
topic for developing an algorithm specialized for PPG signal acquisition. In the presented
research the focus is on signal analysis with the assumption that the provided recordings
come from stationary events.

2.2. Signals Classification

The next step after database selection was to find relevant signal morphology charac-
teristics among different patient groups as was described earlier. The main observations
during recordings evaluation in different scenarios, while also having in mind the findings
reported in the medical literature [18–22] were:

• Anacrotic limb features are found in many cases in the old patients group or for
hypertensive ones. They represent a change in signal slope, PPG, or BP, during the
systolic rising phase.

• Dicrotic wave location moves away with respect to SYS points when vasodilators were
administrated during the beginning of anesthesia. The vasoconstrictor drugs give the
opposite effect by moving the dicrotic wave toward SYS peak. Therefore, this fiducial
point can represent the state of vasomotor activity.

• Dicrotic wave is mostly absent in the children group, under 10 years old, and very
prominent in young groups with ages between 20 and 30. After these limits, in older
populations it fades again.

Another observation, but related to signal acquisition, is the different protocols used
for PPG recordings. One important highlight used sampling frequency but also the cutoff
frequency for signal filtering. This variation is translated into different cardiovascular
details which will be discussed in the Results and Limitations sections. Those differences
among databases did not represent a blocking point for the current step but could influence
the performance of the final algorithm.

After the signal characteristics arise, we needed a tool to translate it into a numerical
value. A good domain to highlight signal morphology was first derivative (FD) since it
represents the evolution of the signal gradient over time. This domain has the advantage
to show a more detailed level of the investigated waveforms which are not visible by
the eye. Therefore, after the initial pre-evaluation steps, we define four major classes
among patients without cardiovascular disease which modulated PPG or BP signals such
as pulsus bisferience. The defined classes take the dicrotic wave and anacrotic feature as
the selection criteria:

• Anacrotic type (A)—This class highlights the pre-systolic phase where signal slope is
subject to a change [18,19]. This feature is translated into FD domain as a visible peak
before SYS maximum point event as it is shown in Figure 3a.
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• Normal type (N)—This class highlights the post-systolic phase where DCW generates
a visible peak in the original analyzed signal. In FD domain, the associated gradient
of the dicrotic wave beginning phase is greater than zero (or positive), building a peak
as shown in Figure 3b.

• Collapsing type (C)—Also aims at the post-systolic phase where DCW is entirely
absent in the analyzed signal. In FD domain its gradient does not appear as the result
of a wave missing. After the SYS event, the returning gradient slowly rises towards
zero axis, without generating a peak, until the next cardiac cycle begins [20] as shown
in Figure 3c.

• Normal Collapsing (NC) type—This class is a characterization between the previous
two. DCW is barely visible in the investigated signal, therefore, it generates a gradient
peak into FD domain but negative in absolute value as shown in Figure 3d.

Figure 3. PPG signal morphology classification by DCW behaviour in FD domain in healthy patients,
also applicable for BP signal. Discussion in the text. Red lines represent the correspondence between
original signal and its gradient peak location in FD; the associated amplitude is marked with green
arrow; exception for anacrotic case where the gradient is marked with red circle. Black lines represent
the correspondence between the original signal and its zero crossing location marked with red cross.

Note that multiple peaks after SYS event can occur due to different elastic characteristic
of the arterial network. These peaks can be present even if the signal filtering is applied
and are therefore not given by motion or acquisition artifacts. In our classification context,
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the dicrotic wave presence is flagged as the strongest gradient in FD domain in the defined
search window.

Using this major classification, signals are characterized from a qualitative mean with
an intuitive nomenclature. In order to cover a quantitative topic, a numerical term should be
associated to gradients since it can range from any positive to negative value. As we anchor
classification to the dicrotic wave gradient it needs to be related to another important key
metric during the current cardiac cycle. Thus, a numerical parameter was defined, labelled
as DtS which stands for Dicrotic to Systolic Ratio. The computed parameter translates into
numbers of the human’s sense of the observed PPG morphologies during signal evaluation
step. In this way, it is characterized how strong the dicrotic wave is with respect to the
systolic one according to the presented classifications from Figure 3. The formula for
defining this morphological parameter is:

DtS =
gSYS − gDCW

gSYS

where gSYS represents the value of systolic gradient extracted from the first derivative and
gDCW is the value of the dicrotic gradient part. While the SYS gradient is always positive,
the other ones take both possibilities. This is why the DtS parameters compute the distance
between the gradients of the respective fiducial points with respect to the positive ones.
With this rule, the translation of defined classes was translated via DtS parameters as
presented in Table 2.

Table 2. Numerically values associated with defined classifications.

Class gSYS gDCW Value Interval DtS Value Interval

N

Always >0

(0:gSYS) (0:1)

NC (−gSYS:0] [1:2)

C N/A 2 *
* It’s a convention code since DtS doesn’t have this computed value assigned.

Note that DtS is computed per individual cardiac cycle. Thus, in N type signal where
gDCW is defined to be positive, the above parameter will be lower than 1 value. While in
NC type were DCW gradient is negative, the parameter will be greater than 1. In other
words, DtS highlights how close the dictoric wave gradient is to the systolic one in the
FD domain. For C type where dicrotic is entirely absent, DtS cannot be computed but is
marked with value 2. This convention comes from the fact that a hypothetically maximum
negative value taken by a second wave cannot exceed absolute value of the current systolic
gradient. As we described earlier, a strong FD value represents a strong visible point back
to the analyzed signal.

If a signal recording is evaluated during multiple periods, the above-described pa-
rameters is computed as a mean. With those classifications—nomenclature of waveform
morphology by pre-systolic and post-systolic evaluation criteria—we built a test labelled
ANC Test™ (Anacrotic, Normal, Collapsing) which stands for Level 1 class prediction
described back in Figure 1. Hence, the numerical outputs of this designed test, which are
intended for multiple cardiac cycles evaluation, are:

• Anacrotic occurrence if at least two cardiac cycles are evaluated within the pre-systolic
phase. For a single-period analysis, the algorithm just marks if the Anacrotic feature is
present or not.

• Normal, Normal-Collapsing and Collapsing occurrence evaluated in the same manner
as above but within the post-systolic phase.

• DtS ratio evaluation for every individual analyzed cardiac cycle. In the collapsing case
the ratio is marked with code 2 since mathematically it cannot be computed.

All the occurrence computations are done automatically since one part of the intended
algorithm classified recordings by the defined features. In multiple periods of evaluation
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mode, the occurrence rate for the presented types can takes any value between 0% and 100%.
But in the opposite case where just a single cardiac cycle is analyzed the occurrence rate
can take only 0% or 100% value. It is a low probability that a patient’s key metrics will be
investigated just based on one cardiac cycle, therefore the first mode will be frequently used.

2.3. ANC Test Pre-Evaluation

To evaluate what correspondence between defined feature and population group type
arises, the built test was run in the following cases: Dataset 1 and Dataset 2 to check the
results against BP groups and Dataset 1 and Dataset 3 to check against age groups. The
splitting granularity of both groups was chosen to be 10 units. The overall results are
presented into Tables 3 and 4 for first group’s type and into Tables 5 and 6 for the second
one. The test was run in a multiple cardiac cycles evaluation mode where a patient takes
the predominant ANC type where the occurrence threshold rate was chosen at 50%. For
example, if within a recording length for A type the occurrence was around 60%, the patient
would have the respective label. For the post-systolic evaluation, the occurrence sum of N,
NC, and C cannot exceed 100%. Therefore, the predominant one was taken as the final label.

Table 3. ANC Test results vs. BP groups for Dataset 1.

BP Group
[mmHg] Total No. Occ. of A [%] Occ. of N [%] Occ. of NC [%] Occ. of C [%]

80–89 4 25 0 100 0
90–99 7 0 0 100 0

100–109 28 0 14.29 82.13 3.57
110–119 41 4.88 7.32 90.41 2.27
120–129 44 13.64 2.27 95.46 2.27
130–139 41 14.63 2.43 97.57 0
140–149 24 25 4.16 91.67 4.16
150–159 10 30 9.09 90.90 0
160–169 11 18.18 0 100 0

170+ 9 33.33 0 100 0

Table 4. ANC Test results vs. BP groups for Dataset 2.

BP Group
[mmHg] Total No. Occ. of A [%] Occ. of N [%] Occ. of NC [%] Occ. of C [%]

80–89 5 80 20 80 0
90–99 3 33.33 33.33 66.66 0

100–109 11 9.09 72.72 27.28 0
110–119 16 0 43.75 50 6.25
120–129 18 11.11 38.88 55.56 5.55
130–139 14 21.42 21.42 78.57 0
140–149 22 31.81 9.09 85.36 4.54
150–159 17 17.64 23.25 76.47 0
160–169 11 36.36 36.36 54.54 9.09

170+ 18 44.44 33.33 61.11 5.55

Table 5. ANC Test results vs. age groups for Dataset 1.

Age Group Total No. Occ. of A [%] Occ. of N [%] Occ. of NC [%] Occ. of C [%]

20–29 23 0 26.09 73.91 0
30–39 5 0 0 100 0
40–49 28 14.29 0 92.86 7.14
50–59 61 13.11 3.28 95.09 1.63
60–69 53 13.21 0 100 0
70–79 34 17.65 0 97.05 2.94
80+ 15 40 0 100 0
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Table 6. ANC Test results vs. age groups for Dataset 3.

Age Group Total No. Occ. of A [%] Occ. of N [%] Occ. of NC [%] Occ. of C [%]

0–9 15 0 13.33 60 26.66
10–19 13 0 76.92 23.07 0
30–39 4 0 50 50 0
40–49 3 0 75 0 25
50+ 6 0 0 83.33 16.66

It can be observed from Tables 3 and 4 that A type occurs more frequently in prehyper
and hypertensive class (130+ mmHg) with 75.36% probability in Dataset 1 and with 53.18%
in Dataset 2. For N type which indicates a visible DCW in analyzed signal according to
our classification, in prehypertensive and hypertensive class it occurs with a probability
of 39.63% in Dataset 1 and 37.10% in Dataset 2. The class with a low presence in both
datasets is C type which does not have a visible trend against BP sorting criteria. The
class with a high occurrence rate is NC type which represents a barely visible DCW in the
analyzed signal. It appears to be more frequent in Dataset 1 than in Dataset 2 for the same
BP ranges. At this point, A and N types represent promising key features to distinguish
between normotensive patients and hypertensive ones.

By evaluating the ANC type against age sorting criteria, different trends can be ob-
served especially for C type which lacks against BP assessment. Taking both Tables 5 and 6
into consideration for a large age spectrum, it can be observed that this type occurs fre-
quently in children under 10 years old and again in people over 40. Thus, C type does not
have a linear trend by the current sorting criteria. For A type, the occurrence happens in an
older population with a slightly positive trend. Again, NC type is the predominant one
among age spectrums in both datasets. The other type, N, appears only in young persons
as it is highlighted in Table 5 within the 20–29 age group.

With these two sorting criteria, BP and age group, the summary of ANC type allocation
among the population is presented. The scope is to avoid biases, like the belief that N
type occurs only in a young population. However, as it was shown, this parameter is not
dependent exclusively on the age since it is also distributed among various systolic blood
pressure values.

2.4. ANC Test Enchanted by Machine Learning

The final step to predict the systolic blood pressure category based on the defined
signal morphology classification is to enchant the ANC Test results with a powerful detec-
tion tool. In this way multiple machine learning (ML) architectures have been evaluated
using classification learner tools from Matlab™ Software. The tools contain the following
models: Decision Trees, Logistic Regression, Discriminant Analysis, Naive Bayes, Support
Vector Machine, Nearest Neighbor Classifiers, and Ensemble Classifier. We tested every
model to obtain the best metrics. Since the aim of the present study was to detect systolic
hypertensive persons, to fulfil Level 1—BP prediction, two categories were defined:

• Class I: Recordings with associated systolic BP value from 80 to 129 mmHg;
• Class II: Recordings with associated systolic BP value over 130 mmHg.

Therefore, in Class I are clustered systolic hypotensive and normotensive datasets
while in Class II are clustered prehypertensive and hypertension ones where the threshold
value is 130 mmHg. Multiple clustering for each known BP category was avoided due to
the low number of datasets and for uneven distribution as it was shown in the histogram
back in Figure 2.

The input parameters for ML models are represented by the results of the ANC Test™
where the occurrence rate for each type and DtS parameter were computed automatically
on PPG signal. The output is represented by the previous defined BP binary clusters.
Therefore, given an input PPG waveform, the developed algorithm extracted ANC features
and then fed them into the ML model. The last step should give the result if the given PPG
signal comes from a normotensive or hypertensive patient.
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Since in pre-evaluation section ANC types have a different distribution among systolic
BP groups, the last human intervention is to set which feature combination will give the
best predicted results. The assessment was done in two ways: checking individual feature
standalone against defined BP clusters and checking the combination of features. These
two assessments were done separately for Dataset 1 and Dataset 2 but also in the case
by merging the two. With this approach, the influence of the recordings distribution was
evaluated: Gaussian against uniform. The overview of the entire process is described in
the below Figure 4:

Figure 4. The procedure to evaluate features of ANC Test™ with ML models.

3. Results
3.1. Feature Standalone Evaluation

The first step to enchant the ANC Test is to feed the ML algorithm with standalone
features. This will represent the starting point for the next assessment, representing at the
same time, and the minimum performance can be obtained. The results are described in
the Tables 7–9 for each dataset.

Table 7. ML metrics using ANC Test feature standalone for Dataset 1.

Feature Selection Model Accuracy [%] Precision [%] Recall [%] Specificity [%] F1 Score AUC

A SVM—Gaussian 67.1 65.6 60.6 71.6 0.63 0.64
N SVM—Gaussian 56.6 88.4 48.8 76.6 0.63 0.57

NC SVM—Gaussian 56.6 54.7 48.6 61.6 0.51 0.58
C SVM—Gaussian 56.6 16.8 45.7 57.1 0.25 0.53

DtS KNN—Coarse 58.4 45.3 51.8 61.8 0.48 0.55

Table 8. ML metrics using ANC Test feature standalone for Dataset 2.

Feature Selection Model Accuracy [%] Precision [%] Recall [%] Specificity [%] F1 Score AUC

A SVM—Gaussian 59.6 98.8 60.6 66.7 0.75 0.56
N SVM—Gaussian 68.1 82.1 70.4 64.3 0.76 0.68

NC SVM—Linear 63.3 89.3 64.7 62.5 0.75 0.64
C SVM—Gaussian 59.6 97.6 60.3 50.0 0.75 0.5

DtS SVM—Gaussian 60.3 84.5 60.7 43.5 0.71 0.56
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Table 9. ML metric using ANC Test feature standalone for Merged dataset.

Feature Selection Model Accuracy [%] Precision [%] Recall [%] Specificity [%] F1 Score AUC

A SVM Quadratic 61.3 53.6 62.7 59.7 0.58 0.61
N SVM Cubic 57.9 79.3 56.8 66.1 0.66 0.58

NC SVM Gaussian 59.6 63.7 59.4 61.1 0.61 0.59
C Logistic Regression 52.6 90.5 52.4 66.0 0.66 0.54

DtS Logistic Regression 59.1 58.1 57.5 57.9 0.58 0.58

For Dataset 1, characterized by a Gaussian distribution of systolic BP values, A feature
was the most accurate predictor in detecting hypertensive patients with an accuracy value
of 67.1% using SVM Gaussian model. The F1 score and area under learning curve (AUC)
was also the best factors in respect to the remaining parameters. The next ranked parameter
is DtS which represent numerically the DCW strength in respect to the current SYS one.
The obtained accuracy was 58.4% but with a weaker F1 score than the previous one. The
remaining features obtained an accuracy of 56.6% but is closer to the accuracy of a random
choosing with a 50% rate. Therefore, the last ones do not bring any standalone benefits.

For Dataset 2, built by a uniform BP value distribution, N feature was the most
accurate predictor with a 68.1% rate also using SVM Gaussian model with an F1 score of
0.76. Additionally, it obtains the best AUC rate out of all parameters. Interestingly, the
remaining features scored around 60% accuracy, also with a good F1 score. At this point, by
comparing it, it can be concluded that a uniform distribution that feeds ML models gives a
better performance than a Gaussian one.

The last evaluation of standalone feature was done by merging the two datasets. Since
there were two different BP value distribution results, also in a Gaussian type, the accuracy
results in special seem to be a mean between Dataset 1 and Dataset 2. The best accuracy
was obtained by A type with a rate of 61.3% using an SVM Quadratic model. Although
intuitively feeding an ML model with more samples is to increase its prediction rate, in the
current context, the distribution of the recordings among desired output plays an important
role in metrics too.

3.2. Feature Combination Evaluation

The last training set-up of ML models used the same approach with three dataset
scenarios but with ANC feature combinations. The starting point was represented by the
accuracy rank obtained in the standalone evaluation from Tables 7–9. The expectations of
using combinations of two or more features is to increase the synergy for an ML model, thus
the prediction rate should increase too. The results and metrics are shown in Tables 10–12.

Table 10. ML metrics using combination of ANC Test feature for Dataset 1.

Features Model Accuracy [%] Precision [%] Recall [%] Specificity [%] F1 Score AUC

A, DtS Coarse Tree 69.9 58.9 66.7 71.1 0.63 0.65
N, DtS Fine Tree 58.4 45.3 54.4 62.9 0.49 0.56

NC, DtS Logistic Regression 58.9 53.7 55.4 65.4 0.55 0.59
C, DtS Ensemble 58 45.3 57.3 63.9 0.51 0.61
A, N Coarse Tree 66.2 63.2 61.2 71.1 0.62 0.64

A, N, DtS Coarse Tree 67.6 58.9 66.7 71.1 0.63 0.65
A, NC Coarse Tree 68 63.2 63.2 71.8 0.63 0.68

A, NC, DtS Coarse Tree 68.5 58.9 66.7 71.1 0.63 0.65
A, N, NC Coarse Tree 67.6 61.1 63.0 70.9 0.62 0.67

A, N, NC, DtS Coarse Tree 68 58.9 66.7 71.1 0.63 0.66
A, N, NC, C, DtS Coarse Tree 68 58.9 66.7 71.1 0.63 0.66
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Table 11. ML metrics using combinations ANC Test feature for Dataset 2.

Features Model Accuracy [%] Precision [%] Recall [%] Specificity [%] F1 Score AUC

A, DtS Naive Bayes 61.4 88.1 61.7 50.0 0.73 0.58
N, DtS Quadratic SVM 67.1 83.3 73.7 68.9 0.78 0.69

NC, DtS Quadratic SVM 63.4 77.4 64.4 51.3 0.70 0.62
C, DtS Gaussian SVM 59.3 96.4 60.4 50.0 0.74 0.56
A, N Quadratic SVM 70 82.1 69.7 65.9 0.75 0.66

A, N, DtS Quadratic SVM 66.4 83.3 70.7 65.9 0.77 0.70
A, NC Cubic KNN 62.9 73.8 67.4 54.2 0.70 0.61

A, NC, DtS Coarse Tree 65 72.6 69.3 55.8 0.71 0.61
A, N, NC Quadratic SVM 67.9 96.4 65.9 82.4 0.78 0.64

A, N, NC, DtS Quadratic SVM 72.9 84.5 71.0 67.5 0.77 0.61
A, N, NC, C, DtS Quadratic SVM 70.7 84.5 69.6 65.8 0.76 0.64

Table 12. ML metrics using combinations of ANC Test feature for Merged Dataset.

Features Model Accuracy [%] Precision [%] Recall [%] Specificity [%] F1 Score AUC

A, DtS Ensemble 62.4 54.2 61.4 59.2 0.58 0.61
N, DtS Gaussian SVM 59.9 79.3 55.7 64.4 0.65 0.59

NC, DtS Gaussian SVM 59.6 72.1 56.6 61.8 0.63 0.58
C, DtS Gaussian SVM 57.9 56.4 60.1 59.2 0.58 0.63
A, N Weighted KNN 59.1 81.0 56.2 66.3 0.66 0.60

A, N, DtS Gaussian SVM 60.7 58.1 61.2 60.3 0.60 0.61
A, NC Quadratic SVM 57.1 60.9 56.2 57.6 0.58 0.61

A, NC, DtS Ensemble 61.8 58.1 59.4 59.2 0.59 0.60
A, N, NC Naive Bayes 57.7 65.4 56.3 58.9 0.60 0.60

A, N, NC, DtS Ensemble 63.2 59.2 61.3 60.8 0.60 0.62
A, N, NC, C, DtS Ensemble 62.1 60.3 61.4 61.2 0.61 0.60

Using a Gaussian dataset, the best accuracy of the feature combinations, rising up to
69.9%, was the A, DtS case as shown in Table 10 and Figure 5a. The F1 score did not increase
more than 0.63 in the standalone evaluation within Dataset 1;just the AUC metric did. The
other feature combinations scored around 68% accuracy with the same F1 score. Increasing
the number of features to feed the ML model does not give a boost in performance since
many selections represent a redundant role.

Figure 5. Best accuracy obtained in Dataset 1—Coarse Tree (a) and Dataset 2—Quadratic SVM (b).

Moving to Dataset 2, the best accuracy obtained of 72.9% comes from using 4/5 ANC
parameters as shown in Table 11 and Figure 5b. Closer to a 70% accuracy score also came
with 2/5 features: A and N type. The F1 score is very close to standalone evaluation and
the AUC metric. Overall, the accuracy increases in the best case only by about a 4.8% rate
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rather than in Dataset 1, of 27%. As in the first evaluation, certain combinations of ANC
features have a redundant role. In the context of wearable devices, it is desired to reduce
the computation power, therefore, the best predictors of hypertensive would be A and N
type. On the other hand, where computation power does not represent a constrain like a
server computation, the selection with best performance would be implemented: A, N, NC,
and DtS parameters.

For the merged strategy evaluation, the overall accuracy scored between the perfor-
mance of Dataset 1 and Dataset 2. The best accuracy was 63.2% similar to in the Dataset
2 case by A, N, NC, and DtS parameters with an F1 score of 0.60. In a nutshell, the prediction
of detecting prehypertensive or hypertensive patients is around 70% even if the different
datasets have been used with individual measurement protocols. The designed algorithm
by sorting various signal morphologies in defined classes prove a good performance for BP
prediction of Level 1. Therefore, the ANC Test™ represents a good starting point in this
health metric evaluation.

4. Limitations

The first limitation is given by the measurement protocol used in individual datasets.
The first key parameter in this topic is given by the PPG sensor LED wavelength since the
light beam targets different depths of tissue. It is known that green light is able to reach
1–2 mm immediately after the epidermis layer and the infra-red (IR) light is the strongest
one which can reach the deepest layers of dermis while the red wavelength is situated in
the middle in terms of performance. Therefore, the PPG obtained with IR light contained
the most hemodynamic information which can be obtained with this technique. The second
electrical related parameter is the sampling frequency used by the processing chain. Dataset
1 used 1 kHz where a high-detail level of signal was obtained, while Dataset 2 used 125 Hz.
By lowering Fs, the gradient read by FD would be affected, thus the ANC results would
suffer too. The third critical parameter which also has been tested, is the cut-off frequency
for filtering the PPG signal apart from noise. By lowering this frequency, the details of the
PPG are again attenuated, leading to a different ANC results value.

The second limitation is given by the number of samples and its distribution. Even if
around 70% accuracy has been obtained with a number of 219 and 140 patients, respectively,
it is known that more data will strength the ML model by giving a better performance.
The type of samples distribution plays an advantageous role as was shown by comparing
Gaussian Dataset 1 and uniform Dataset 2. Although it is intuitive to merge two or more
datasets in order to increase the number of samples, it is not a winning strategy. With a
different measurement protocol and a different recordings distribution it will weaken or
limit the overall accuracy of the ML model.

5. Conclusions

The Level 1 of blood pressure prediction using a PPG signal has been demonstrated
by using a signal morphology classification strategy. Designing the ANC Test™ represents
a good tool in this assessment, where the selection criteria were given by the anacrotic type
and dicrotic wave behaviour in the current cardiac cycle. By enchanting the results of the
designed test with ML models, the best performance of systolic BP prediction was 72.9%
with room for more improvement. Sorting signals morphology into clearly defined classes
not only represents a good numerical tool for data processing, but also shows a snapshot of
signal characteristic distributions across a desired group analysis.

The primary aim of this study was to integrate the obtained results into the digital-
ization trend within a health monitoring area. Thus, a standalone PPG signal gives good
insight into the cardiovascular state if the right investigation method is applied. An agreed
protocol should be adopted for the signal processing chain in order to evaluate health met-
rics such as systolic blood pressure. In this way, the minimum amount of cardiovascular
information will be set by using optical sensors. As proof, using multiple datasets with
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different measurement protocols does not represent an interim solution to increase the
accuracy of the ML model.

Having at its base simple sorting rules, the ANC Test™ can be implemented into
wearable devices like smartwatches and smartbands in order to detect the hypertension
phase. For best performance, the test can run on the servers to move the processing power
away from tiny devices. During 24 h, a user experiences various blood pressure values
triggered by different physical activities, emotional states, or even by drugs. Therefore,
the benefit of the designed test is to act like a blood pressure alarm for users in need.
From a health monitoring level point of view, this cardiovascular marker can track during
a whole day in different scenarios, rather than a simple visit to a physicist’s office or
by using classical devices like oscillometric blood pressure measurements. Another use
of the presented study is to extract other key metrics of the signal morphology which
are correlated with a certain cardiovascular disorder apart from hypertension. We aim
to improve this test by searching for other key features which can be used in further
evaluations, but to also raise the test’s accuracy closer to medical grade requirements.
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