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Abstract: An explosion of traffic volume is the main driver behind launching various 5G services.
The 5G network will utilize the IP Multimedia Subsystems (IMS) as a core network, same as in 4G
networks. Thus, ensuring a high level of survivability and efficient failure management in the IMS is
crucial before launching 5G services. We introduce a new methodology based on machine learning to
predict the call failures occurring inside the IMS network using the traces for the Session Initiation
Protocol (SIP) communication. Predicting that the call will fail enables the operator to prevent the
failure by redirecting the call to another radio access technique by initiating the Circuit Switching
fallback (CS-fallback) through a 380 SIP error response sent to the handset. The advantage of the
model is not limited to call failure prediction, but also to know the root causes behind the failure; more
specifically, the multi-factorial root is caused by using machine learning, which cannot be obtained
using the traditional method (manual tracking of the traces). We built eight different machine learning
models using four different classifiers (decision tree, naive Bayes, K-Nearest Neighbor (KNN), and
Support Vector Machine (SVM)) and two different feature selection methods (Filter and Wrapper).
Finally, we compare the different models and use the one with the highest prediction accuracy to
obtain the root causes beyond the call failures. The results demonstrate that using SVM classifier
with Wrapper feature selection method conducts the highest prediction accuracy, reaching 97.5%.

Keywords: IMS; SIP; 5G network; call failures; machine learning

1. Introduction

It is expected that 5G networks will provide 1000 times more data rate than they do
today and will reduce up to 90% of the consumed energy per service [1]. In addition to
this, 5G networks will have to support more than 250 Gb/s/km2 in dense-urban areas,
with devices’ density in the order of several hundred—or even thousands—per km2 [2].
Moreover, many new mobile services are emerging in 5G mobile networks, such as Aug-
mented/Virtual Reality (AR/VR), autonomous driving, and industrial automation. These
new services are characterized by restricted requirements in terms of data rate, end-to-end
latency, and reliability [1]. In conclusion, the capabilities of 5G will extend far beyond those
of the current LTE networks.

In the 5G Non-Standalone (NSA) architecture, the 5G New Radio (NR) is introduced
and connected to the existing Long Term Evolution (LTE) Evolved Packet Core (EPC) via
the S1-U interface [3]. Operators will deploy 5G cells and depend entirely on the existing
Long Term Evolution (LTE) network for all control functions and add-on services [4].
While in 5G Standalone (SA) architecture, operators deploy new radio access network as
well as new 5G core (5GC) network, providing the user with end-to-end 5G experience.
The 5GC architecture is designed to be a cloud-native, as it will use Network Function
Virtualization (NFV) and Software Defined Network (SDN) technologies. Such technologies
will be natively built into the 5G SA Packet Core architecture [5]. Moreover, in the 5GC,
the IP Multimedia Subsystem (IMS) is still used to provide the voice service, i.e., Voice over
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5G (Vo5G) [6]. To this end, the new 5G architecture (SA 5G and NSA 5G) will utilize the
IMS in the core network [6–8].

Coping with the 5G requirements and delivering a high level of service, reducing
the voice call failures in the IMS network becomes crucial. Artificial Intelligent (AI) and
Machine Learning (ML) are introduced as promising solutions to deal with the voice call
failures in the IMS network and core network generally [9]. In this work, we focus on the
NSA architecture option three [10]. Since NSA has the same core network architecture
as Voice Over LTE (VoLTE), we worked on call failures present in the VoLTE. However,
the same applies to the 5G NSA core network.

The IP Multimedia Subsystem (IMS) framework is the core network in the Voice
Over LTE service [11]; it provides Internet Protocol (IP) telecommunication services. The
Session Initiation Protocol (SIP) is used for establishing the sessions, modifying the sessions,
and terminating the sessions [12]. The SIP protocol is designed to provide independent
services for the underlying transport protocol so that SIP applications can run over the
Transmission Control Protocol (TCP), User Datagram Protocol (UDP), Transport Layer
Security (TLS), or any other network protocols. Any problem that occurs inside any
underlying transport protocol should lead consecutively to a SIP failure response [13–15].
Hence, we settled our focus on the SIP protocol to obtain the highest exposure for problems
that occur inside the network [16].

Artificial Intelligence (AI) and Machine Learning (ML) are recently introduced in the
mobile network to analyze the big data available to retrieve interesting and informative
information [17]. Analyzing big data enables mobile network operators to make intelligent
real-time decisions in various services. Machine learning can be efficiently used to model
different technical problems of the next 5G networks, such as large-scale MIMOs, device-to-
device (D2D) networks, and heterogeneous networks constituted by femtocells and small
cells [18]. Moreover, machine learning is introduced as an automated solution to deal with
network and call failures. Failure management represents a cornerstone in mobile networks
to avoid service disruptions and to satisfy customers’ Quality of Service (QoS) [19].

In this paper, based on a SIP traces (Call Data Records (CDRs)) dataset obtained from
an Egyptian mobile network operator, we analyze different call failures’ use cases. From the
analysis, we conclude that the failure in any protocol inside the IMS domain will lead to
SIP protocol failure. Then, a further analysis for SIP traces is conducted to identify the
features inside the SIP that classify the success and failure calls. After that, we will build
eight different ML prediction models to predict whether the ongoing call will succeed/fail.
We compare four different ML classifiers: decision tree, naive Bayes, K-Nearest Neighbor
(KNN) and SVM with using two feature selection methods. The feature selection methods
are (i) the Filter Selection method using the ReliefF algorithm and (ii) the Wrapper Model
using the Slime Mould Algorithm (SMA) and Whale Optimization Algorithm (WOA).
Predicting the failure enables the operator to prevent the failure by redirecting the call
to another radio access technique by initiating Circuit Switching fallback (CS-fallback)
through a 380 SIP error response sent to the handset [12]. The advantage of the model
is not limited to call failure prediction, but also to know the reason (root causes) behind
the failure; more specifically, the multi-factorial reasons by using machine learning, which
cannot be obtained using the traditional method (manual tracking of the traces).

The rest of the paper is organized as follows. Section 2 discusses related works.
Section 3 presents different VoLTE call failures use cases. Section 4 gives a brief discussion
on the SIP protocol analysis. Section 5 presents the dataset used in the machine learning
models. Section 6 introduces our proposed call failure prediction machine learning models.
The results are discussed in Section 7. The paper is concluded in Section 8.

2. Related Work and Paper Contributions
2.1. Related Work

Several studies have been conducted on SIP analysis. In [20], the authors present an
analysis for SIP-based CDRs using a CDR Assembler, showing the most critical messages
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and interfaces in SIP CDRs to monitor and to counterfeit challenges for CDR generation.
In [21], the authors investigate the SIP signaling performance for LTE-based Mission Critical
Systems (MCS) using a discrete event simulator. Ref. [22] evaluates the performance of
the SIP protocols in an IMS architecture with the Multi-Protocol Label Switching (MPLS)
protocol. The authors demonstrate the impact of the number of connections on the duration
of SIP session establishment and the impact of the number of users on the performances
of Voice Over IP (VOIP) and video conference services. In [23], the authors evaluate the
performance of the VOIP performance over the SIP architecture homogeneous 802.11e
network in the context of a horizontal handover, taking into account the MIPv6 technology.
In [24], a Deep Packet Inspection (DPI) method classification technique was used to classify
VoLTE traffic using the SIP User-Agent field. A SIP analysis on Voice Over IP (VoIP)
is widely discussed in the literature. Ref [25] studies the performance impact of using
key agreements, elliptic curve Diffie–Hellman and elliptic curve Menezes–Qu–Vanstone,
for making a SIP-based VoIP call. Ref. [26] investigates the performance of VoIP technology
over cloud computing, when protected against an attack. The authors investigate the
SIP VoIP protocol Registration Request Delay (RRD) in cloud computing with security
layer protection.

One of the critical components of 5G networks will be the use of artificial intelligence
and machine learning [27]. Machine learning applications in 5G networks have been
investigated widely in the literature [18,28,29].

Machine learning has been used heavily in the literature to detect network and call fail-
ures and detect anomalies and degradation in the Quality of Service (QoS).
The authors in [30] proposed a framework based on N-gram analysis to identify abnormal
behavior in sequences of network events, then, different anomaly detection approaches are
applied and compared. Based on Linear Support Vector Machines (L-SVMs) and Bagged
Decision Trees (BDT) machine learning algorithms, authors in [31] proposed a failure
detection model for eNodeB in an LTE network that carries Machine-to-Machine (M2M)
smart city traffic. The results demonstrated that failure detection accuracy reaches 97.5%.
Ref. [32] uses a Recurrent Neural Network (RNN) to detect the outages of cell radio and
degradations of performance. In [33], the authors proposed a machine learning algorithm
to monitor a Social Networking Service (SNS) (Twitter in particular) and detect the mobile
network failure. In [34], the authors discussed the application of machine learning in wire-
less networks to solve performance prediction problems; they proposed a categorization of
main problem types using an extensive real-world drive test data set. They showed that
Gaussian process regression, exponential smoothing of time series, and random forests
could yield good prediction results. In [35], the authors use k-means clustering to detect
the anomalies in the network. After that, they use the autoregressive integrated moving
average (ARIMA) model to predict future traffic for a user. Meanwhile, authors in [36]
used the semi-supervised algorithm to detect anomalies in the network.

To this end, using machine learning to detect the VoLTE call failures occurring in the
core network (IMS) is not widely discussed. Few works investigate the failures in the
IMS network. Ref. [37] describes the method for the detection of failures on emergency
service centers in the IMS network. The failure detection system is based on charging
events; the authors provide the analysis of alarms generated by this system. Ref. [38]
investigates backup and restore schemes for SIP/IMS servers. The author proposes a
loss-recovery enhancement for the Write-Back (WB) database access mechanism to improve
the successful call setup probability. In [37,38], the authors use alarms (the traditional
method) to detect the failures. The authors in [39] propose a method to enable recovery
from the failure of a Proxy Call Session Control Function in an IMS network. This is
conducted through three steps: (i) monitoring the gateway of the packet switched access
network used by User Equipment (UE) to access the IP Multimedia Subsystem network,
(ii) providing an indication in the gateway if the monitored signals become unacceptable
and (iii) performing an action in the gateway, in case the response to the indication is the
unavailability of the P-CSCF. This action is sending a message to each UE that is associated
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with the P-CSCF. In [40], the authors propose a recovery method from the failure of a
Serving Call Session Control Function (S-CSCF) within an IMS network. The Proxy Call
Session Control Function (P-CSCF) receives a SIP request from the UE for which a given
S-CSCF was selected. If the S-CSCF has failed or is unreachable, a reregistration message is
sent from the P-CSCF to the UE, forcing the UE to perform an IMS registration procedure
with the IMS network. According to [41], the failure recovery in virtual IMS (vIMS) takes
up to tens of seconds. Therfore, the authors aim to achieve a high level of resilience in
vIMS by continuing to serve existing and new service requests during failures. The authors
provide session-level resilience to both control-plane and data-plane operations. This is
conducted by enabling every IMS NF to take charge of its directly associated neighbor
when it fails. In [42], the authors use the advantage of a big data processing capacity of the
core network to connect UE and multi interfaces’ big data together to perform call analysis.
The paper describes the connection method of UE signals, the multi interfaces’ signals of
the Evolved Packet Core (EPC) network and the IMS network, to solve the problem of the
VoLTE call not being connected. However, in the aforementioned references, using machine
learning to detect the failures and conclude the failure root causes, are not investigated.

2.2. Paper Contribution

To the best of our knowledge, this is the first work that investigates call failure predic-
tion in IMS core network using SIP traces based on machine learning and that is able to
obtain the failures’ root causes occurring inside the IMS network. The contributions of the
paper can be summarized as:

(i) Call failure use cases analysis: Based on a SIP traces (Call Data Records (CDRs))
dataset obtained from an Egyptian mobile network operator, we analyze three dif-
ferent call failure use cases (Section 3). In the aforementioned call failure use cases,
we conclude that the failure in any protocol inside the IMS domain will lead to SIP
protocol failure.

(ii) SIP features: We analyze for SIP traces, which is conducted to identify the features
inside the SIP that classify the success and failure calls (Section 4).

(iii) Machine learning model: We propose an IMS call failure prediction model by build-
ing eight different ML prediction models to predict whether the ongoing call will
succeed/fail based on the aforementioned SIP features (Section 6). We compare four
different ML classifiers: decision tree, naive Bayes, K-Nearest Neighbor (KNN) and
SVM with using two feature selection methods. The feature selection methods are; (i)
the Filter Selection method using the ReliefF algorithm and (ii) the Wrapper Model
using the Slime Mould Algorithm (SMA) and Whale Optimization Algorithm (WOA).
Predicting the failure enables the operator to prevent the failure by redirecting the
call to another radio access technique by initiating the Circuit Switching fallback
(CS-fallback) through the 380 SIP error response sent to the handset [12].

(iv) Call failures analysis: The advantage of the model is not limited to call failure predic-
tion, but also to knowing the reason (root causes) behind the failure; more specifically,
the multi-factorial reasons by using machine learning, which cannot be obtained using
the traditional method (manual tracking of the traces).
We perform an analysis for the prediction result (Section 7.3) for the KNN classi-
fier using the Wrapper WOA feature selection algorithm, as it presents the highest
prediction accuracy and best ROC performance. This enables us to obtain the call
failures’ root causes.

3. VoLTE Call Failure Use Cases

In this section, by using the available dataset, we will discuss three different call
failures use cases where failures in Diameter and Real-time Transport Protocol (RTP)
protocols lead to a SIP failure response.

1. Bearer Assignment Failure: This use case includes failure that occurs in the bearer
assignment procedure leading to Diameter protocol failure, and then SIP protocol
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failure. As shown in Figure 1, the invite message was sent from the S-CSCF network
node towards P-CSCF as a standard procedure to make a call. The P-CSCF sent an
Authentication Authorization Request (AAR) towards PCRF through the Diameter
Routing Agent (DRA) to assign the Quality of Service Class Identifier (QCI) bearer to
perform the call on the VoLTE Domain. However, DRA responded with a DIAMETER
UNABLE TO DELIVER error leading to a successive SIP 503 SERVICE UNAVAILABLE
error originating from P-CSCF and sent towards S-CSCF. The root cause was identified
as the originating number going out of coverage during performing a call. This leads
to a termination request sent from the Packet Data Network Gateway (PDN-GW),
deleting the subscriber binding information. As a result, the DRA could not find any
binding information for the user and replied with an Diameter UNABLE-To-DELIVER
error, as mentioned previously.

2. Media Failure: This use case shows a failure that occurred in the opening media
channel procedures for a VoLTE call leading to RTP protocol failure then, consecutively,
a SIP protocol failure. As shown in Figure 2, the RTP Timeout error in the RTP protocol
leads to a CANCEL SIP message containing RTP Timeout, which was sent from the
handset side towards P-CSCF, leading to call failure. The RTP Timeout error shows
that there was no response received from the IMS Media Gateway side, which led to
this call failure.

3. Charging Failure: Figure 3 shows a call SIP/Diameter trace for a charging procedure
where a failure occurs in the Diameter protocol, leading to the SIP protocol failure.
Before the VoLTE call starts, the Application Server (AS) sends an accounting request
to the Charging Data Function (CDF) to open a CDR for the call. This CDR will
be used afterward in charging the customer. However, in this use case, the CDF
responded with the DIAMETER UNABLE TO DELIVER error. This leads to a SIP 406
NOT ACCEPTABLE error (permanent problem with charging). After investigating the
root cause of the failure, it is discovered that the diameter peers between the charging
nodes and DRA were down.

From the previously mentioned use cases and according to [13–15], we conclude that
any failed VoLTE call necessarily leads to a SIP protocol failure response. As a result,
monitoring any other protocol (e.g., Diameter, RTP) will show the failures that occur in this
protocol. However, by monitoring the SIP protocol, it shows the failures occurring in all
the protocols. Therefore, we will use the SIP protocol traces to train the proposed failure
prediction ML models, as shown later.

Figure 1. Bearer assignment failure flow.
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Figure 2. IMS media failure flow.

Figure 3. Diameter charging failure flow.

4. SIP Protocol Analysis

After choosing the SIP Protocol to train the ML model, we need to extract the features
from the SIP protocol messages. Then, we will identify the features that we will use to
classify the call, whether it succeeded or failed.

A SIP message is either a request from a client to a server or a response from a server
to a client [43]. Both Request and Response messages use the basic format stated in [44].
Request and Response messages have the same structure and headers except for two
headers that are different [43]: Request-Line and Status-Line headers. The SIP messages
are sent over specific interfaces inside the IMS network.
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4.1. SIP Interfaces

The first step for building our dataset is to identify the source that generates this data.
Therefore, we monitored the IMS interfaces to collect all messages that are related to SIP
protocol inside the IMS domain. Figure 4 shows the IMS architecture, and the monitored
SIP interfaces are highlighted in red. The Interfaces are mentioned below:

• Mw Interface: The interface between S-CSCF/I-CSCF (Interrogating Call Session
Control Function) and P-CSCF;

• Gm Interface: The interface between Subscriber (Handset) and P-CSCF;
• Mg Interface: The interface between Mobile Switching Center (MSC) (circuit switch-

ing domain) and I-CSCF;
• ISC Interface: The interface between S-CSCF and the Application server;
• Mj Interface: The interface between the Breakout Gateway Control Function (BGCF)

and Media Gateway Controller Function (MGCF);
• Mi Interface: The interface between BGCF and S-CSCF.

Figure 4. IMS architecture.

4.2. SIP Request

SIP Requests have a request-line that shows request type. As shown in Figure 5,
the SIP request messages are used in three different call flows: registration, call and
message. The SIP request messages are mentioned below, as follows [43];

• REGISTER: Message used for subscriber registration.
• INVITE: Message used for initiating call session.
• OPTIONS: Request used to query Server capabilities
• MESSAGE: Transport instant messaging message.
• SUBSCRIBE: Subscribes to event notification
• REFER: Asks a recipient to issue a SIP request
• UPDATE: Modifies state of a session without changing the state of the dialog and

notify the subscriber of a new event.
• CANCEL: Cancels any pending requests.
• PUBLISH: Publishes an event to the server.
• PRACK: Provisional acknowledgment.
• BYE: used in call termination.

Our focus in this paper is settled on call drops and failures. Therefore, we only chose
SIP request types that are present in Mobile Originating (MO)/Mobile Terminating (MT)
call flows (highlighted red in Figure 5). We find that Invite, PRACK, CANCEL and BYE
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SIP requests are present in any successful or failed call. Meanwhile, Refer, Notify and Sub-
scribe SIP requests are present in any successful or failed conference call, specifically [45].
Therefore, we will only monitor these SIP requests.

Figure 5. SIP requests categorization.

4.3. SIP Response

According to [43], SIP Responses have a Status-Line that shows the SIP response
behavior. As shown in Figure 6, SIP responses from 1xx to 3xx are not considered as
failures. However, SIP responses from 4xx to 6xx are considered as user, system, and global
failures. Although 4xx responses are used for Client errors, some 4xx errors do not resemble
a problem as 486 (user busy error). This response is released when a user has an ongoing
call. Moreover, 487 (request terminated) usually occurs when a user terminates a call.
Therefore, we labeled the responses from 4xx to 6xx as call failures except for 486 and 487.

Figure 6. SIP responses categorization.

5. Dataset Description

The CDRs dataset used in this paper is obtained from an Egyptian mobile operator.
This dataset provides CDRs for one million originating calls occurring in 24 h. Each CDR is
described by 256 fields. Some examples of the dataset CDRs fields are shown in Table 1.

1. Device model: The type of the user mobile handset.
2. Audio codec: Indicates the type of codec used for voice calls. Codec is the abbreviation

for coder-decoder or compression-decompression. The two most used codec Narrow-
Band Adaptive Multi-Rate (NB-AMR) and Wide-Band AMR (WB-AMR) [46]. The
numbers 101 and 102 are defined for WB-AMR and AMR, respectively [46].

3. Video codec: Indicates the type of codec used for video calls. In the shown example
there is no video calls, so all fields of the video codec equal zero. The types of video
codecs and the way they are expressed in the CDRs are shown in [46].

4. Alerting time: The time for the user handset in milliseconds between receiving a 180
ringing SIP response and a 200 ok SIP response.
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5. Answer time: The time of the call in milliseconds.
6. SRVCC flag: SRVCC is the abbreviation for Single Radio Voice Call Continuity. It is a

binary value. It equals one if the user makes a Inter RAT handover from packet data
to circuit switched data voice calls. Meanwhile, it equals zero otherwise.

Table 1. Example of dataset.

Device
Model

Audio
Codec

Video
Codec

Invite
Response

Time

Answer
Time

SRVCC
Flag

iphone 101 0 6569 21,656 0

iphone 101 0 3190 13,241 0

Samsung 102 0 3506 28,264 0

6. Proposed System Model and Machine Learning Prediction Models

The system model is shown in Figure 7. We extract data from the aforementioned
SIP interfaces (shown in Figure 4). Then, we apply data to the machine learning model,
which is composed of three stages: (i) Data pre-processing, (ii) Feature selection and (iii)
Classification. Finally, we analyze the failures to conclude the failure root causes as shown
later in Section 7.3. Figure 8 shows the different eight prediction models. We use two
different feature selection methods and four classifiers, as discussed in the following.

Figure 7. Proposed system model.

Figure 8. Proposed machine learning models.

6.1. Dataset Pre-Processing

Although colossal data are a very beneficial aspect of machine learning, a consider-
able number of features that do not affect the call state will lead to misleading results.
Therefore, we had to do pre-processing in order to filter out data from noise and also to
keep Call-Result Relevant features to be used in our classifiers. Pre-processing passed
through three stages, we (i) removed noise data, (ii) checked missing data fields in order to
remove these CDRs from our data set, and (iii) removed features that describe personal
data (Success or fail), as features that contain only one observation and fields that contained
user information (e.g., MSISDN, IMSI, IMEI, A-number and B-number, etc.).



Appl. Sci. 2022, 12, 8378 10 of 17

6.2. Feature Selection Methods

Feature selection enables a reduction in the computational complexity, as well as the
computational time [47]. Feature selection reduces the number of features that will be
applied to the classifier model by keeping only features that are more important for call
failure/success.

In this work, we will consider two different supervised feature selection methods,
namely: the Filter method and Wrapper method combined with four different classifiers.
The feature selection methods are as follow;

(i) Filter method: In the Filter method, the relationship between each input feature and
output feature is measured, and each feature is granted a scoring based on statistical
tests. Then, the features with a high score are considered.
Filter methods are preferred in terms of their easiness in implementation and very
low computational time. Several algorithms are present in the Filter method feature
selection technique. Algorithms are chosen based on dataset properties such as data
dimensions, percentage of redundant, irrelevant features and interaction between
features [48]. Since the features present in IMS calls are highly dependent on each
other, we use the ReliefF algorithm [49].

(ii) Wrapper method: In the wrapper method, evaluation of features is performed
through training a model using ML algorithms, then selecting the best performing
features in the model [50]. Moreover, Wrapper methods contain different algorithms.
Swarm-based meta-heuristic algorithms have been widely used in several engineering
fields due to the fact that they have an advantage over other classes of nature-inspired
algorithms [51]. It offers an edge over evaluation-based algorithms by preserving
the search space information after each subsequent iteration and fewer operators
for successful execution [52]. We have used two of these Swarm Algorithms, WOA
and SMA. We have chosen both algorithms for their high capability of solving com-
plex optimization problems compared with other algorithms. In addition, we had
a large number of features (256 features) inside our dataset, which led to complex
optimization problems.

6.3. Machine Learning Classifiers

We are going to build our model using supervised ML techniques, as the dataset is
labeled data. The model predicts whether the ongoing call failed or succeeded (only two
values), which is considered as a binary classification. Therefore, we choose four different
classification techniques that fit the binary classification: the decision tree, naive Bayes,
KNN and SVM.

(i) Decision Tree: The decision tree classifier is considered as a simple classifier and
requires a few parameters. Moreover, the famous advantage of decision tree over
other classifiers is its high ability to perform causality assessment (understanding the
relation between feature and result). This is on the contrary to black-box modeling
techniques, where their internal logic can be challenging to understand.

(ii) Naive Bayes: The naive Bayes classifier is based on Bayes theorem, which measures
the probability of an event occurring given another event.

P(c|x) = P(x|c)P(c)
P(x)

(1)

where x is the feature vector; c is the classification variable. It is easy and fast to
predict the class of test data set. When the assumption of independence holds, a naive
Bayes classifier performs better than other models, such as logistic regression, and it
also needs less training data. It performs well in categorical input variables compared
to a numerical variable(s), and the data present in CDRs are a categorical data type.

(iii) K-Nearest Neighbor: We apply KNN classifier since the dataset is sufficiently large
and the number of observations is very high compared to the number of features;
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thus, we went for a low bias and high variance algorithm. Moreover, KNN represents
a good option in terms of computational time.

(iv) SVM: We apply a SVM classifier since they are suitable for binary classification
tasks, which is related to and contains elements of non-parametric applied statistics,
neural networks and machine learning. It is more efficient in spaces which are high
dimensional. It makes adequate use of memory.

6.4. Problem Complexity

The total running time complexity for the decision tree classifier is in the order of
O(m.n.log2n) [53]. Where m is the number of features that describe the data and n is
the number of data samples. Meanwhile, the naive Bayes classifier is in the order of
O(m.n2) [54]. Moreover, the total running time complexity for the KNN classifier is in
the order of O(m.n) [55]. Finally, the SVM classifier is in the order of O(n3) [56]. This
demonstrates that the complexity of the model does not represent an overhead in terms of
processing compared to the processing capabilities of the IMS.

7. Results and Analysis
7.1. Evaluation Settings

To evaluate our proposed model, we used MATLAB version R2019a.
In the decision tree classifier, we use a fine tree where the number of splits are 100.

In the naive Bayes classifier, for training the data, we used the Kernel predictor distribution,
as it improves prediction accuracy compared to the normal distribution. In the KNN
classifier, we set K = 10 to give acceptable accuracy without over-fitting. Finally, in SVM,
we used the linear kernels, as they give the lowest computational time.

The dataset is divided into a training set and testing set with 60:40 ratios.
After validating the model, we compare the different feature selection methods and classi-
fiers regarding the accuracy and the computational time. Finally, we analyze the resulting
failures and give important insights into the root causes of the failures.

7.2. Numerical Results

Figure 9 shows the most weighted features concluded by the Filter selection method
using the ReliefF algorithm. The features with the positive weights contribute to the
successful calls while the features with the negative weights contribute to the failed calls.
Moreover, it demonstrated a computational time around 2.2 min.

Figure 9. Filter method: Features weights.
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On the other hand, after applying the Wrapper feature selection method, the number
of features concluded were 34 features. The duration taken for running WOA is 30 min
and 34 s in 100 iterations. Meanwhile, the duration taken for SMA is 20 min and 40 s in 100
iterations. Moreover, WOA reached a fitness value of 0.025 while SMA reached a fitness
value of 0.024, as shown in Figure 10.

Figure 10. Wrapper algorithms: Fitness values.

By comparing the two feature selection methods, the wrapper method selects fewer
features with higher computational times.

As shown in Figure 11, the prediction accuracy of the Decision Tree classifier reached
90.7% using the Wrapper selection method, while it reached 90.5% using the Filter selection
method. This low prediction accuracy is due to the multicollinearity problem, as the
decision tree makes no assumptions on relationships between features. However, in IMS,
there is a strong relation between the features that lead to a call failure/call drop.

Figure 11. Prediction accuracy.

For naive Bayes, the prediction accuracy reached around 92% accuracy for the Wrapper
feature selection method and 91.5% for the Filter feature selection method. This can be
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explained by the fact that naive Bayes assign zero probability to any prediction that does
not have a specific value. This leads to the removal of any calls that have an empty data
in the dataset traces. Moreover, this is the main drive behind the low prediction accuracy
obtained compared to the KNN.

In KNN, the prediction accuracy of 95% is achieved by using Wrapper feature selection
method. Meanwhile, it reaches 93% by using filter feature selection method. The high
accuracy of the KNN classifier is due to the fact that the KNN takes into consideration the
correlation between the features, and the used dataset has a high dependency between
its features.

In SVM, the highest prediction accuracy of 97.5% is achieved by using the Wrapper fea-
ture selection method. Meanwhile, by using filter feature selection method it reaches 96.8%.
Figure 11 shows that the Wrapper selection method outperforms the Filter selection method
in terms of accuracy when combined with any of the four classifiers. This occurred due
to the high capability of Swarm Algorithms that are present in Wrapper methods to solve
complex problems, and this condition meets our dataset specs. Moreover, the main dis-
advantage of the filter selection methods is ignoring the interaction between features, so
it considers each feature specifically and IMS CDRs contain highly interacted data; thus,
this, explicitly, is the main reason beyond better performance. Moreover, we evaluate
the performance of the four classifiers without using feature selection. The prediction
accuracies for decision tree, naive Bayes, KNN and SVM are 90.5%, 92% and 95% and 96%,
respectively. This shows that each classifier reached its lowest prediction accuracy when it
does not use feature selection.

SVM shows the highest prediction accuracy; however, in some cases, prediction accu-
racy is not reliable. In this case study, our data set does not contain equal distribution for
successful and failed calls, as successful calls represent the higher percentage. Therefore,
it might have happened that SVM shows the highest prediction accuracy due to its right
prediction of only successful calls. In order to evaluate the model with the highest predic-
tion accuracy (SVM), we are going to use the confusion matrix and Receiver Operating
Characteristic (ROC).

As shown in Figure 12, the confusion matrix for the SVM classifier shows the prediction
results, as follows;

Figure 12. Confusion matrix for SVM classifier.

• True Positive (TP): Successful calls rightly predicted as a success (bottom right).
• True Negative (TN): Failed calls rightly predicted as failure (top left).
• False Negative (FN): Successful calls wrongly predicted as failure (bottom left).
• False Positive (FP): Failed calls wrongly predicted as successful calls (top right).
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It is shown that the FP is relatively low compared to the TN, indicating that the
proposed model can predicate a high percentage of the failures. Moreover, we can calculate
the True Positive Rate (TPR) and the False Positive Rate (FPR), as follows;

TPR =
TP

TP + FN
=

916, 010
916, 010 + 23, 546

= 0.975 (2)

FPR =
FP

FP + TN
=

20, 524
20, 524 + 36, 816

= 0.43 (3)

As shown in Figure 13, the ROC curve shows the confusion matrix result on all
classification thresholds, where the x-axis is the FPR and the y-axis is the TPR. We compare
between different classifiers with measuring the Area Under the Curve (AUC); the classifier
with the highest AUC shows the best performance in classification, as it has the highest
variance between FPR and TPR over all classification thresholds. Although the naive Bayes
has a better prediction accuracy than the decision tree, the later classifier demonstrates
better performance in distinguishing between the failure and success calls. The decision
tree has a higher AUC than naive Bayes, where the AUC of naive Bayes is 0.74 while the
AUC of the decision tree is 0.79.

Figure 13. ROC curve over all classifiers.

In order to implement the proposed technique in a real network, first, the data is
collected by identifying the SIP interfaces that should be monitored in IMS, as shown in
Figure 4 (red highlighted parts). Then, we tapped on these interfaces using probes to
collect and assemble SIP messages generated. Second, we ran the model on the IMS virtual
machine. Third, an analysis was conducted to obtain and conclude the root causes of call
failures, as shown in the following section.

7.3. Call Failure Analysis

In this subsection, we interpret the prediction results for the KNN classifier using the
Wrapper WOA feature selection algorithm, as it gives the highest prediction accuracy and
best ROC performance. This enables us to get the call failures’ root causes, taking into
consideration the following points:

• Firstly, the root causes depend on the dataset (CDRs). Therefore, applying different
datasets leads to different root causes.

• Secondly, we had to make sure that the dataset was extracted in a normal day time
without any anomaly behavior. For example, when a dataset is extracted during an
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outage inside the network, the model prediction accuracy turns out to be very high.
Since specific features will lead to call failures (e.g., faulty nodes), they could be
determined easily in our model, as they will have a very high weight relative to other
features. Therefore, the prediction accuracy, in this case, is not reliable.

• Thirdly, we are tackling problems that occur due to multi-factorial reasons and are
hardly detected using the traditional way (single trace analysis). In contrast, they can
be detected using ML Algorithms.

Based on the call failures analysis, the root causes can be illustrated as follows;

• Failures that occur for VoLTE calls that suffered from the Single Radio Voice Call
Continuity (SRVCC) are more significant than the normal VoLTE calls without SRVCC.

• When SRVCC occurs through specific P-CSCF IPs, subscriber suffers from call failures
with a percentage reaching 99%. This is a case where the failure is due to multifactorial
reasons (P-CSCF IP and SRVCC).

• Specific 5 Tracking Area Identities (TAIs) in the network contribute to a higher per-
centage of call failures rather than other TAIs.

• The calls where the originating user is using VoLTE and the terminating user is
using circuit switching (e.g., 3G)—or vice versa—fail more than the calls where the
originating and terminating users are using VoLTE.

• As the invite response time increase, the probability of a call failure increases.
• Twenty percent of used shortcodes have a failure rate of 100%, which shows that these

shortcodes are not working inside the IMS domain.

8. Conclusions

In this work, we proposed VoLTE call failures in the IMS network prediction model
using machine learning. Firstly, we analyzed different call failure use cases obtained from an
Egyptian mobile operator. The analysis demonstrated that the failure in any communication
protocol leads to SIP failure. Secondly, we study the SIP protocol to extract the features
used to classify the calls either as failures or successes. Based on the used dataset, which
contains one million SIP CDRs, we built eight different machine learning models using
four different classifiers (decision tree, naive Bayes, KNN and SVM) combined with two
different feature selection methods (Filter and Wrapper methods). The results demonstrated
that the SVM provides the highest prediction accuracy among all the classifiers and the
Wrapper selection method is more efficient than the Filter method in terms of the number
of the output features and the computational time. Finally, we analyzed the output of the
model with a highest prediction accuracy of 97.5% (SVM Classifier combined with Wrapper
Method in feature selection) to obtain the call failure root causes; this enables the network
operator to reduce the call drops.
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