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Abstract: Various machine learning models have been used in the biomedical engineering field,
but only a small number of studies have been conducted on respiratory rate estimation. Unlike
ensemble models using simple averages of basic learners such as bagging, random forest, and
boosting, the gradient boosting algorithm is based on effective iteration strategies. This gradient
boosting algorithm is just beginning to be used for respiratory rate estimation. Based on this, we
propose a novel methodology combining an autocorrelation function-based power spectral feature
extraction process with the gradient boosting algorithm to estimate respiratory rate since we acquire
the respiration frequency using the autocorrelation function-based power spectral feature extraction
that finds the time domain’s periodicity. The proposed methodology solves overfitting for the training
datasets because we obtain the data dimension by applying autocorrelation function-based power
spectral feature extraction and then split the long-resampled wave signal to increase the number of
input data samples. The proposed model provides accurate respiratory rate estimates and offers a
solution for reliably managing the estimation uncertainty. In addition, the proposed method presents
a more precise estimate than conventional respiratory rate measurement techniques.

Keywords: ensemble learning; photolethysmogram; respiration rate prediction; gradient boosting
technique; autocorrelation function-based power spectral feature extraction.

1. Introduction

Respiratory rate (RR) is an important signal to monitor disease progression. Irregular
RR is an essential indicator of diseases such as pneumonia, heart failure, and cardiac
arrest [1]. Therefore, RR monitors at home and in hospitals can help clinicians diagnose
patients and document their medical prognosis. There is medical evidence that rapid
changes in RR may be used to predict potentially severe heart disease, such as sudden
cardiac arrest or intensive care unit admission [1]. Hence, RRs are used in emergency room
examinations and primary care to identify hypercapnia, pulmonary embolism, pneumonia,
and sepsis. Nowadays, we can obtain RR by manually calculating chest wall movements.
However, this procedure is inaccurate [2], time-consuming [3], and poorly performed [4].
Moreover, RR monitors are not typically used as medical wearable sensors. Therefore, there
is an essential role for electronic, unobtrusive methods of measuring RR, such as estimating
RR based on electrocardiogram (ECG) or estimating RR based on photoplethysmography
(PPG) using wearable sensors [5–7]. ECG measures the current generated by the action
potential of the myocardium during each heartbeat. In addition, the ECG monitor is
integrated with wearable sensors to identify the patient’s heart rate (HR) and rhythm while
walking [8]. Unlike ECG, PPG measures the amount of blood that changes over time in
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a tissue bed [9], illuminated by either ambient light or a supplementary light source [10].
PPG is used for continuous HR monitoring in fitness devices and critically ill patients.
PPG-based devices have been developed for blood perfusion assessments and pulse transit
time measurements [5]. However, standard instruments currently used to measure RR
require monitoring CO2 production based on capnography. This method is expensive and
requires significant medical equipment management [11]. In addition, a nasal cannula or
mask is also needed, which is a hassle for the patient.

As an alternative method, we can obtain an accurate RR from a pulse oximeter for
saturation of partial pressure oxygen (SpO2), which is user-friendly and economical [11].
Addison P. S. et al. developed an algorithm for estimating RR using pulse oximeter sig-
nals [12], which can be used as an economical method for measuring RR using pulse
oximeter signals. Recently, researchers and users in the field of medical engineering are
predicting SpO2 using smart watches or wearable devices based on PPG technology. A
characteristic of the PPG signal is that oscillations occur, so the peaks and troughs of the
signal can be easily found on the time axis. Hence, we can detect the peaks and troughs of
the PPG signal using methods such as primary, amplitude, and frequency modulations [13].
These modulation methods for predicting RR with PPG technology have been published
using time-frequency spectrum estimation [11], sparse signal reconstruction, and continu-
ous wavelet [14]. The continuous wavelet transform was introduced by Addison et al. [14].
These techniques estimate the RR within a PPG spectral domain. Currently, various tech-
niques based on PPG signals are used for RR estimation. Unfortunately, few researchers
have published RR prediction results using [14–16] machine learning techniques [17,18].
Liu S. et al. [18] published generative boosting with a long short-term memory (LSTM)
network for RR estimation, including vital signals. LSTM technology has attracted atten-
tion in machine learning (ML). This technique has more benefits when dealing with the
problem of time series [19,20]. This year, Kumar A. K et al. [21] introduced a framework for
predicting RR from PPG and ECG signals based on LSTM. An ensemble-based gradient
boosting algorithm (GBA) based on multi-phase features [22,23] was applied to improve
the performance of RR prediction. In particular, several techniques such as autoregressive
method [24], multiple fractal wavelet readers [25], wavelet packets [26], and maximum
overlap discrete wavelet transform [27,28] were used to extract features to compensate
for insufficient data. However, it is difficult to determine which features should be used
and which ones are needed to obtain the optimal estimation rate. Ensemble GBA based on
multi-phase features also has the disadvantage that extracting the features required for RR
estimation from the PPG signal is inconvenient and time-consuming.

Another well-known machine learning (ML) model successfully used for estimation in
the biomedical engineering field is support vector regression (SVR) [29,30]. SVR is known
to have the advantage of effectively approximating nonlinear effects even with a small
number of training datasets. However, SVR is more complex to tune than the recent GBAs
discussed in [31]. Nevertheless, significant progress has been made in developing new
ML models over the past decade, and one of the most effective approaches to estimation
accuracy is ensemble ML algorithms [32]. An ensemble algorithm composes a model by
training several basic models such as a decision tree and then combining them to produce a
model with a higher estimation probability [31]. Unlike methods based on simple averages
of basic learners such as bagging [33], random forest [34], and boosting [35], the GBA is
based on effective iteration strategies. This ensemble ML model has been successfully used
in many areas and is just beginning to be used for RR estimation [22]. Based on these
backgrounds, we propose a novel methodology combining an autocorrelation function-
based power spectral feature extraction process with the GBA (CAGBA) model to estimate
RR. Here, we can obtain the respiration frequency using the autocorrelation function-based
power spectral feature extraction that finds the time axis’s periodicity.

Our input data have a small sample size, which is a challenge when using deep
learning techniques. In general, a small number of samples cannot guarantee the successful
performance of ML algorithms, such as LSTM, because the LSTM algorithms have several
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nonlinear features and require large datasets to train these features. In practice, we hope
to develop a CAGBA that can perform well even with a small sample of PPG signals. We
can solve the problem of small data by applying automatic autocorrelation function-based
power spectral feature extraction [36]. The proposed CAGBA solves overfitting for the
training datasets. In detail, we extend the data dimension by applying automated feature
extraction technology, and we then split the long-resampled wave signal to increase the
number of input data samples, which solves the overfitting problem caused by the small
data sample problem. Furthermore, the proposed CAGBA is computationally inexpensive
compared to the LSTM model. Furthermore, our research provides an accurate RR estimate
using the CAGBA process and offers a solution to reduce the estimated uncertainty. This
work is one of the first studies to use CAGBA for RR estimation with a limited sample. This
study contributes to the RR estimation field as follows.

• We propose a novel method for RR estimation using CAGBA from limited PPG signal
data. The key to this method is to extend the dimension of the input data using the
autocorrelation function-based power spectral feature extraction process;

• We split the long-resampled wave signal to increase the number of input data samples,
which solves the overfitting problem caused by the small data sample problem;

• The proposed method uses an autocorrelation function-based power spectral feature
extraction process from the PPG signals in the time domain, which automatically
extracts relevant features from the power spectral, learns, and then estimates the RR.

2. Dataset and Feature Extration
2.1. Collection PPG Signals

Our methodology uses two public biometric datasets as shown in Figure 1. We first
compare the ML algorithm performance using the RRSYNTH dataset (http://peterhcharlton.
github.io/RRest/syntheticdataset.html (accessed on 3 May 2021) [37]) with simulated PPG
and ECG signals. The dataset consists of 192 wave signals, every 210 s in length, using
a sampling frequency (Fs) of 500 Hz. There are three types of modulation: frequency
modulation (FM), baseline wander (BW), and amplitude modulation (AM) [37]. Only AM
data was used in this study because heart failure was associated with the pulse amplitude
of the PPG signal. The AM of the PPG signal reduces the stroke volume during suction
due to changes in the pressure in the chest, resulting in reduced pulse amplitude [37]. The
decrease in stroke volume was known to be heart failure closely [38]. Therefore, RR was
predicted from PPG signals using the AM-type signal modulation method. Upon closer
inspection, 192 AM records were used to develop the proposed GBA; however, 64 AM
records were not used because of their untampered AM properties.

Second, we use the BIDMC dataset (http://peterhcharlton.github.io/RRest/bidmcdataset.
html (accessed on 10 June 2022) [37]), which is extracted from the MIMIC-II resource [39]. The
BIDMC dataset consists of ECG, PPG, and impedance pneumography (IP) respiratory signals
acquired from intensive care patients. The dataset consists of 53 recordings of PPG, ECG, and
IP signals (Fs = 125 Hz) obtained from adult patients aged 19–90 years for 8 min. Patients in the
dataset were randomly selected among a cohort of patients admitted to Beth Israel Deaconess
Medical Center (BIDMC) in Boston, USA. Reference RR values were derived using two sets of
annotations of individual breaths of IP signals.

2.2. Short Review of Multi-Phases and Various Feature Extraction (MF)

We extracted features from wavelet transform domains and used autoregressive
techniques [24] based on segmented PPG signals. Wavelet transformation techniques were
also used to compensate for the shortcomings of Fourier transformation, because they can
analyze time and frequency information. A notable aspect of this technique is the extraction
of important features from various methods. In this work, we used a parallel combination
of AR techniques [24], wavelet packet entropy [26], and multifractal wavelet reader [25]
and maximum overlap discrete wavelet transform [27,28]. We found that the patterns of

http://peterhcharlton.github.io/RRest/synthetic dataset.html
http://peterhcharlton.github.io/RRest/synthetic dataset.html
http://peterhcharlton.github.io/RRest/bidmc dataset.html
http://peterhcharlton.github.io/RRest/bidmc dataset.html
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the multivariate PPG signals could be distinguished in terms of their relationships, using
the variability of each component in each PPG signal. Interested readers can refer to [22].

(1) Collection PPG
Signals

(2) Eliminating HF
Signals

(3) Detecting PPG 
Pulse Peaks

(6) Eliminating LF
Signals 

 

(7) Segmentation Wave
Signals

(8) Computing Auto
Correlation

(10) Computing Power
Spectral

(9) Converting FFT

(11) Concatenating
Power Spectral 

(12) Estimating RR  
using CAGBA

(13) Evaluation

(5) Resample Wave
Signals

(4) Detecting Fiducial
Points

Figure 1. Block diagram of the proposed methodology using CAGBA methodology.

2.3. Preprocessing Steps for Feature Extraction

PPG techniques are commonly used in biomedical and related research fields for RR,
HR estimation, SpO2, and blood pressure prediction. As shown in Figure 2, two PPG
waveforms were acquired from the RRSYNTH dataset [37]. The upper panel (a) shows
an example of breaths/minute (10 bpm), and the lower panel (b) shows an example of a
high bpm (50 bpm). The dashed line of the PPG waveform signal represents the envelope
between the PPG peak and trough. We can find fiducial points using these PPG peak and
trough information for the resampled wave signals. Next, we used steps 7 to 11 to estimate
the RR, as shown in Figure 1. Compared with the reference RRs (10 bpm and 50 bpm), error
of the estimated RR in Figure 2a represents (≤±1.0 bpm), and error of the estimated RR
in Figure 2b illustrates the accuracy of (≤±2.0 bpm). First, various high-frequency (HF)
signals were reduced using a low-pass filter (Kaiser window function) with a 3 dB cutoff
of 35 Hz , as shown in Figure 1. Next, the PPG signal was separated into pulses using the
incremental merge segmentation technique [40], which is an adaptive pulse segmentation
algorithm [40] for changing the PPG waveform into pulses and the automatic separation of
artifacts, as shown in the third box in Figure 1. Next, fiducial points were identified from
the PPG peaks and troughs, as shown in the fourth box on the left side of Figure 1. The
irregular PPG signals were resampled to 5 Hz by using the linear interpolation method [40]
as shown in the fifth box on the left side of Figure 1. Subsequently, the low-frequency (LF)
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signals were eliminated using a high-pass filter (Kaiser window function) with a 3 dB cutoff
frequency. Finally, resampled waveform signals were acquired from PPG signals.
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Figure 2. Upper panel (a) is an example (10 breath per minute) 4th record PPG signal, and lower
panel (b) is an example (50 breath per minute) 24th record PPG signal, where the 4th record represents
the 4th of 192 records.

The RRSYNTH dataset of breathing signals was acquired from PPG and RR target
data obtained from 192 records (participants). Each signal had a length of 210 s, and the
sampling frequency (Fs) was 500 Hz. RR estimates were determined using the mean second
between successive respirations in the Hamming window. Iterative tests were performed
to predict the actual RR value as window size was changed to 16, 32, and 64 s. Finally, the
proposed technology exhibited better performance at a window size of 32 s than at window
sizes of 16 and 64 s [37,39]. The BIDMC dataset consists of ECG, PPG, and IP respiratory
signals obtained from intensive care patients. The dataset consists of 53 recordings of
PPG, ECG, and IP signals (Fs = 125 Hz) obtained from adult patients aged 19–90 years
for 8 min. The preprocessing of the BIDMC dataset was performed the same way as the
RRSYNTH dataset.

2.4. Autocorrelation Function-Based Power Spectral Feature Extraction Process

Preprocessing steps produced resampled wave signals from the PPG dataset for
feature extraction, as shown in the boxes on the left side of Figure 1. Subsequently, the
autocorrelation for feature extraction was calculated, as shown in the eighth box in Figure 1.
The autocorrelation can be used to determine the periodicity in the time domain. The
autocorrelation function relies on the difference between the discrete times n and n + m.
If m = 0 (lag 0), the autocorrelation denotes the maximum value representing the total
energy of the input value. Given the measurements z = {zn}N

n=1 at a discrete-time lag m,
in practice, we define the autocorrelation function as

ρm(z) =
∑N

n=1(zn − µz)(zn+m − µz)

∑N
n=1(zn − µz)2

(1)

where z denotes a data point obtained from the segmented wave signal and µz = ∑N
n=1 zn

denotes the mean. The power spectral is a fast Fourier transform of the autocorrelation
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function and effectively represents information about the time series of a biological sig-
nal [41]. The time-axis correspondence of a power spectral denotes an autocorrelation
function because the time-axis autocorrelation function is equal to the square of the ampli-
tude spectrum. Hence, we obtained the power spectral of all components within 0.1–2.5 Hz.
The CAGBA model extracts relevant features from the power spectral, automatically learns,
and subsequently estimates RR. A low frequency (≤0.5) with each spectral power can be
an efficient feature for estimating RR. Each record had a length of 210 s, and the sampling
frequency (Fs) was 500 Hz. Thus, 105,000 experimental sampled data points were prepared
for each subject, as shown in Figure 2a,b. Figure 2 shows examples of PPG signals extracted
for only 30 s out of 210 s of the 4th and 24th subject’s PPG signals. After preprocessing, a
clean wave signal was prepared, as shown in Figure 3a. Next, the clean waveform (6 bpm)
was split using a 32 s window, as shown in Figure 3b. The 32 s window did not overlap.
Figure 3c shows that the segmented waveform is converted to an autocorrelation coeffi-
cient. Subsequently, the power spectral was obtained, as shown in Figure 3d. Finally, the
features were acquired by connecting the six power spectral in Figure 3e. In addition to the
aforementioned method, power spectral features can be obtained, as shown in Figure 3e,
by connecting six power spectral in Figure 3d, which are the signals obtained from the 2th
subjects. Specifically, we obtain the resample wave signal from the PPG signals 210 s and
reshape into (6 × 32 s window). Next, we acquire the autocorrelation and obtain the power
spectral 6 × 256 (=1542) data points using FFT as shown in Figure 3e.

0 50 100 150 200 250Time (s)
-5

0

5

A
m

p
li

tu
d

e 

10
-3 (a)

0 5 10 15 20 25 30 35Time (s)
-5

0

5

A
m

p
li

tu
d

e

10
-3 (b)

0 50 100 150 200 250 300 350Lags (n)
-1

0

1

A
u

to
co

rr
la

ti
o

n

10
-3 (c)

0 0.5 1 1.5 2 2.5Freq.(Hz)
0

50

100

P
o

w
er

 s
p

ec
tr

al

(d)

0 200 400 600 800 1000 1200 1400 1600

Dimension

0

50

100

P
S

F

(e)

Figure 3. Top panel (a) is a resampled wave signal from the 2nd subject PPG signal, panel (b) is a
segmented wave signal from the resampled wave signal (a), panel (c) denotes an autocorrelation
signal from the segmented wave signal (b), panel (d) is a power spectral from (c) the autocorrelation
signal, and bottom panel (e) denotes the power spectral feature (PSF) from the power spectral (d).
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3. Gradient Boosting Algorithm (GBA)

The GBA is a numerical optimization model [23] that aims to discover additive models
that minimize cost functions. The training dataset are D = {xi, yi}N

i=1 and x ∈ RN×D and
y ∈ RN×1, respectively, where N denotes the number of observation, and D is a number of
feature dimensions. Here, the GBA’ goal is to obtain a prediction as

yj = f (xj) + ε, ε v N (0, σ2I) (2)

where ε denotes a Gaussian noise with zero mean and unknown variance σ2 and we define
a regression model k of the mapping function f that minimize the expected cost function as

L(k) = E(y, x) v PL(k(y, x)) =
∫

R
L(k(y, x))dP(y, x), (3)

where P(y, x) denotes a joint probability and the cost function is given as L(y, k(x)) =
(y− k(x))2. We can iteratively update the estimate y from x for the cost function L using
the basic learner h(x), improving the previous learner as follows:

ki(x) = ki−1(x) + γihi(x), i = 1, ...M (4)

Here, M denotes a number of ensemble, γ is a weight for the basic learner, and we
use a decision tree as the basic learner. We want to minimize the cost function L using
gradient descent iteratively. The GBA model is shown as Algorithm 1. The regression tree
is one of the most common machine-learning techniques that produce the same structure
as the decision tree. Each internal node represents a functional test, wherein each branch
represents one of the possible test results and each node represents a regression. Estimating
errors are generally calculated using the difference between observations and estimates.

Algorithm 1 The GBA model for regression

Procedure: Training dataset (D); Estimated function k(x)
Initialize k0(x)
for j = 1, L do

g(j)
i = − ∂L(yi ,ki−1(xi))

∂ki−1(xi)

Compute the resdual gi as the partial derivative of the cost function
L at all data point on training dataset D = {xi, yi}N

i=1

Generate a new regression tree hj(xi) based on {xi, g(j)
i }

γj = arg minγ ∑N
i=1 L(yj, k j−1(xi)) + γhj(xi)

Discover an optimal increment step γj

k j(x) = k j−1(x) + γjhj(x)

Update the regression model for estimation

end for

Return

kM(x) = ∑L
j=1 γjhj(x) = kL−1(x) + γLhL(x)

End procedure
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4. Results

In this experiment, first, a respiratory signal was obtained from the PPG signal using
the two datasets. These data were randomly separated into 80% of the training and 20% of
the test data. In addition, to evaluate the performance of the proposed algorithm, reference
RR was calculated from the oral-nasal pressure signal using a custom respiration detection
algorithm [37].

We summarized the main parameters of the proposed and conventional models when
using the RRSYNTH dataset in Table 1. Using the BIDMC dataset, the main parameters
are the same as in the RRSYNTH dataset, except for the dimensions of the features. This
table adjusts the parameters for each process to achieve the best performance. Twenty total
training and testing times were calculated using MATLAB ®2022 [42]. As shown in Table 2,
the GBA models had a shorter execution time than the LSTM models and a higher total
execution time than the SVR models. To evaluate the proposed method in comparison with
the conventional methods, difference between the RR estimates is obtained experimentally.
The reference RR values are summarized in Table 3 based on the mean absolute error
(MAE) and standard deviation (SD) of the MAE. The MAE and SD results show the mean
values from the 20 experiments. Lower SD and MAE values indicate a better performance
than high SD and MAE values. Here, a new feature extraction process is also applied to
SVR and LSTM methods, including the GBA model, which proposes a feature extraction
method using the autocorrelation-based power spectral proposed for objective evaluation.
As mentioned in the introduction, the proposed approach is called the CAGBA model.
The results obtained using SVR with the multiphase feature extraction (SVRMF) and SVR
with autocorrelation function-based power spectral feature (CASVR) models are listed
in Table 3. The MAE result (2.89 bpm) of CASVR shows a higher performance than this
(5.57 bpm) of SVRMF using the RRSYNTH dataset. Using the BIDMC, we see that the MAE
results of the two models, SVRMF and CASVR, are very similar. The results obtained using
LSTMs with multiphase feature extraction (LSTMMF) and LSTMs with autocorrelation
function-based power spectral feature (CALSTM) [18] are shown in Table 3. The CALSTM
(5.35) algorithm is shown to perform slightly better than the LSTMMF (5.63) using the
RRSYNTH dataset. In addition, we check the MAE results (2.37 bpm vs. 2.54 bpm) of
LSTMMF and CALSTM models when using the BIDMC data. The results obtained using a
GBA with multiphase feature extraction (GBAMF) and the CAGBA model are suggested in
Table 3. The MAE result (1.06 bpm) of CAGBA is compared with this (5.25) of GBAMF. We
notice the MAE results (1.98 bpm) and (1.94 bpm) of GBAMF and CAGBA models using
the BIDMC dataset.

Table 1. The core parameters used in the proposed and conventional methods were summarized
using the RRSYNTH dataset.

Parameters SVRMF CASVR LSTMMF CALSTM GBAMF CAGBA

Dimension of Feature 279 1542 279 1542 279 1542
Dimension of Output 1 1 1 1 1 1
Epsilon 3 3 1.0× 10−8 1.0× 10−8 - -
KernelFunction Gau. Gau. - - Con. Con.
KernelScale auto auto - - - -
Number of Hidden Unit - - 200–300 200–300 - -
FullyConnectdLayer - - 50 50 - -
Dropout - - 0.2–0.5 0.2–0.6 - -
MaxEpoch - - 300 300 - -
Solver - - adam adam - -
GrandientThreshold - - 1 1 - -
ShrinkageFactor - - - - 0.05–0.3 0.05–0.3
SubsamplingFactor - - - - 0.1–0.3 0.1–0.3
MaxTreeDepth - - - - 4–6 4–6
Max Iterations - - - - 2000 2000
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Table 2. Twenty total training and testing times were compared between the conventional and
proposed methodology, where the specifications of the computer system are Intel®Core(TM) i5-9400
CPU 4.1 GHz, RAM 16.0 GB, OS 64 bit, and Matlab®2022 (The MathWorks Inc., Natick, MA, USA).

Dataset Unit SVRMF CASVR LSTMMF CALSTM GBAMF CAGBA

RRSYNTH (s) 60.47 10.42 94.15 92.75 75.28 23.60
BIDMC (s) 51.56 8.76 92.81 89.35 62.33 17.32

Table 3. The RR estimation results were obtained using the SVR, LSTM, and GBA models, which were
calculated as the difference from the reference RR method to express it as the MAE and SD evaluation
method, where the MF denotes the multiphase feature extraction and CA is the autocorrelation
function-based power spectral feature extraction.

Dataset Errors SVRMF CASVR LSTMMF CALSTM GBAMF CAGBA

RRSYNTH MAE 5.57 2.89 5.63 5.35 5.25 1.06
SD 0.06 0.15 0.44 0.16 0.42 0.41

BIDMC MAE 2.01 2.05 2.37 2.54 1.98 1.94
SD 0.45 0.58 0.60 0.56 0.48 0.61

ANOVA Test

ANOVA tests [43] are used to objectively compare and effectively assess the per-
formance of the proposed CAGBA with the GBAMF, LSTMMF, CALSTM, SVRMF, and
CASVR techniques. ANOVA is a statistical formula used to compare variance values in
the arithmetic mean of the different groups. The hypothesis of interest for ANOVA is as
follows [22]:

H0 : Θ1 = Θ2... = Θj, H1 : Θ1 6= Θ2... 6= Θj (5)

The null hypothesis of ANOVA indicates no difference in the means between the
groups, and the alternative hypothesis implied that the means between the groups were
not equal. Therefore, in this study, multiple comparisons between groups are used to
determine the effects of other groups and their means. One-way ANOVA is a very compact
linear model, given eij = αj + εij. Here, eij represents the experimental results (MAE) of
CAGBA with GBAMF, LSTMMF, CALSTM, SVRMF, and CASVR, where i = 20 represents
the number of test and groups j = 6 (number of model). We compare the MAE results
between SVRMF and CASVR using the RRSYNTH dataset, as shown in Table 4. The total
degree of freedom (df) is the total number of measurements (MAE) minus one: 39 (=40).
The degree of freedom between groups is denoted as 1 (=2− 1). In Table 4, MS shows the
mean squared error (sum of squares (SS) / df = 71.66), and the F-statistic shows the ratio of
the mean squared error (71.66/0.61 = 118.02). The p-value, 3.25× 10−13, is the computed
test statistic, that is, the probability of obtaining a value greater than P(F > 118.02). We also
compare the MAE results of the LSTMMF and CALSTM models as shown in Table 4. Here,
the p-value (0.319) shows a value greater than the significance level of (0.05). In Table 5,
the MAE results of the GBAMF and CAGBA models are presented. We can see that the
p-value (2.43× 10−24) between GBAMF and CAGBA models is very small compared to the
significance level of (0.05). Table 5 shows df(=59) and p-value (0.316) obtained from MAE
results of SVRMF, LSTMMF, and GBAMF models using the RRSYNTH dataset. We then see
the p-value (1.42× 10−27) acquired from MAE results of CASVR, CALSTM, and CAGBA
models using the RRSYNTH dataset and observe the p-value (4.69× 10−45) obtained using
six models as in Table 6. Table 7 displays the p-value (0.805) obtained from the MAE results
of the SVRMF and CASVR models on the BIDMC dataset. We can see the p-value (0.355)
acquired from the the MAE results of the LSTMMF and CALSTM models on the BIDMC
dataset. Table 8 shows the p-value (0.814) obtained using the MAE results of the GBAMF
and CAGBA models, and we noice p-value (0.036) obtained using the MAE results of the
SVRMF, LSTMMF, and GBAMF models. Table 9 shows the p-value (0.0043) calculated
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using the MAE results of the CASVR, CALSTM, and CAGBA models. We then see the
p-value (0.0022) obtained from the MAE results of all six models using the BIDMC dataset.

Figure 4a well displays the MAE results of the SVRMF and CASVR models; we see
the MAE results of the LSTMMF and CALSTM models in Figure 4b; In Figure 4c shows
the MAE results of the GBAMF and CAGBA models. We observe the MAE results of the
SVRMF, LSTMMF, and GBAMF models in Figure 4d. Then, we show the MAE results of
the CASVR, CALSTM, and CAGBA models in Figure 4e. We can see the MAE results of all
six models based on the RRSYNTH in Figure 4f. Figure 5 shows the MAE results in the
same order as Figure 4. Here, the results of Figure 4 are using the RRSYNTH dataset, and
the results of Figure 5 are the results of experiments with the BIDMC dataset.

Table 4. Using the RRSYNTH dataset, the ANOVA results of the left side columns were obtained
from the SVRMF and CASVR; the right side columns were obtained from LSTMMF and CALSTM
models, where SS denotes a sum of squares, df is the degree of freedom, MS is the mean squared
error, BG is between groups, and WG indicates within groups.

Source SS df MS F p Value SS df MS F p Value

BG 71.66 1 71.66 118.02 3.25× 10−13 0.77 1 0.77 1.02 0.319
WG 23.07 38 0.61 - - 28.75 38 0.76 - -
Total 94.73 39 - - - 29.52 39 - - -

Table 5. Using the RRSYNTH dataset, the ANOVA results of the left side columns were obtained
from the GBAMF and CAGBA; the right side columns were obtained from SVRMF, LSTMMF and
GBAMF models.

Source SS df MS F p Value SS df MS F p Value

BG 175.90 1 175.90 559.68 2.43× 10−24 1.64 2 0.82 1.17 0.316
WG 11.94 38 0.31 - - 39.81 57 0.70 - -
Total 187.84 39 - - - 41.45 59 - - -

Table 6. Using the RRSYNTH dataset, the ANOVA results were obtained from the CASVR, CALSTM,
and the proposed CAGBA models; the right side columns were obtained from SVRMF, CASVR,
LSTMMF, CALSTM, GBAMF, and CAGBA models.

Source SS df MS F p Value SS df MS F p Value

BG 185.70 2 92.85 220.91 1.42× 10−27 357.68 5 71.54 127.89 4.69× 10−45

WG 23.96 57 0.42 - - 63.77 114 0.559
Total 209.66 59 - - - 421.45 119

Table 7. Using the BIDMC dataset, the ANOVA results of the left side columns were obtained from
the SVRMF and CASVR; the right side columns were obtained from LSTMMF and CALSTM models.

Source SS df MS F p Value SS df MS F p Value

BG 0.02 1 0.02 0.06 0.805 0.30 1 0.30 0.88 0.355
WG 10.24 38 0.27 - - 12.87 38 0.34 - -
Total 10.26 39 - - - 13.17 39 - - -

Table 8. Using the BIDMC dataset, the ANOVA results of the left side columns were obtained from
the GBAMF and CAGBA; the right side columns were obtained from SVRMF, LSTMMF and GBAMF
models.

Source SS df MS F p Value SS df MS F p Value

BG 0.02 1 0.02 0.06 0.814 1.88 2 0.94 3.53 0.036
WG 11.61 38 0.31 - - 15.20 57 0.27 - -
Total 11.63 39 - - - 17.08 59 - - -
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Table 9. Using the BIDMC dataset, the ANOVA results of the left side columns were obtained from
the CASVR, CALSTM, and CAGBA; the right side columns were obtained from SVRMF, CASVR,
LSTMMF, CALSTM, GBAMF, and CAGBA models.

Source SS df MS F p Value SS df MS F p Value

BG 4.12 2 2.06 6.01 0.0043 6.10 5 1.22 4 0.0022
WG 19.52 57 0.34 - - 34.72 114 0.304
Total 23.64 59 - - - 40.82 119
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Figure 4. The box below represents the MAE and SD compared to the reference RR method obtained
using the RRSYNTH dataset; where (a) is the MAE results of SVRMF and CASVR, (b) denote the
MAE results of LSTMMF and CALSTM, (c) is the MAE results of GBAMF and CAGBA, and (d)
denote the MAE results of SVRMF, LSTMMF, and GBAMF, (e) is the the MAE results of CASVR,
CALSTM, and CAGBA, and (f) is the MAE results of all models.
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Figure 5. The box below represents the MAE and SD compared to the reference RR method obtained
using the BIDMC dataset; where (a) is the MAE results of SVRMF and CASVR, (b) denote the MAE
results of LSTMMF and CALSTM, (c) is the MAE results of GBAMF and CAGBA, and (d) denote the
MAE results of SVRMF, LSTMMF, and GBAMF, (e) is the the MAE results of CASVR, CALSTM, and
CAGBA, and (f) is the MAE results of all models.
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5. Discussion

This first study integrates autocorrelation function-based power spectral feature ex-
traction with a GBA model-based approach to estimate respiration rate using PPG signals.
The results show that the MAE of the proposed model is smaller than that of the rest of
the models when using the RRSYNTH dataset. This result solves the overfitting prob-
lem caused by small data by dividing the long sample wave signal to compensate for
the insufficient sample. In addition, the autocorrelation function-based power spectrum
feature extraction technique is well applied to the GBA model using the RRSYNTH dataset.
Although the proposed integrated model is not simple to construct because it consists of an
ensemble algorithm and requires high computer resources, the proposed model is more
effective in using computer resources than the LSTM model. We also observed that using
various methods, the MF model consumed more feature extraction time than the CA model.
Therefore, the CA method uses computer resources more efficiently.

On the other hand, when using the BIDMC dataset, the MF feature extraction method
and the proposed CA feature extraction method were applied to all the SVR, LSTM, and
GBA models, confirming that there was no difference through the p-value. Although there
is no difference in the feature extraction technique, the proposed model is an excellent
model for respiration rate estimation due to its low MAE and stable SD results based on
both datasets. The overall evaluation results show that the performance of the proposed
algorithm is more accurate than that obtained using the LSTM and SVR algorithms for
respiration rate estimation.

Limitations

We experimented with two PPG datasets collected from the RRSYNTH and BIDMC
datasets [37]. This study is limited due to the small number of records on a relatively
small number of subjects. However, this limitation is addressed using autocorrelation
function-based power spectral feature extraction from physiological respiration signals
on the time axis, which automatically extracts relevant features from the power spectral.
However, we cannot argue that all our experiments are consistent with those described
above. Also, the algorithm is not detailed enough to replicate accurately in some cases. We
should cross-validate using other public dataset.

6. Conclusions

In this study, we proposed a new technique using the autocorrelation function-based
power spectral feature extraction with the GBA model to estimate respiration rate based on
photoplethysmography signals. The autocorrelation function-based power spectral feature
extraction was used to overcome the challenge of insufficient photoplethysmography sig-
nals. We build the automatic feature extraction process to increase the data dimension and
then split the long-resampled wave signal to increase the number of input data samples.
This solved the overfitting problem caused by small data samples. This study’s main contri-
bution was using the autocorrelation function-based power spectral feature extraction with
the GBA model, which is based on the automatic extraction of relevant features, to achieve
higher stability and accuracy. The proposed methodology obtained lower MAEs and stable
SDs for respiration rate estimation than the LSTM and SVR methods. The autocorrelation
function-based power spectral feature extraction with the GBA model demonstrated excel-
lent performance. Thus, this work provides a novel method for increasing the accuracy of
respiration rate estimation and a solution to reduce estimation errors. Further experimental
tests should be conducted on new patient populations in the future.
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Abbreviations
The following abbreviations are used in this manuscript:

RR Respiratory rate
PPG Photoplethysmography
ECG Electrocardiogram
HR Heart rate
SpO2 Partial pressure oxygen
LSTM Long short-term memory
ML Machine learning
GBA Gradient boosting algorithm
SVR Support vector regression
CAGBA Autocorrelation function-based power spectral feature extraction process with the GBA
FS Sampling frequency
FM Frequency modulation
BW Baseline wander
AM Amplitude modulation
HF High-frequency
LF Low-frequency
IP Impedance pneumography
MAE Mean absolute error
SD Standard deviation
SVRMF SVR with the multiphase feature extraction
CASVR SVR with autocorrelation function-based power spectral feature
LSTMMF LSTMs with multiphase feature extraction
CALSTM LSTMs with autocorrelation function-based power spectral feature
GBAMF GBA with multiphase feature extraction
MF Multiphase feature extraction
CA Autocorrelation function-based power spectral feature extraction
df degree of freedom
MS Mean squared error
SS Sum of squares
BG Between groups
WG Within groups
BIDMC Beth Israel deaconess medical center
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