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Abstract: Coastal wetlands are dynamic and fragile ecosystems where complex changes have taken
place. As they are affected by environmental changes and human activities, it is of great practical
significance to monitor coastal wetlands changes regularly. High-resolution optical data can observe
changes in coastal wetlands, however, the impact of different optical features on the identification of
changes in coastal wetlands is not clear. Simultaneously, the combination of many features could
cause the “dimension disaster” problem. In addition, only small amounts of training samples are
accessible at pre- or post-changed time. In order to solve the above problems, the feature hierarchical
selection method is proposed, taking into account the jumping degree of different image features. The
influence of different optical features on wetland classification was analyzed. In addition, a training
samples transfer learning strategy was designed for wetland classification, and the classification
result at pre- and post-changed times were compared to identify the “from-to” coastal wetlands
changes. The southeastern coastal wetlands located in Jiangsu Province were used as a study area,
and ZY-3 images in 2013 and 2018 were used to verify the proposed methods. The results show that
the feature hierarchical selection method can provide a quantitative reference for optimal subset
feature selection. A training samples transfer learning strategy was used to classify post-changed
optical data, the overall accuracy of transferred training samples was 91.16%, and it ensures the
accuracy requirements for change identification. In the study area, the salt marsh increased mainly
from the sea area, because salt marshes expand rapidly throughout coastal areas, and aquaculture
ponds increased from the sea area and salt marshes, because of the considerable economic benefits of
the aquacultural industry.

Keywords: change detection; feature selection; jumping degree; transfer learning; coastal wetlands

1. Introduction

Coastal wetlands, which are located in the interactive zone between terrestrial and
aquatic ecosystems, are dynamic and fragile ecosystems [1]. They play important roles in
water conservation, regional climate regulation, flood control, biodiversity protection, and
so on [2,3]. Over the past century, coastal wetlands have experienced obvious degradation
or even disappearance, as a result of environmental changes and human activities, such
as climate change, urban expansion, livestock grazing, and agricultural development [4].
Change detection (CD) is the appropriate way to observe wetland changes, therefore
accurate and timely CD is fundamental to reliable wetland management and successful
wetland protection.

Optical images [5–7] and synthetic aperture radar (SAR) images [8–10] have been
effectively utilized for dynamic monitoring in wetlands. Spectral-enhanced features [11],
textural features [12], spectral-spatial features [13], spectral-textural features [14], and
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spectral-spatial-textural features [15,16] have been utilized for change detection, however,
there is inevitably redundancy among these features. If all of these features are input into
the image classifier, on the one hand, it is easy to cause the “dimension disaster” problem,
and computer operation becomes slow. On the other hand, the addition of some features is
not conducive to the improvement of image classification and change detection. Therefore,
it is necessary to select some features to obtain optimal feature subsets.

Feature selection methods select optimal feature subsets from the available image
features, which are divided into filter methods and wrapper methods [17]. Recently,
principal component analysis [18], random forest-based [19], genetic particle swarm op-
timization [17], sequential forward selection [20], ensemble learning [21], and adaptive
feature selection network [22] have been proposed for feature selection. Random forest is
one of the wrapper methods and it removes irrelevant features one by one in order to obtain
optimal feature subsets. When there are hundreds or thousands of features, it will take
more time to remove irrelevant features one by one, therefore, it is necessary to improve
the efficiency of feature selection using random forest.

In addition, due to the large-scale and complex geographical conditions of coastal
wetlands [23], it is time-consuming and laborious to collect training samples. According to
the availability of training samples, CD methods can be divided into two categories: super-
vised CD and unsupervised CD. In addition, according to the final detailed requirements
for the changed regions, CD can be divided into two categories: binary CD and multiple
CD. Binary CD only separates changed areas from unchanged areas, while multiple CD
can not only extract the changed areas but also obtain the “from-to” change information. A
number of binary CD methods have been proposed, such as change vector analysis [24],
clustering method [25], threshold method [26], and deep learning [27]. The development of
binary CD methods is summarized in references [28–31].

Compared with binary CD, multiple CD is more challenging. Some approaches have
been developed, such as post classification comparison [32], CD in change vector analysis
polar domain [24], and slow feature analysis [33]. However, these methods have been
developed based on the assumption that there are either some or no ground reference
samples at both pre- and post-changed times. Only small amounts of ground reference data
are available at only one of the pre- and post-changed times [34], therefore, how to utilize
limited ground reference samples for multiple CD is another important consideration.

The contribution of this article is to propose a random forest-based feature hierarchical
selection method in order to obtain optimal feature subsets, and these optimal feature
subsets could then be utilized for coastal wetlands classification. In addition, a simple
training samples transfer learning strategy was designed for identifying coastal wetland
changes, where small amounts of ground training samples are available only at the pre-
changed time. The feature optimization can improve the accuracy of coastal wetlands
classification, and samples transfer learning can be more suitable for the actual monitoring
of changes in wetlands.

The rest of this article is organized as follows. The study area and data descriptions are
presented in Section 2, the proposed feature hierarchical selection and designed changes
identification using sample transfer learning are described in Section 3, our experimental
results are reported in Section 4, and conclusions are summarized in Section 5.

2. Materials
2.1. Study Area

The study area was a typical coastal wetland and is located in Dongtai city in the
southeastern part of the Jiangsu province in China (Figure 1). The wetland types in the
region are sea, open water, farmland, aquaculture pond, salt marsh, and building.
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Figure 1. Experimental data: (a) ZY-3 image in 2013; (b) ZY-3 image in 2018.

In the study area, the change patterns consisted of Se–SM (the change from sea to salt
marsh marked in rectangle A), Se–AP (the change from sea to aquaculture pond marked in
rectangle B), FL–AP (the change from farmland to aquaculture pond marked in rectangle C),
SM–FL (the change from salt marsh to farmland marked in rectangle D) and SM–AP (the
change from salt marsh to aquaculture pond marked in rectangle E).

2.2. Dataset

High spatial-resolution Ziyuan-3 (ZY-3) images in 2013 and 2018 were used as ex-
perimental data, the acquisition dates and spatial resolutions are listed in Table 1. Image
preprocessing included radiometric correction, image registration, and image cropping
using ENVI 5.6 software.

Table 1. Multi-temporal optical data.

Sensor Acquisition Date Spatial Resolution

ZY-3 4 March 2013 5.8
ZY-3 22 March 2018 5.8

3. Methods
3.1. Feature Extraction

Different feature types were extracted from ZY-3 images, including spectral-based,
texture-based, morphological-based, transform-based, edge-based, and vegetation indexes.

(a) Spectral-based features contained five spectral features (blue, green, red, near-infrared
bands, and brightness).

(b) Texture-based features were GLCM (gray-level co-occurrence matrix)-based features,
including mean, variance, homogeneity, dissimilarity, contrast, entropy, angular
second moment, and correlation. GLCM-based textures were influenced by the
window size of images, so six different window sizes, 3 × 3, 7 × 7, 11 × 11, 15 × 15,
19× 19, and 23× 23, were chosen to calculate GLCM textures. For four spectral bands
(blue, green, red, and near-infrared band), 192 GLCM-based textures were extracted.

(c) Morphological profiles (MPs) and differential morphological profiles (DMPs) can
express the morphological characteristics of land cover, so the opening and closing
of both MPs and DMPs were used to extract the morphological-based features. Five
different scales [1–5] were chosen to describe the morphological characteristics on a
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fine to coarse scale. Eighty morphological-based features were extracted from four
spectral bands.

(d) Transform-based features were extracted using non-subsampling shearlet transform
(NSST). NSST decomposition was used to obtain high-frequency sub-bands and low-
frequency sub-bands, and NSST reconstruction was used to reconstruct image features.
In order to describe the above features on a coarse to fine scale, NSST reconstruction
was used on three different scales, to obtain twelve transform-based features for four
spectral bands.

(e) Sobel operator was used to obtain four edge-based features for four spectral bands.
(f) Ten vegetation indexes (NDVI, NDWI, GR, DVI, RVI, SAVI, OSAVI, MSAVI, PVI, and

EVI) were also extracted from four spectral bands, the formula of these vegetation
indexes is listed in Table 2.

Table 2. The formula of vegetation indexes.

Vegetation Indexes Formula Parameter Explanation

NDVI NDVI =(NIR− R)/(NIR + R) NIR is the near-infrared band and R is the red band
NDWI NDWI =(G−NIR)/(G + NIR) G is the green band

GR GR = G/(B + G + R) B is the blue band
DVI DVI = NIR− R
RVI RVI = NIR/R

SAVI SAVI = NIR−R
NIR+R+p (1+p) p is the percent of vegetation cover

OSAVI OSAVI = (1+0.16)(NIR−R)
(NIR+R+0.16)

MSAVI MSAVI =
√
(NIR + 0.5)2−2(NIR− R)

PVI PVI =NIR−aR−b√
1+a2

a = 10.489, b = 6.604

EVI EVI = g× NIR−R
NIR+C1R−C2B+L g = 2.5, C1 = 6, C2 = 7.5, L = 1

Together 303 features were extracted from ZY-3 images, as shown in Table 3.

Table 3. Image features extracted from ZY-3 images.

Feature Types Image Features Number

Spectral-based blue, green, red, near-infrared bands, brightness 5

GLCM-based
mean, variance, homogeneity, dissimilarity,

contrast, entropy, angular second
moment, correlation

192

Morphological-based
morphological profiles (opening and closing),

different morphological profiles
(opening and closing)

80

Transform-based reconstructed features using non-subsampling
shearlet transform 12

Edge-based Sobel edge feature 4

Vegetation indexes NDVI, NDWI, GR, DVI, RVI, SAVI, OSAVI,
MSAVI, PVI, EVI 10

Total 303

3.2. Feature Hierarchical Selection

Variable importance (VI) of image features was calculated by random forest algorithm,
as shown in Equation (1):

VI =
Ntree

∑
t=1

EOOB2 − EOOB1

Ntree
(1)

where EOOB1 is the out-of-bag (OOB) error of decision trees, EOOB2 is the OOB error when
the image feature Fi is replaced, Ntree is the number of decision trees. After the image
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feature Fi is replaced, if the OOB error changes obviously, it indicates that the image feature
Fi is more important.

Assuming that the data sequence is {X1, X2, X3, · · · , Xn}, the statistic that obeys
the overall distribution is F(x, θ), the number is n, the expectation of the data sequence
{X1, X2, X3, · · · , Xn} is ũ. ũk is the point estimate that only depends on the expectation ũ,
shown as Equation (2), in which xi is the ith statistic value, and xk is the kth statistic value.

ũk =

k
∑

i=1
xi + (n− k)xk

k
(2)

In this paper, the jumping degree tk was designed for feature hierarchical selection.
Firstly, all the extracted image features were sorted in ascending order according to their
VI values. Secondly, the jumping degree of each image feature was calculated, shown as
Equations (3) and (4).

tk =
ũk+1

ũk
(3)

ũk =

k
∑

i=1
si + (n− k)sk

k
(4)

where tk is the jumping degree at point k, ũk is point estimate at point k, ũk+1 is point
estimate at point (k+1), si is VI value of image features Fi, sk is VI value of image features
Fk, and n is the number of image features.

Finally, if tk(k ≥ 2) is greater than all the jumping degrees of its previous (k− 1) image
features, k is regarded as the point that distinguishes different feature groups, and the
previous (k− 1) image features belong to the same feature group. The remaining image
features after the removal of the previous (k− 1) image features repeat the above rule, until
all image features are distinguished hierarchically.

3.3. Saliency-Guided Binary Change Detection

Dynamic wetlands monitoring in large-scale areas was an effective method that firstly
extracted changed and unchanged areas, and then identified different change categories.
Changed and unchanged areas were extracted using binary CD methods, and different
change categories were identified using multiple CD methods. Many binary CD methods
have been proposed, they can be divided into pixel-based, sub-pixel-based, object-based,
and scene-based CD methods, according to different analysis units [35].

Pixel-based and object-based binary CD methods are widely used, but each of them
has its advantages and disadvantages. Pixel-based CD methods are sensitive to image
registration errors, and their salt-and-pepper phenomena are serious. Object-based CD
methods can improve salt and pepper phenomena, and they are less affected by image
registration errors, but they are greatly affected by image segmentation parameters. In
order to utilize their advantages and solve their disadvantages, we previously proposed a
saliency-guided binary CD method combining pixel-based and object-based CD methods,
and describe it as follows. Firstly, the different images are obtained and saliency detection
is used to generate saliency maps of the different images using a maximum symmetric
surround (MSS) algorithm. Then, the combination of fuzzy C-means (FCM) with Markov
random field (MRF) is used to extract the initial CD result at a pixel-based level. Secondly,
a multi-scale segmentation algorithm is utilized for object-oriented image segmentation,
in which the rate of change of local variance (ROC-LV) is used to estimate the optimal
segmentation scales. Finally, the uncertainty index of segmentation objects is constructed
to adaptively select changed and unchanged samples, and these samples are then used for
training random forest classifier, to obtain the final CD results. The reference paper [36] can
be consulted for further details.
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3.4. Change Identification Using Sample Transfer Learning

For large-scale areas with complex land use and land cover classes, training sample
collection is time-consuming and labor-intensive, and only small amounts of training
samples are available at only one of the pre- and post-changed times. Therefore, training
sample transfer learning was designed for change identification in order to obtain the
“from-to” changes. Its flowchart is described in Figure 2.
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Figure 2. Change identification using feature hierarchical selection and training samples transfer
learning methods.

For optical images at t1 time, image features were optimized using the feature hi-
erarchical selection method, and optimal feature subsets were then input into random
forest classifier in order to obtain different wetland distributions at t1. Six different training
samples were collected using unmanned aerial vehicle (UAV) flights. From t1 to t2, some
training samples changed from one wetland class to another one. These changed training
samples could not be training samples at t2 time, instead only unchanged training samples
were transferred as training samples at t2. Transferred training samples were used for
random forest classification at t2 time, and only image features belonging to optimal feature
subsets were extracted at t2 time. Different wetland distributions at t2 were obtained by
random forest classification, in which wetland classes in unchanged areas were the same.
Wetland distribution in changed areas at t1 and t2 time was compared with each other and
the change transfer matrices were obtained.

4. Results
4.1. Feature Selection Results

VI values of 303 image features of ZY-3 data in 2013 were calculated using random
forest and were sorted in ascending order. According to the feature hierarchical selection
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method, features with similar VI values were divided into the same feature group. The red
dots in Figure 3 are the points distinguishing different feature groups, corresponding to the
35, 71, 109, 158, 225, 265, and 281st features. In this way, the 303 features were divided into
eight feature groups, represented as F = { f1, f2, f3, f4, f5, f6, f7, f8}, in which f1 = [1 ∼ 35],
f2 = [36 ∼ 71], f3 = [72 ∼ 109], f4 = [110 ∼ 158], f5 = [159 ∼ 225], f6 = [226 ∼ 265],
f7 = [266∼ 281], and f8 = [282 ∼ 303].
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Ground reference sample data of six different wetland categories were collected
using UAV flight, including sea, open water, farmland, aquaculture pond, salt marsh, and
building. In this case, small amounts of training samples in 2013 were obtained, and they
were used for wetland classification in 2013. In order to verify the influence of different
feature combinations on wetland classification, different feature subsets were input into
random forest classifiers for wetland classification. Overall accuracy and Kappa coefficient
of different feature subsets are listed in Table 4. Generally, the overall accuracy of wetland
classification decreased sequentially, along with the feature groups with low VI values being
deleted sequentially. The feature groups that are beneficial to wetland identification were
deleted, which reduced the distinction of wetland classes. The overall accuracy of wetland
classification increased when the feature groups { f1} were deleted. The overall accuracy
of F1 = { f2, f3, f4, f5, f6, f7, f8} for wetland identification was the highest, at 98.51%. The
Kappa coefficient of F1 = { f2, f3, f4, f5, f6, f7, f8} was 0.9763, and was also the highest.

Table 4. The difference of wetland classification using different feature subsets.

Different Feature Subsets Overall Accuracy (%) Kappa Coefficient

F = { f1, f2, f3, f4, f5, f6, f7, f8} 98.36 0.9731
F1 = { f2, f3, f4, f5, f6, f7, f8} 98.51 0.9763

F2 = { f3, f4, f5, f6, f7, f8} 98.17 0.9700
F3 = { f4, f5, f6, f7, f8} 98.24 0.9711

F4 = { f5, f6, f7, f8} 97.99 0.9670
F5 = { f6, f7, f8} 97.59 0.9605

F6 = { f7, f8} 96.57 0.9439
F7 = { f8} 96.07 0.9359
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4.2. Change Identification Results

Based on ZY-3 images in 2013 and 2018, our previously proposed binary CD method
could obtain the unchanged and changed areas in the study area. The overall accuracy of
the proposed CD method was 93.51% [36] and it could meet the reliability of subsequent
wetland change identification. According to the flowchart of change identification shown in
Figure 2, wetland classification results in 2018 could be obtained. The wetland classification
results in 2013 and 2018 are shown in Figure 4, the overall accuracy was 98.51% and 91.16%,
respectively. This could meet the requirement of actual wetland monitoring.
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The change transfer matrix between six different wetland categories from 2013 to 2018
is shown in Table 5. The increase of salt marsh was mainly from the sea area (2.27 km2)
because salt marsh had strong adaptability and fertility and could expand rapidly through-
out coastal areas. The increase of the aquaculture pond was from the sea area (10.58 km2)
and salt marsh (5.24 km2) because the aquacultural industry had considerable economic
benefits. Some new aquaculture ponds emerged under a reclamation project, and some salt
marshes in original natural landscapes were developed as aquaculture ponds. The increase
in farmland was from salt marshes because the agricultural industry also developed in
coastal areas. The increase of building was from salt marshes and farmland because of
population migration to wetland areas which occupied agricultural land and salt marshes
to build residential and industrial land.

Table 5. Change transfer matrix between different wetland categories from 2013 to 2018 (units: km2).

2013
2018

Sea Aquaculture Pond Salt Marsh Farmland Open Water Building Total

Sea 199.52 10.58 2.27 0.02 1.34 0.06 213.79
Aquaculture pond 0.23 40.5 0.19 1.08 0.59 0.22 42.82

Salt marsh 0.35 5.24 50.61 10.27 1.51 0.5 68.49
Farmland 0.09 0.38 0.62 40.66 0.52 0.88 43.14

Open water 0.07 0.93 0.03 0.04 10.39 0.03 11.49
Building 0.2 1.34 0.2 0.36 0.2 17.96 20.26

Total 200.46 58.98 53.91 52.44 14.56 19.65 400

5. Conclusions

High-resolution optical data can observe the changes in coastal wetlands in detail.
Image features can be extracted from these high-resolution data, but the impact of different
features on change identification is not clear, and the combination of a large number
of features could easily cause a “dimension disaster” problem. Therefore, the feature
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hierarchical selection method was proposed taking into account the jumping degree of
different image features. The influence of different features on wetland classification was
analyzed and those features which had a slight influence on wetland classification were
deleted to not only reduce dimensionally but also to obtain optimal features subsets.

In addition, only small amounts of training samples were accessible at pre- or post-
changed time. Therefore, the training samples transfer learning strategy was designed for
wetland classification, and the classification results at pre- and post-changed times were
compared to obtain a change transfer matrix. The main conclusions are as follows:

(1) The jumping degree was introduced to design a feature hierarchical strategy in order
to obtain optimal feature subsets. The feature selection results showed that the feature
hierarchical selection method could provide a quantitative reference for optimal
feature subsets selection.

(2) The training samples transfer learning strategy was used to classify post-changed
optical data without recollecting training samples. It could obviously save the effort
of collecting training samples. The overall accuracy of the transferred training sam-
ples was 91.16%, demonstrating that it could ensure the accuracy requirements for
change monitoring.

(3) The southeastern coastal wetlands located in Jiangsu Province were used as a study
area and ZY-3 images in 2013 and 2018 were used to conduct experiments. The
results demonstrated that salt marshes increased mainly from the sea area (2.27 km2)
because salt marshes expand rapidly throughout coastal areas and aquaculture ponds
increased from the sea area (10.58 km2) and salt marshes (5.24 km2) because of the
considerable economic benefits of the aquacultural industry.
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