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Abstract: The key to image-guided surgery (IGS) technology is to find the transformation relationship
between preoperative 3D images and intraoperative 2D images, namely, 2D/3D image registration.
A feature-based 2D/3D medical image registration algorithm is investigated in this study. We use
a two-dimensional weighted spatial histogram of gradient directions to extract statistical features,
overcome the algorithm’s limitations, and expand the applicable scenarios under the premise of
ensuring accuracy. The proposed algorithm was tested on CT and synthetic X-ray images, and
compared with existing algorithms. The results show that the proposed algorithm can improve
accuracy and efficiency, and reduce the initial value’s sensitivity.

Keywords: two-dimensional (2D)/3D medical image registration; weighted spatial histogram of
gradient directions; image-guided surgery; image processing

1. Introduction

Image-guided surgery, which involves computer vision, biomedicine, imaging, auto-
matic control, and other disciplines, is an interdisciplinary research direction [1]. Through
the comprehensive application of a variety of medical image information [2], it carries
out the preoperative diagnosis [3–7], disease analysis [8,9], planning of the surgical path,
intraoperative localization of the lesion, real-time tracking of surgical instruments [10], and
adjustment of the spatial position of surgical instruments to achieve an accurate diagnosis—
so as to provide groundbreaking and precise treatment [11]. This technology provides
many benefits for patients, such as reducing surgical trauma, speeding up recovery, and
reducing hospital stay and costs. The accurate image information in image-guided surgery
is obtained by integrating preoperative and intraoperative images and navigation technol-
ogy [12,13]. Usually, high-resolution three-dimensional scanning methods such as MRI, CT,
and PET are used to obtain the desired image of the anatomical region of interest [14,15].
This image with high-resolution characteristics and more spatial information can better
reflect the human tissue structure and physiological information. However, the imaging
time is extended, which is not conducive to the surgical environment. The data used
in the operation are two-dimensional ultrasound, X-ray, and optical images [16]. These
two-dimensional images have the characteristics of fast imaging and low radiation, adapt-
ing to the operating environment. However, their resolution is low, so it is difficult to
obtain accurate and complete lesion location and texture information. Therefore, a three-
dimensional image is needed to display higher-dimensional information. In image-guided
surgery, the preoperative and intraoperative images are mapped to the same coordinate
system by comparing the corresponding information in the same tissue or organ to keep the
anatomical structure consistent [2]. Preoperative and intraoperative data registration and
surgical instrument tracking provide surgeons with information about the instrument’s
current position relative to the planned trajectory, nearby vulnerable structures, and the
final target in image-guided minimally invasive surgery. Pre-intervention images with
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X-ray or ultrasound images in interventional radiology make tools such as catheters and
needles visible, significantly improving navigation accuracy. In image-guided endoscopic
surgery, 3D virtual images of anatomy and pathology are generated from preoperative
images and registered in real-time endoscopic images. Through augmented reality visu-
alization, anatomical structures hidden under tissues can be displayed. In extracorporeal
radiotherapy, the registration of planned CT images and daily pre-treatment images can
achieve accurate patient positioning, which is essential for accurate targeted dose delivery
and avoiding exposure of health-critical tissues.

Image-guided surgery’s success largely depends on preoperative and intraoperative
image data registration accuracy and 2D/3D registration [17–20]. Image registration is
developed for the integration of multisource image information. Image registration’s main
purpose is to find the spatial transformation mapping relationship between two or more
images in the same location to obtain the maximum image information [11,21–23]. These
images can come from different times, different imaging equipment, or different angles.
After registration, the spatial pose and texture information is consistent. The images that
need registration due to spatial transformation are called moving images [24–26]. The
standard images without transformation are called reference images. Spatial transformation
can be linear or nonlinear.

Researchers have proposed a new method called intensity distance [27,28]. The essence
of gray distance information is to add the Euclidean distances of all pixels with the same
gray value. Therefore, it contains three kinds of image information: gray information,
pixel coordinate information, and pixel number information, increasing the reliability
compared with single-gray-level information registration. Others [4] have proposed 2D/3D
registration methods combining machine learning and geometric transformation. The
projection space based on the traditional projection algorithm contains three translation
and rotation parameters [29]. The high complexity of projection space dramatically affects
the timeliness of registration. Ghafurian et al. [30] considered that the 2D/3D registration
problem needs to search the complex solution space, leading to many calculations, so they
proposed a spatial parameter-decoupling method to achieve registration. According to
the dimensional differences between the registration images, image registration can be
divided into 2D/2D registration, 2D/3D registration, 3D/3D registration, and time-series
registration [31]. The uses of these approaches are different. This paper mainly studies
2D/3D registration in image-guided surgery.

This paper mainly proposes a 2D/3D registration algorithm based on a spatial his-
togram. The algorithm introduces a spatial histogram into the 2D/3D registration problem,
and develops a weighted spatial histogram of gradient directions for registration, improv-
ing the registration accuracy and convergence range of translation transformation.

2. Materials and Methods

The algorithms involved in this paper are all based on the open-source software toolkit
ITK (Insight Toolkit) [32]. ITK is an open-source toolkit for medical imaging research,
mainly used for medical image registration and segmentation. Moreover, ITK includes
many image-processing algorithms, such as medical image filtering and image data statis-
tical analysis. When ITK is used to develop medical image registration, it is necessary to
build a complex environment, which is not reported here.

The DICOM sequence obtained from the human brain model’s CT scan was used as a
3D floating image in the registration experiment. In addition, the digitally reconstructed
radiograph (DRR) generated by projection rendering under specific CT parameters was
used as a 2D reference image to simulate a real X-ray image. The size of the CT image was
512 × 512 × 283, the voxel spacing was 0.7813 × 0.7813 × 1.0, and the unit was mm. The
projected image size was 512 × 512, the pixel spacing was 0.5 × 0.5, and the unit was mm.
The 3D screenshot of the CT image is shown in Figure 1, and the 3D model rendered by the
CT image is shown in Figure 2.
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Figure 2. CT rendering of the brain model.

Resampling was carried out on the CT images to facilitate the calculation and reduce
the amount of experimental calculation. The sampled image data are shown in Table 1.

Table 1. Related parameters of image registration.

Data Size Spacing/mm Pixel Range

CT image 200 × 200 × 142 2 × 2 × 2 11,024~2976
Analog X-ray image (DRR) 300 × 300 1 × 1 0~255

The experiment’s pixel range for all 2D images was linearly mapped to 0–255 through
Formula (1):

outputPixel = (inputPixel − inpMin)× 255
inpMax− inpMin

(1)

A weighted histogram of gradient directions (WHGD) is a simple image histogram
that considers only the gradient information in the image [33]. It takes the gradient direction
as the histogram bin’s division basis, making it sensitive to rotation transformation. Like
other image histograms, the weighted histogram of gradient directions completely ignores
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the image’s spatial information, making it very insensitive to translation transformation. To
complete the registration, it must be assisted by other registration algorithms. Because of
the complexity of parameter decoupling, the accuracy of translation parameters is difficult
to guarantee. Spatial information can be added to the gradient direction histogram to
compensate for the translation transform’s sensitivity, helping to overcome these defects.
Therefore, this paper proposes the use of a spatial histogram instead of a simple image
histogram to count the gradient feature information of the image.

For a discrete function f : x → v , the simple histogram of f is h f : v→ N ; N is a set of
nonnegative integers, and h f (v) is the number or frequency of elements x. This describes a
simple zero-order moment histogram that discards all information about a domain or space.
Stanley et al. [34] proposed the use of high-order moments containing spatial information
to make up for the defects of the simple histogram, and named the new histogram a spatial
histogram or spatial graph. A spatial histogram can capture the frequency information of
function elements and the spatial domain information of function. Each pixel’s weight in
space is determined by the average value and covariance of the pixel position when the
spatial histogram is calculated based on the second moment of the image.

For a 2D image I, its value at the pixel coordinates (x, y) is v, representing the original
pixel value or the value after image preprocessing. The pixel value is assumed. The
second-order spatial histogram of image I can be expressed by Formula (1) by dividing the
histogram interval according to the value v.

hI
(2)(b) = 〈nb, µb, ∑b〉, b = 1, · · · , B (2)

hI
(0)(b) = nb, b = 1, · · · , B (3)

where B represents the number of bins in the spatial histogram, nb is the number of b pixels
belonging to the bin, and µb and ∑b are the coordinate mean value and coordinate variance
of b pixels in the bin, respectively. Function (3) is a simple histogram of an image. By
comparing Function (2) with Function (3), the spatial histogram extracts the mean and
variance of pixel coordinates while extracting frequency information, which is beneficial for
calculating the similarity between the two histograms. The similarity between two spatial
histograms can be expressed in the form of a weighted sum, as shown in Formula (4):

ρ
(
h, h′

)
= ∑B

b=1 ψbρn
(
nb, nb

′) (4)

where ρn is the distance measure, which is used to measure the similarity between the
same bin in the histograms h and h′, while ψb is the weighted coefficient. When calculating
the similarity between simple histograms, ψb = 1; ρ(h, h′) degenerates to the common
histogram similarity calculation method. For the second-order spatial histogram, ψb is
determined by the product of two probability distributions related to the coordinate mean
value and coordinate variance—that is, the Gaussian distribution described by µb obeying(

µb
′, ∑b

′). The Gaussian distribution described by µb
′ obeying (µb, ∑b), ψb is shown in

Formula (5):

ψb = η exp
{
−1

2
(
µb − µb

′)T ˆ∑
−1

b

(
µb − µb

′)} (5)

ˆ∑
−1

b = ∑b
−1

+
(
∑b
′)−1

(6)

η =
1

2π|∑b|
1
2
− 1

2π
∣∣∑b
′∣∣ 1

2
(7)

where η is the Gaussian normalization constant, and its definition is shown in Formula (7).
The exponential part in Formula (5) is the average of the Mahalanobis distance between µb
and µb

′, as well as between µb
′ and µb.

A spatial histogram can be considered to be a geometric model. It makes up for the gap
between the typical histogram and more specific models (such as translation, rotation, affine,
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projection, or B-spline). Like simple histograms, spatial histograms are computationally
efficient and compared between corresponding image blocks. However, a spatial histogram
retains some geometric information between pixels, unlike a simple histogram. More
specifically, the spatial histogram captures the global positional information of pixels.

We propose using a spatial histogram instead of the simple histogram to extract the
statistical characteristics of image gradient direction information and gradient amplitude
information, to solve the registration algorithm’s problem based on the gradient direc-
tion histogram. Specifically, when constructing the weighted histogram of the reference
image and the DRR image, each bin’s coordinate mean value and coordinate variance in
the weighted histogram of gradient directions should be calculated. The new statistical
histogram is called the weighted spatial histogram of gradient directions (WSHGD). The
expression is shown in Formula (8):

h(d) = 〈nd, µd, ∑d〉, d = 0, 1, · · · , 359 (8)

nd = ∑
(i,j)∈GDd

GM(i, j) (9)

GDd = { (i, j)|bGD(i, j) c = d} (10)

The WSHGD still takes gradient direction as the division basis of the histogram
interval. Here, every 1 degree is a bin, for a total of 360 bins. According to Formula
(10), every pixel (i, j) of the image is divided into corresponding bins, where µd and ∑d
are the coordinate mean vector and the coordinate variance matrix of the pixel in the
bin, respectively, GM(i, j) represents the gradient amplitude at the pixel (i, j), GD(i, j)
represents the gradient direction at the pixel (i, j), and GM(i, j) ∈ [0, 1], while GM(i, j) ∈
0, 360); nd represents the height of the d bin in the histogram—as shown in Formula (9),
this equals the sum of gradient amplitudes corresponding to all pixels in the bin.

When the weighted spatial histogram of gradient directions is used for 2D/3D reg-
istration [35], only the WSHGD of the reference and DRR images, respectively, needs to
be constructed. Then, the similarity between the two WSHGDs can be calculated by the
weighted distance measure. The weighted distance measure is the objective function of the
registration process, and its definition is shown in Formula (11):

ρ(hR, hD) = ∑359
d=0 ψdρn(nRd, nDd) (11)

ψd = η exp
{
−1

2
(µRd − µDd)

T ˆ∑
−1

d (µRd − µDd)

}
(12)

where hR and hD denote the WSHGD of the reference image IR and the DRR image ID,
respectively, nRd and nDd are the d bin of the corresponding hR and hD, respectively, and
µRd and µDd are the coordinate mean values corresponding to nRd and nDd respectively.
∑Rd and ∑Dd are the coordinate variances corresponding to nRd and nDd, respectively. η
is the Gaussian normalization constant, and ρn is a commonly used distance measure.
The coordinate mean µd and coordinate variance ∑d contained in the WSHGD are spatial
information. When the image is translated, the coordinates of the internal pixels change
accordingly so that the sum can reflect the change in the image caused by translation
transformation. Moreover, the sensitivity of the histogram to rotation is increased. In 2D/3D
registration based on the WSHGD, because the WSHGD is sensitive to translation and
rotation transformation, it can optimize the translation parameters and rotation parameters
at the same time, without the assistance of other registration algorithms. This makes
the registration process more straightforward and the algorithm more robust. Moreover,
introducing pixel coordinate information can overcome the limitations of the WSHGD
algorithm. The image’s foreground no longer needs to be against a larger background,
because all of the transformation parameters are optimized together.
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The 2D/3D registration optimization based on the WSHGD features can be expressed
as shown in Function (13). Function (14) represents the mapping from the reference image
IR to the WSHGD features, while Function (15) represents the mapping from the DRR
image ID to the WSHGD features, which are obtained from the 3D floating image IM
through spatial transformation and DRR projection.

Tg = argminTρ(hR, hD) = argminT

359

∑
d=0

ψdρn(nRd, nDd) (13)

IR → jR = 〈nRd, µRd, ∑Rd〉 (14)

P(T(IM)) = ID → hD = 〈nDd, µDd, ∑Dd〉 (15)

3. Results

Firstly, the CT image is transformed into a rigid body according to the initial space
transformation parameters [8,16,36]. Then, the CT image is projected to generate a DRR
image. Next, the WSHGDs of the DRR image and the reference image are extracted. Finally,
the distance measured between the two WSHGDs is calculated. By taking the distance
measure as the objective function, the Powell–Brent optimization algorithm optimizes the
space transformation parameters until the optimization algorithm reaches the iteration stop
condition. As a result, Manhattan distance and J-divergence distance are better performance
distance measures. Manhattan distance is also known as city block distance (Formula (16)),
and J-divergence distance can be calculated with Formula (17).

CBD(hR, hD) = ∑all d|nRd − nDd| (16)

JCD(hR, hD) = ∑all d|nRd − nDd| · ln
ad
bd

(17)

where ad = max{nRd, nDd}, bd = min{nRd, nDd}. In this experiment, the sum of Manhattan
distance and J-divergence distance is used as the distance measure. The definition of the
function ρn(nRd, nDd) is shown in Formula (18):

ρn(nRd, nDd) = CBD(hR, hD) + JCD(hR, hD) = ∑all d|nRd − nDd| ·
(

1 + ln
ad
bd

)
(18)

Two statistical histogram models—WSHGD and WHGD—were used as the experi-
mental control group to perform 2D/3D registration between CT and DRR images of the
skull model to verify the effectiveness and accuracy of the WSHGD. The Powell algorithm
was used for the optimization algorithm, and rigid-body transformation was used for
the spatial transformation model. The one-dimensional search accuracy of the Powell
optimization algorithm was set to 0.01. The overall iterative accuracy of the algorithm
was set to 0.001. The maximum number of iterations was set to 1000. The rigid-body
transformation parameters were arranged in the order

(
α, β, θ, tx, ty, tz

)
. The first three

parameters were the rotation along the X-, Y-, and Z-axes. Finally, the last three parameters
were the translation along the X-, Y-, and Z-axes.

Firstly, three groups of experiments were conducted to perform qualitative anal-
ysis. The truth value of the first group of experimental reference images was set to
(20, 20, 20, 10, 10, 10), the second group was set to (10, 10, 10, 10, 10, 10), and the third group
was set to (10, 10, 10, 20, 20, 20). In the experiments, the initial values were optimized as
(0, 0, 0, 0, 0, 0), as shown in Figure 3 (the DRR image obtained by CT projection at the initial
value). Due to the increased resolution of the DRR image, the skull information can be
more clearly displayed.
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The results of the first group of experiments are shown in Figure 4. The second
group of experimental results is shown in Figure 5, while the third is shown in Figure 6.
The first column represents the reference image. After registration, the second column
represents the DRR image generated by 3D CT projection. The third column represents the
difference between the reference and registered DRR images. The first row corresponds
to the registration results based on WSHGD features. The second row corresponds to the
registration results based on WHGD features.
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The registration results of the WHGD and WSHGD at different initial points were
analyzed quantitatively to verify the WSHGD features’ effectiveness in 2D/3D registration.
For the true value point (0, 0, 0, 0, 0, 0) of the rigid-body transformation, the three rotation
parameters of the optimized initial value were selected within ±60 degrees. We took
10 degrees as the sampling unit. The three translation parameters of the optimized initial
value were selected within ±40 mm, with 5 mm as the sampling unit. The sampling space
ensures that the registration requirements of the WHGD can still be met after the space
transformation. This paper selects the differences between the images after registration for
qualitative analysis. The smoother the difference image, the smaller the difference between
the registration result and the reference image.

Furthermore, the mean absolute error (MAE), mean error (ME), and standard deviation
of the error (SDE) were used as evaluation indices [35,37]. The experimental results are
shown in Table 2. To more intuitively reflect the differences between the two methods
in terms of mean error and standard deviation of the error, the registration results were
visualized, as shown in Figure 7, where blue represents rotational error and red represents
translational error.
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Table 2. Registration results of the WSHGD and WHGD.

Rotation/◦ Translation/mm

WHGD
MAE 0.483 0.503
SDE 0.670 0.237
ME −0.093 −0.417

WSHGD
MAE 0.563 0.877
SDE 1.593 1.027
ME −0.193 −0.632
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4. Discussion

Comparing the different images of the three groups of experiments, the difference
images of the WHGD in the three experiments were smoother. The difference images of
the WSHGD in Experiment 2 and Experiment 3 were smooth, but there was a significant
deviation in Experiment 1. Therefore, the WHGD features have better stability in the regis-
tration process. In contrast, the WSHGD features cannot guarantee consistent registration
accuracy, but the WSHGD features can still achieve successful registration.

As shown in Table 2, compared with the WSHGD proposed in this paper, the parameter-
decoupling registration method based on WHGD features performs better in terms of MAE
and ME, reflecting that the registration accuracy based on WHGD features is higher. Com-
pared with Figure 7, the standard deviation of the WSHGD method is more significant
than that of the WHGD method, indicating that the registration performance based on
WHGD is more stable. Sometimes, WSHGD registration may have a more significant
deviation, consistent with qualitative analysis. However, from the perspective of MAE, the
registration accuracy of the WHGD method and the WSHGD method is not very different.
Based on WSHGD features, CT and X-ray image registration can also be achieved within
an acceptable accuracy range. When the sampling space of the translation parameters of
the initial point of the rigid-body transformation is expanded, the DRR image’s foreground
will exceed the image’s field of view. It is challenging to ensure consistent registration
accuracy using the WHGD method, and sometimes it cannot even be registered. In contrast,
the WSHGD method can still achieve registration, but its accuracy is reduced; however, it
is still within the acceptable range.

Based on the above analysis, the pixel coordinates’ mean and variance information can
be introduced through a spatial histogram to ensure sensitivity to rotation transformation.
This ensures that the synchronous optimization of translation and rotation parameters
sacrifices a certain amount of precision to expand the convergence range of translation
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transformation. However, the weighted histogram of gradient directions is only suitable
for the foreground—one of the limitations of small image registration.

5. Conclusions

This paper introduces two weighted histograms of gradient directions and second-
order spatial histogram concepts, and analyzes the advantages and limitations of weighted
histograms of gradient directions in 2D/3D registration. The weighted histogram of
gradient directions is sensitive to rotation and scaling, but insensitive to translation. It leads
to a complex registration process and a small convergence range of translation parameters,
and the algorithm has certain limitations. This paper introduces a spatial histogram into
the registration process. It proposes a 2D/3D registration algorithm based on a weighted
spatial histogram of gradient directions to solve these problems.

The algorithm uses the spatial weighted histogram of gradient directions to extract
the statistical characteristics of the image. The pixels’ positional information is added
based on retaining the weighted histogram of gradient directions’ sensitivity to the rotation.
By weighting the distance measure of the weighted histogram of gradient directions
with the coordinate mean and square difference, the spatial information and the gradient
information are effectively combined.

Our experimental results show that the spatial weighted histogram of gradient direc-
tions has a high sensitivity to translation and rotation. As a result, the convergence range
of the algorithm is larger. When the organizational structure in the image’s foreground
exceeds the image’s field of view, it can still achieve successful registration.

There are still some aspects that can be improved and expanded. The experimental data
used in this paper were two-dimensional simulated X-ray images and three-dimensional
CT images. Their imaging principles are similar, but many types of medical images are
used in clinical practice. Moreover, there is a significant difference between some types
of images in terms of imaging principles [38]. Therefore, the 2D/3D registration method
based on DRR is not always applicable.

Deep learning technology is developing rapidly [39], and has strong performance in
feature extraction. However, there are few studies on 2D/3D registration based on deep
learning. Therefore, combining deep learning technology with 2D/3D registration should
be a research focus in the future.
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