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Featured Application: The proposed method can be utilized for highly efficient data compression,
signal-compressed sensing, data restoration, etc.

Abstract: Auto-encoders are composed of coding and decoding units; hence, they hold an inherent
potential of being used for high-performance data compression and signal-compressed sensing. The
main disadvantages of current auto-encoders comprise the following aspects: the research objective is
not to achieve lossless data reconstruction but efficient feature representation; the evaluation of data
recovery performance is neglected; it is difficult to achieve lossless data reconstruction using pure
auto-encoders, even with pure deep learning. This paper aims at performing image reconstruction
using auto-encoders, employs cascade decoders-based auto-encoders, perfects the performance of
image reconstruction, approaches gradually lossless image recovery, and provides a solid theoretical
and applicational basis for auto-encoders-based image compression and compressed sensing. The
proposed serial decoders-based auto-encoders include the architectures of multi-level decoders
and their related progressive optimization sub-problems. The cascade decoders consist of general
decoders, residual decoders, adversarial decoders, and their combinations. The effectiveness of
residual cascade decoders for image reconstruction is proven in mathematics. Progressive training
can efficiently enhance the quality, stability, and variation of image reconstruction. It has been shown
by the experimental results that the proposed auto-encoders outperform classical auto-encoders in
the performance of image reconstruction.

Keywords: auto-encoders; serial decoders; cascade decoders; general decoders; residual decoders;
adversarial decoders; image reconstruction

1. Introduction

Since deep learning achieves the rules and features from input data using multi-
layer stacked neural networks in a highly efficient manner, it has garnered unprecedented
successful research and applications in the domains of data classification, recognition,
compression, and processing [1,2]. Although the theoretical research and engineering
applications of deep learning have matured, there is still much room to improve, and deep
learning has not yet attained the requirements for general artificial intelligence [1,2]. Hence,
it is incumbent on researchers to utilize deep learning to upgrade the performance of data
compression and signal-compressed sensing.

Data reconstruction is the foundation of data compression and signal-compressed
sensing. It contains multifarious meanings in understanding from a broad sense. In this
paper, data reconstruction denotes high-dimensional original data being initially mapped
into a low-dimensional space and then being recovered. Although the classical methods
of data compression and signal-compressed sensing are full-blown, it is still necessary
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to investigate new algorithms that are based on deep learning. Currently, merely some
of the components of traditional data compression methods such as prediction coding,
transformation coding, and quantization coding are being replaced by deep learning
methods. The principal difficulty is that lossless data reconstruction of pure deep learning-
based methods has not yet been attained. In consideration of the powerful capabilities
of deep learning, this article will explore new approaches to data reconstruction via pure
deep-learning based methods.

Auto-encoders (AE) are a classical architecture of deep neural networks, which initially
project high-dimensional data into a low-dimensional latent space according to a given rule,
and then reconstruct the original data from latent space while minimizing reconstruction er-
ror [3–6]. Auto-encoders possess many theoretical models, including the following: sparse
auto-encoders, convolutional auto-encoders, variational auto-encoders (VAE), adversarial
auto-encoders (AAE), Wasserstein auto-encoders (WAE), graphical auto-encoders, extreme
learning auto-encoders, integral learning auto-encoders, inverse function auto-encoders,
recursive or recurrent auto-encoders, double or couple auto-encoders, de-noising auto-
encoders, generative auto-encoders, fuzzy auto-encoders, non-negative auto-encoders,
binary auto-encoders, quantum auto-encoders, linear auto-encoders, blind auto-encoders,
group auto-encoders, kernel auto-encoders, etc. [3–6]. Some of the theoretical frameworks
of traditional auto-encoders are collected in Table 1. Auto-encoders have garnered ex-
tensive research and applications in the domains of classification, recognition, encoding,
sensing, and processing [3–6]. Since auto-encoders comprise encoding and decoding
units, they hold the potential of being applied to high-performance data compression and
signal-compressed sensing [7,8]. Classical auto-encoders shall be referred to as narrow auto-
encoders. Other deep learning-based methods of data compression and signal-compressed
sensing shall be referred to as generalized auto-encoders, because they contain encoding
and decoding components, and each component can introduce an auto-encoder unit [9,10].
Narrow and generalized auto-encoders-based approaches of data compression and signal-
compressed sensing can provide better performance in data reconstruction than the classical
approaches [7–10].

Table 1. Some of the theoretical frameworks of traditional auto-encoders.

Auto-Encoders References

Variational auto-encoders [4]
Adversarial auto-encoders [11]

Convolutional auto-encoders [12]
Quantum auto-encoders [13]

Sparse auto-encoders [14]
Wasserstein auto-encoders [15]
Graphical auto-encoders [16]

However, current research in auto-encoders exhibits the following problems: the
research objective is not to achieve lossless data reconstruction but efficient feature repre-
sentation; independent evaluation of the performance of data reconstruction is neglected;
the performance of data reconstruction needs to be improved; it is difficult to attain lossless
data reconstruction [17,18]. For instance, the performance of data reconstruction using AAE,
one of the most advanced auto-encoders, is shown in Figure 1 [11]. The horizontal axis is the
dimension of the latent space and the vertical axis is the average structural similarity (SSIM)
of reconstructed images in comparison with original images. It is indicated in Figure 1 that
the performance in data reconstruction of AAE increases while the dimension of hidden
space increases, making it difficult to achieve lossless data reconstruction. Currently, pure
deep learning-based methods of data compression and signal-compressed sensing cannot
attain lossless data reconstruction.
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Figure 1. Data reconstruction performance using AAE.

This manuscript attempts to regard lossless data reconstruction as a research goal
of auto-encoders, and independently assesses the performance of data reconstruction of
auto-encoders, enhances the quality of data reconstruction of auto-encoders, gradually
approaches lossless data reconstruction of auto-encoders, and builds a solid theoreti-
cal and applicational foundation of data compression and signal-compressed sensing
for auto-encoders.

This article proposes serial decoders-based auto-encoders for image reconstruction.
The main contribution of this paper is to introduce cascade decoders into auto-encoders,
including theoretical architectures and optimization problems. The optimization problems
are divided into sequential sub-problems in order to progressively train the deep neural
networks. Progressive training can efficiently improve the quality, stability, and variation
of image reconstruction. The components of serial decoders consist of general decoders,
residual decoders, adversarial decoders, and their combinations. The effectiveness of
residual serial decoders for image reconstruction is proven in mathematics. Since AAE,
VAE, and WAE are state-of-the-art auto-encoders, this article focuses on their cascade
decoders-based versions.

The rest of this article is organized as follows: the related research is summarized in
Section 2, theoretical foundations are established in Section 3, simulation experiments are
designed in Section 4, and final conclusions are drawn in Section 5.

2. Related Research

Narrow auto-encoders-based data compression and signal compressing have pro-
gressed rapidly [7,8,12–14,19–21]. Firstly, auto-encoders have been studied and applied in
the compression of medical signals, navigation data, and quantum states [7,12,13,19]. For
example, Wu Tong et al. proposed an auto-encoders-based compression method of brain
neural signals [7]. Yildirim Ozal et al. utilized convolutional auto-encoders to compress
electrocardio signals [12]. Lokukaluge P. Perera et al. employed linear auto-encoders to
compress navigation data [19]. Romero Jonathan et al. used quantum auto-encoders to
compress quantum states [13]. Secondly, auto-encoders have already been studied and ap-
plied in the compressed sensing of biomedical signals, images, and sensor data [8,14,20,21].
For instance, Gogna Anupriya et al. utilized stacked and label-consistent auto-encoders to
reconstruct electrocardio signals and electroencephalograms [8]. Biao Sun et al. used binary
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auto-encoders for compressed sensing of neural signals [20]. Majumdar Angshul utilized
auto-encoders to reconstruct magnetic resonant images [21]. Han Tao et al. adopted sparse
auto-encoders to reconstruct sensor signals [14].

Important developments in narrow auto-encoders also include the following: the Wasser-
stein auto-encoder, the inverse function auto-encoder, and graphical auto-encoders [15,16,22].
For example, Ilya Tolstikhin et al. raised Wasserstein auto-encoders, which are gener-
alized adversarial auto-encoders, and utilized the Wasserstein distance to measure the
difference between data model distribution and target distribution, in order to gain better
performance in data reconstruction than classical variational auto-encoders and adversarial
auto-encoders [15]. Yimin Yang et al. employed inverse activation function and pseudo
inverse matrix to achieve the analysis representation of the network parameters of auto-
encoders for dimensional reduction and reconstruction of image data, and hence improve
the data reconstruction performance of auto-encoders [22]. Majumdar Angshul presented
graphical auto-encoders, used graphical regularization for data de-noising, clustering
and classification, and consequently attained better data reconstruction performance than
classical auto-encoders [16].

Generalized auto-encoders-based data compression and signal-compressed sensing
have also achieved significant evolution [9,10,23]. These methods usually utilize multi-level
auto-encoders to overcome the disadvantage that single-level auto-encoders have in being
unable to achieve lossless data reconstruction; these methods use auto-encoders to replace
one unit of the classical data compression and signal-compressed sensing model, such
as the prediction, transformation, or quantization unit of data compression, as well as
the measurement or recovery unit of signal-compressed sensing. For instance, George
Toderici et al. applied two-level auto-encoders for image compression. The first-level auto-
encoders compress image blocks, and the second-level auto-encoders compress the recovery
residuals of the first-level auto-encoders. This approach makes up for the disadvantage that
single-level auto-encoders have in being unable to implement lossless data reconstruction
to a great degree [9]. Oren Rippel et al. adopted multi-level auto-encoders to implement the
transformation coding unit of video compression. The first-level auto-encoders compress
the prediction residuals, and the next-level auto-encoders compress the reconstruction
residuals of the previous-level auto-encoders to a great extent [10]. Majid Sepahvand et al.
employed auto-encoders to implement the prediction coding unit of compressed sensing of
sensor signals [23].

The main research advances in generalized auto-encoders also comprise the use of
other architectures of deep neural networks to implement data compression and signal-
compressed sensing [24–27]. In data compression, these methods usually wield deep neural
networks to substitute the prediction, transformation, or quantization units of classical
methods. In signal-compressed sensing, these methods usually implement deep neural
networks to substitute the measurement or recovery units of classical methods. For example,
Jiahao Li et al. utilized fully-connected deep neural networks to realize the intra prediction
coding unit of video compression [25]. Guo Lu et al. adopted deep convolutional neural
networks to replace the transformation coding unit of video compression [26]. Wenxue
Cui et al. employed a deep convolutional neural network to accomplish the sampling and
reconstruction units of image-compressed sensing [27].

This paper focuses on narrow auto-encoders, incorporates multi-level decoders into
auto-encoders, and boosts the performance of data reconstruction. To the best of our
knowledge, cascade decoders in auto-encoders have never been studied. Although serial
auto-encoders have already been investigated, serial decoders in auto-encoders play a
more important role in data reconstruction. In addition, Tero Karras et al. progressively
trained generative adversarial networks by gradually increasing the layer numbers of
generator and discriminator in order to improve the quality, stability, and variability in
data reconstruction [28]. This method will be borrowed for progressively training the
proposed cascade decoders-based auto-encoders. The proposed training method gradually
increases the decoders of auto-encoders. It is difficult for us to train stable auto-encoders
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using multiple decoders and large hypo-parameters. However, it is easier for us to train a
stable unit of auto-encoders using a single decoder and small hypo-parameters. A decoder
can merely learn low image variation, but serial decoders can learn high image variation.
Hence, progressive training can efficiently strengthen the quality, stability, and variability
of image reconstruction.

3. Theory
3.1. Notations and Abbreviations

For the convenience of content description, parts of the mathematical notations and
abbreviations adopted in this manuscript are listed in Table 2.

Table 2. Mathematical notations and abbreviations.

Notations and Abbreviations Meanings

AE auto-encoders
AAE/VAE/WAE adversarial/variational/Wasserstein AE

CD cascade decoders

GCD/RCD/ACD/RACD general/residual/adversarial/residual-adversarial
CD

CD/GCDAE/RCDAE/ACDAE/RACDAE CD/GCD/RCD/ACD/RACD-based AE
CDAAE/GCDAAE/RCDAAE/ACDAAE/RACDAAE CD/GCD/RCD/ACD/RACD-based AAE
CDVAE/GCDVAE/RCDVAE/ACDVAE/RACDVAE CD/GCD/RCD/ACD/RACD-based VAE
CDWAE/GCDWAE/RCDWAE/ACDWAE/RACDWAE CD/GCD/RCD/ACD/RACD-based WAE

E/D/DC encoder/decoder/discriminator
x/y/z original/reconstructed/latent sample

3.2. Recall of Classical Auto-Encoders

The architecture of classical auto-encoders is illustrated in Figure 2. Classical auto-
encoders are composed of two units: encoder and decoder. The encoder reduces the high-
dimensional input data to a low-dimensional representation, and the decoder reconstructs
the high-dimensional data from the low-dimensional representation. The classical auto-
encoder can be described by the following formulas:
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z = E(x)
y = D(z)

x, y ∈ RH; z ∈ RL

H� L

(1)

where the terms are defined as follows:

x is the high-dimensional input data. Taking image data as an example, x is the normalized
version of original image for the convenience of numerical computation; each element of
the original image is an integer in the range [0, 255]; each element of x is a real number
in the range [0, 1] or [−1, +1]; x with elements in the range [0, 1] can be understood as
probability variables; x can also be regarded as a vector which is a reshaping version of an
image matrix.
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z is the low-dimensional representation in a latent space.
y is the high-dimensional data, such as a reconstruction image.
E is the encoder.
D is the decoder.
H is the dimension of x or y; for image data, H is equal to the product of image width and height.
L is the dimension of z and L is far less than H.

The classical auto-encoders can be resolved by the following optimization problem:

(θ, z, y) = argmin
θ,y,z

‖y− x‖2
2

s.t. z = E(x), y = D(z), Cz = ‖z− zg‖2
2 < δz, Cy = ‖y−Dysy‖2

2 + λy‖sy‖1 < δy

(2)

where the terms are defined as follows:

θ are the parameters of auto-encoders, including the parameters of the encoder and decoder.
Cz is the constraint on low-dimensional representation z; for example, z satisfies a given
probability distribution; it has been considered to match a known distribution by classical
adversarial auto-encoders, variational auto-encoders, and Wasserstein auto-encoders.
zg is a related variable which meets a given distribution.
δz is a small constant.
Cy is the constraint on high-dimensional reconstruction data y; for instance, y meets a prior
of local smoothness or non-local similarity. Auto-encoders require y to reconstruct x based
on the prior to a great extent; other constraints, such as sparsity and low-rank properties of
high-dimensional reconstruction data can also be utilized; hereby, sparse prior is taken as
an example.
Dy is a matrix of sparse dictionary.
sy is a vector of sparse coefficients.
λy is a small constant.
δy is a small constant.

3.3. Proposed Cascade of Decoders-Based Auto-Encoders

The framework of the proposed cascade decoders-based auto-encoders (CDAE) is
exhibited in Figure 3. The framework consists of two components: encoder and cascade
decoders. The encoder is similar to that in the classical auto-encoder. Cascade decoders
comprise N serial decoders, from decoder 1 to N. The framework can be depicted by the
following expressions:
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z = E(x)

yn =

{
D1(z), n = 1

Dn
(
yn−1

)
, n = 2, . . . , N

, y = yN
(3)

where the terms are defined as follows:

Dn is the nth decoder;
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yn is the reconstruction data of Dn.

The reconstruction data can be solved by the following optimization problem:

(θ; z; y1, · · · , yN; y) = argmin
θ;z;y1,··· ,yN;y

N
∑

n=1
‖yn − x‖2

2

s.t. z = E(x); y1 = D1(z); yn = Dn
(
yn−1

)
, n = 2, . . . , N;

Cz; Cyn
, n = 1, . . . , N; y = yN

(4)

where the terms are defined as follows:

θ are the parameters of cascade decoders-based auto-encoders;
Cyn is the constraint on yn.

For the purpose of gradually and serially training cascade decoders-based auto-
encoders, the optimization problem in Equation (4) can be divided into the following
suboptimization problems:

(θ1; z; y1) = argmin
θ1;z;y1

‖y1 − x‖2
2

(θ2; y2) = argmin
θ2;y2

‖y2 − x‖2
2

· · · · · ·
(θN; yN; y) = argmin

θN;yN;y
‖yN − x‖2

2

s.t. y = E(x); y1 = D1(z); yn = Dn
(
yn−1

)
, n = 2, . . . , N;

Cz; Cyn
, n = 1, . . . , N; y = yN

(5)

where the terms are defined as follows:

θ1 are the parameters of encoder and decoder 1;
θ2, . . . , and θN are the parameters of decoder 2 to N.

The proposed cascade decoders include general cascade decoders, residual cascade
decoders, adversarial cascade decoders and their combinations. The general cascade
decoders-based auto-encoders (GCDAE) have already been introduced in Figure 3. The
other cascade decoders are elaborated in the following sections.

3.3.1. Residual Cascade Decoders-Based Auto-Encoders

The infrastructure of residual cascade decoders-based auto-encoders (RCDAE) is
demonstrated in Figure 4. The blue signal flow is for the training phase, and the green
signal flow is for both phases of training and testing. Each decoder is a residual module.
This architecture is different from the traditional residual network (ResNet) because the
former has an extra training channel for residual computation.

The reconstruction data can be resolved by the following optimization problem:

(θ; z; r1, · · · , rN; y1, · · · , yN; y) = argmin
θ;z;y1,··· ,yN;y

N
∑

n=1
‖x− yn−1 − rn‖2

2

s.t. z = E(x); r1 = D1(z); rn = Dn
(
yn−1

)
, n = 2, . . . , N;

Cz; Cyn
, n = 1, . . . , N; y0 = 0; yn = rn + yn−1, n = 1, . . . , N; y = yN

(6)

where the variables are defined as follows:

rn is the residual sample between x and yn;
y0 is the zero sample;
y is the final reconstruction sample.
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For the purpose of gradually and serially training residual cascade decoders-based
auto-encoders, the optimization problem in Equation (6) can be partitioned into the follow-
ing suboptimization problems:

(θ1; z; r1; y1) = argmin
θ1;z;r1;y1

‖x− y0 − r1‖2
2

(θ2; r2; y2) = argmin
θ2;r2;y2

‖x− y1 − r2‖2
2

· · · · · ·
(θN; rN; yN; y) = argmin

θN;rN;yN:y
‖x− yN−1 − rN‖2

2

s.t. z = E(x); r1 = D1(z); rn = Dn
(
yn−1

)
, n = 2, . . . , N;

Cz; Cyn
, n = 1, . . . , N; y0 = 0; yn = rn + yn−1, n = 1, . . . , N; y = yN

(7)

The effectiveness of the residual cascade that decodes for image reconstruction can be
proven as follows:

yn = rn + yn−1, n = 1, · · · , N
⇒ x− yn =

(
x− yn−1

)
− rn

rn →
(
x− yn−1

)
⇒ µ = lim

rn→(x−yn−1)

rn
(x−yn−1)

→ 1

rn →
(
x− yn−1

) µ→1,ε→0⇒ rn = µ
(
x− yn−1

)
+ ε,

⇒ x− yn =
(
x− yn−1

)
− µ

(
x− yn−1

)
− ε = (1− µ)

(
x− yn−1

)
− ε

⇒ ‖x− yn‖2 = ‖(1− µ)
(
x− yn−1

)
− ε‖2

⇒ ‖x− yn‖2 < ‖(1− µ)
(
x− yn−1

)
‖2 + ‖ε‖2

⇒ ‖x− yn‖2
ε→0
< ‖(1− µ)

(
x− yn−1

)
‖2 = |1− µ|‖

(
x− yn−1

)
‖2

⇒ ‖x− yn‖2
µ→1
< 1 · ‖

(
x− yn−1

)
‖2 = ‖

(
x− yn−1

)
‖2

⇒ ‖x− yN‖2 < ‖x− yN−1‖2 < · · · < ‖x− y2‖2 < ‖x− y1‖2

(8)

where rn is close to (x − yn−1) in the training phase in Equation (6) and Figure 4; rn is
the summation of a scaled (x − yn−1) and a small error; u is a scale coefficient which
is approximate to 1; ε is an error vector which is approximate to 0; reconstruction error
decreases when the total number of decoders increases.
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3.3.2. Adversarial Cascade Decoders-Based Auto-Encoders

The architecture of adversarial cascade decoders-based auto-encoders (ACDAE) is
displayed in Figure 5. The blue flow line represents the training phase, and the green flow
represents both phases of training and testing. Each decoder is an adversarial module.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 37 
 

( )

( )
( ) ( )

( ) ( )

( ) ( ) ( )( )

( )( )

( )( )

( )( ) ( )

−

−

−

−
→ −

−

→ →

− −

− − −

−

−

→

− −

= + =

 − = − −

→ −  = →
−

→ −  = − +

 − = − − − − = − − −

 − = − − −

 −  − − +

 −  − − = − −

n n 1

n n n 1

n n 1 n

n
n n 1

n 1

μ 1, 0

n n 1 n n 1

n n 1 n 1 n 1

n n 12 2

n n 12 22

0

n n 1 n 12 2

,n 1, ,N

μ lim 1

μ ,

μ 1 μ

1 μ

1 μ

1 μ 1 μ

r x y

ε

ε

y r y

x y x y r

r
r x y

x y

r x y r x y ε

x y x y x y ε x y ε

x y x y ε

x y x y ε

x y x y x y

( ) ( )
→

− −

−

 −   − = −

 −  −   −  −

2

μ 1

n n 1 n 12 2 2

N N 1 2 12 2 2 2

1x y x y x y

x y x y x y x y

, (8) 

where rn is close to (x − yn−1) in the training phase in Equation (6) and Figure 4; rn is the 

summation of a scaled (x − yn−1) and a small error; u is a scale coefficient which is approx-

imate to 1; ε is an error vector which is approximate to 0; reconstruction error decreases 

when the total number of decoders increases. 

3.3.2. Adversarial Cascade Decoders-Based Auto-encoders 

The architecture of adversarial cascade decoders-based auto-encoders (ACDAE) is 

displayed in Figure 5. The blue flow line represents the training phase, and the green flow 

represents both phases of training and testing. Each decoder is an adversarial module. 

 

Figure 5. The architecture of adversarial cascade decoders-based auto-encoders. 

The reconstruction data can be solved by the following optimization problem: 

Figure 5. The architecture of adversarial cascade decoders-based auto-encoders.

The reconstruction data can be solved by the following optimization problem:

(θ; z; y1, · · · , yN; y) = argmin
E;D

max
DC1,··· ,DCN

N
∑

n=1
(αnM(ln(DCn(x))) + βnM(ln(1−DCn(yn))))

s.t. z = E(x); y1 = D1(z); yn = Dn
(
yn−1

)
, n = 2, . . . , N;

Cz;
N
∑

n=1
‖yn − x‖2

2 < ε, n = 1, . . . , N;

y = yN

(9)

where the variables are described as follows:

DCn is the nth discriminator;
αn is a constant;
βn is a constant;
ε is a small positive constant;
M is the mean operator.

For the sake of gradually and serially training adversarial cascade decoders-based
auto-encoders, the optimization problem in Equation (9) can be divided into the following
sub optimization problems:

(θ1; z; y1) = argmin
E;D1

max
DC1

(α1M(ln(DC1(x))) + β1M(ln(1−DC1(y1))))

(θ2; y2) = argmin
D2

max
DC2

(α2M(ln(DC2(x))) + β2M(ln(1−DC2(y2))))

......
(θN; yN; y) = argmin

DN
max
DCN

(αNM(ln(DCN(x))) + βNM(ln(1−DCN(yN))))

s.t. z = E(x); y1 = D1(z); yn = Dn
(
yn−1

)
, n = 2, . . . , N;

Cz;
N
∑

n=1
‖yn − x‖2

2 < ε, n = 1, . . . , N;

y = yN

(10)
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3.3.3. Residual-Adversarial Cascade Decoders-Based Auto-Encoders

The framework of residual-adversarial cascade decoders-based auto-encoders (RAC-
DAE) is shown in Figure 6. The blue signal line denotes the training phase, and the
green signal line denotes both phases of training and testing. Each decoder is a residual-
adversarial module.
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The recovery data can be resolved by the following minimization-maximization problem:

(θ; z; r1, · · · , rN; y1, · · · , yN; y) = argmin
E;D

max
DC1,··· ,DCN

N
∑

n=1

(
αnM

(
ln
(
DCn

(
x− yn−1

)))
+ βnM(ln(1−DCn(rn)))

)
s.t. z = E(x); r1 = D1(z); rn = Dn

(
yn−1

)
, n = 2, . . . , N;

Cz;
N
∑

n=1
‖x− yn−1 − rn‖2

2 < ε, n = 1, . . . , N;

y0 = 0; yn = yn−1 + rn, n = 1, . . . , N; y = yN

(11)

For the purpose of gradually and serially training residual adversarial cascade decoders-
based auto-encoders, the optimization problem in Equation (11) can be divided into the
following suboptimization problems:

(θ1; z; r1; y1) = argmin
E;D1

max
DC1

(α1M(ln(DC1(x− y0))) + β1M(ln(1−DC1(r1))))

(θ2; r2; y2) = argmin
D2

max
DC2

(α2M(ln(DC2(x− y1))) + β2M(ln(1−DC2(r2))))

......
(θN; rN; yN; y) = argmin

DN
max
DCN

(
αNM

(
ln
(
DCN

(
x− yN−1

)))
+ βNM(ln(1−DCN(rN)))

)
s.t. z = E(x); r1 = D1(z); rn = Dn

(
yn−1

)
, n = 2, . . . , N;

Cz;
N
∑

n=1
‖x− yn−1 − rn‖2

2 < ε, n = 1, . . . , N;

y0 = 0; yn = yn−1 + rn, n = 1, . . . , N; y = yN

(12)

3.4. Adversarial Auto-Encoders
3.4.1. Reminiscence of Classical Adversarial Auto-Encoders

The infrastructure of the classical adversarial auto-encoders is exhibited in Figure 7.
The blue signal flow is for the training phase, and the green signal flow is for both phases
of training and testing. AAE are the combination of auto-encoders and adversarial learning.
Alireza Makhzani et al. proposed the AAE, utilized the encoder unit of auto-encoders
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as generator and added an independent discriminator, employed adversarial learning in
latent space and let the hidden variable satisfy a given distribution, and finally achieved
better performance in data reconstruction [7]. Compared with the classical auto-encoders,
AAE infrastructure holds an extra discriminator, which makes the output of the encoder
maximally approach a given distribution. The infrastructure can be expressed by the
following equations:
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z = E(x)
y = D(z)

DC(zh) = 1,DC(z) = 0
(13)

where the terms are defined as follows:

zh is the variable related to z which satisfies a given distribution;
DC is the discriminator.

The reestablishment data can be resolved by the following minimization-maximization
problem:

(θ, z, y) = argmin
E,D

max
DC

(αM(ln(DC(zh))) + βM(ln(1−DC(z))))

s.t. z = E(x), y = D(z), ‖y− x‖2
2 < ε, Cy

(14)

3.4.2. Proposed Cascade Decoders-Based Adversarial Auto-Encoders

The architecture of the proposed cascade decoders-based adversarial auto-encoders
(CDAAE) is illustrated in Figure 8. The blue flow line represents the training phase, and the
green flow line represents both phases of training and testing. Compared with the cascade
decoders-based auto-encoders, the proposed architecture has an extra discriminator, which
makes the output of the encoder maximally approximate to a known distribution. The
architecture can be described by the following formulas:

z = E(x)

yn =

{
D1(z), n = 1

Dn
(
yn−1

)
, n = 2, . . . , N

DC(zh) = 1,DC(z) = 0

(15)
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The restoration data can be resolved by the following optimization problem:

(θ; z; y1, · · · , yN) = arg min
E;D1,··· ,DN

max
DC

(αM(ln(DC(zh))) + βM(ln(1−DC(z))))

s.t. z = E(x); y1 = D1(z); yn = Dn
(
yn−1

)
, n = 2, . . . , N;

N
∑

n=1
‖yn − x‖2

2 < ε; Cyn
, n = 1, . . . , N

(16)

For the purpose of gradually and serially training cascade decoders-based adversarial
auto-encoders, the optimization problem in Equation (16) can be partitioned into the
following suboptimization problems:

(θ1; z; y1) = argmin
E;D1

max
DC

(αM(ln(DC(zh))) + βM ln(1−DC(z)))

(θ2; y2) = argmin
D2
‖y2 − x‖2

2

· · · · · ·
(θN; yN) = argmin

DN
‖yN − x‖2

2

s.t. z = E(x); y1 = D1(z); yn = Dn
(
yn−1

)
, n = 2, . . . , N;

‖y1 − x‖2
2 < ε; Cyn

, n = 1, . . . , N

(17)

The architecture in Figure 8 represents general cascade decoders-based adversarial
auto-encoders (GCDAAE), and it can be easily be expanded to residual cascade decoders-
based adversarial auto-encoders (RCDAAE), adversarial cascade decoders-based adversar-
ial auto-encoders (ACDAAE), and residual-adversarial cascade decoders-based adversarial
auto-encoders (RACDAAE).
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3.5. Variational Auto-Encoders
3.5.1. Remembrance of Classical Variational Auto-Encoders

The framework of classical variational auto-encoders is shown in Figure 9 [4]. The
blue signal line denotes the training phase, and the green signal line denotes both phases
of training and testing. It can be resolved by the following optimization problem:
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(θ, z, y) = argmin
θ,z,y

(
αKL(q(zh)||p(z)) + β‖y− x‖2

2

)
= argmin

θ,z,y

(
α∑

zh

q(zh) log q(zh)
p(z) + β‖y− x‖2

2

)
s.t. z = E(x), y = D(z), Cy

(18)

where the terms are defined as follows:

KL(·) is the Kullback–Leibler divergence;
q(zh) is the given distribution of zh;
p(z) is the distribution of z.

3.5.2. Proposed Cascade Decoders-Based Variational Auto-Encoders

The proposed infrastructure of cascade decoders-based variational auto-encoders
is shown in Figure 10. The blue signal flow is for the training phase, and the green
signal flow is for both phases of training and testing. It can be resolved by the following
optimization problem:

(θ; z; y1, · · · , yN) = argmin
θ;z;y1,··· ,yN

(
αKL(q(zh)||p(z)) + β

N
∑

n=1
‖yn − x‖2

2

)
s.t. z = E(x); y1 = D1(z); yn = Dn

(
yn−1

)
, n = 2, . . . , N; Cyn

, n = 1, . . . , N
(19)

For the sake of gradually and serially training cascade decoders-based auto-encoders,
the optimization problem in Equation (19) can be divided into the following suboptimiza-
tion problems:

(θ1; z; y1) = argmin
θ1;z;y1

(
αKL(q(zh)||p(z)) + β‖y1 − x‖2

2

)
(θ2; y2) = argmin

θ2;y2

‖y2 − x‖2
2

· · · · · ·
(θN; yN) = argmin

θN;yN

‖yN − x‖2
2

s.t. z = E(x); y1 = D1(z); yn = Dn
(
yn−1

)
, n = 2, . . . , N; Cyn

, n = 1, . . . , N

(20)

The infrastructure in Figure 10 represents general cascade decoders-based variational
auto-encoders (GCDVAE), and it can be easily be extended to residual cascade decoders-



Appl. Sci. 2022, 12, 8256 14 of 33

based variational auto-encoders (RCDVAE), adversarial cascade decoders-based variational
auto-encoders (ACDVAE), and residual-adversarial cascade decoders-based variational
auto-encoders (RACDVAE).
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3.6. Wasserstein Auto-Encoders
3.6.1. Recollection of Classical Wasserstein Auto-Encoders

The classical Wasserstein auto-encoders can be resolved by the following optimization
problem [20]:

(θ, z, y) = argmin
θ,z,y

(
αWz(p(z), q(zh)) + βWy(y, x)

)
s.t. z = E(x), y = D(z), Cy

(21)

where the variables are defined as follows:

Wz is the regularizer between distribution p(z) and q(zh);
Wy is the reconstruction cost.

3.6.2. Proposed Cascade Decoders-Based Wasserstein Auto-Encoders

The proposed cascade decoders-based Wasserstein auto-encoders can be resolved by
the following optimization problem:

(θ; z; y1, · · · , yN) = argmin
θ;z;y1,··· ,yN

(
αWz(p(z), q(zh)) + β

N
∑

n=1
Wy(yn, x)

)
s.t. z = E(x); y1 = D1(z); yn = Dn

(
yn−1

)
, n = 2, . . . , N; Cyn

, n = 1, . . . , N
(22)

For the purpose of gradually and serially training cascade decoders-based auto-
encoders, the optimization problem in Equation (22) can be divided into the following
suboptimization problems:

(θ1; z; y1) = argmin
θ1;z;y1

(
αWz(p(z), q(zh)) + βWy(y1, x)

)
(θ2; y2) = argmin

θ2;y2

Wy(y2, x)

· · · · · ·
(θN; yN) = argmin

θN;yN

Wy(yN, x)

s.t. z = E(x); y1 = D1(z); yn = Dn
(
yn−1

)
, n = 2, . . . , N; Cyn

, n = 1, . . . , N

(23)
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The aforementioned architecture represents general cascade decoders-based Wasser-
stein auto-encoders (GCDWAE), and it can be easily be expanded to residual cascade
decoders-based Wasserstein auto-encoders (RCDWAE), adversarial cascade decoders-based
Wasserstein auto-encoders (ACDWAE), and residual-adversarial cascade decoders-based
Wasserstein auto-encoders (RACDWAE).

3.7. Pseudocodes of Cascade Decoders-Based Auto-Encoders

The pseudo codes of the proposed cascade decoders-based auto-encoders are shown
in Algorithm 1.

Algorithm 1: The pseudo codes of cascade decoders-based auto-encoders.

Input: x: the training data
I: the total number of iteration
N: the total number of sub minimization problem

Initialization: i =1
Training:

While i <= I
i++
n = 1
While n <= N

n++
resolve the nth sub problem in Equations (5), (7), (10), (12), (17), (20) or (23)

Output:
θ: the parameters of deep neural networks
z: the representations of hidden space
y1, . . . , yN: the output of cascade decoders
y: the output of the last decoder

4. Experiments
4.1. Experimental Data Sets

The purpose of the simulation experiments is to compare the data reconstruction perfor-
mance of the proposed cascade decoders-based auto-encoders and the classical auto-encoders.

Four data sets are utilized to evaluate algorithm performance [29–32]. The mixed
national institute of standards and technology (MNIST) data set has 10 classes of handwrit-
ten digit images [29]; the extending MNIST (EMNIST) data set holds 6 subcategories of
handwritten digit and letter images [30]; the fashion-MNIST (FMNIST) data set possesses
10 classes of fashion product images [31]; and the medical MNIST (MMNIST) data set owns
10 subcategories of medical images [32]. The image size is 28 × 28. All color images are
converted into gray images. In order to reduce the computational load, small resolution
images and gray images are chosen. Certainly, if the computational capability is ensured,
the proposed methods can be easily and directly utilized on large resolution images, the
components of color images or their sub-patches. A large image can be divided into small
patches. In traditional image compression methods, the size of image patch for compres-
sion is 8 × 8. Therefore, the proposed methods can be used for each image block. In
brief, large image size will not degrade the performance of the proposed methods from the
viewpoint of small image patches. For the convenience of training and testing deep neural
networks, each pixel value is normalized from range [0, 255] to range [−1, +1] in the phase
of pre-processing, and is re-scaled back to range [0, 255] in the phase of post-processing.
The numbers of classes and samples in the four data sets are enumerated in Table 3. The
sample images of the four data sets are illustrated in Figure 11. From top to bottom, there
are images of MNIST digits, EMINST digits, EMNIST letters, FMNIST goods, MMNIST
breast, chest, derma, optical coherence tomography (OCT), axial organ, coronal organ,
sagittal organ, pathology, pneumonia, and retina.
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Table 3. Class and sample numbers of experimental data sets.

Data Set Class Number
Sample Number

Training Testing

MNIST 10 60,000 10,000

EMINST

digits 10 240,000 40,000
letters 26 124,800 20,800

balanced 47 112,800 18,800
bymerge 47 697,932 116,323
byclass 62 697,932 116,323

FMNIST 10 60,000 10,000

MMNIST

breast 2 546 156
chest 2 78,468 22,433

derma 7 7007 2005
OCT 4 97,477 1000

axial organ 11 34,581 17,778
coronal organ 11 13,000 8268
sagittal organ 11 13,940 8829

pathology 9 89,996 7180
pneumonia 2 4708 624

retina 5 1080 400
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4.2. Experimental Conditions

The experimental software platform is MATLAB 2020b on Windows 10 or Linux. For
the small data sets, MNIST, FMNIST, and MMNIST, the experimental hardware platform
is a laptop with a 2.6 GHz dual-core processor and 8 GB memory; For the large data set,



Appl. Sci. 2022, 12, 8256 17 of 33

EMNIST, the experimental hardware platform is a super computer with high-speed GPUs
and substantial memory.

The components of auto-encoders are made up of fully-connected (FC) layers, leaky
rectified linear unit (LRELU) layers, hyperbolic tangent (Tanh) layers, Sigmoid layers, etc. In
order to reduce the calculation complexity, the convolutional (CONV) layer is not utilized.

The composition of the encoder is shown in Figure 12, which consists of input, FC,
LRELU, and hidden layers.
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The constitution of the decoder is illustrated in Figure 13, which consists of input,
FC, LRELU, Tanh and output layers. The input layer can be the hidden layer for the first
decoder, and can be the output layer of the preceding decoder for the latter decoders. The
dashed line shows the two situations.

The organization of the discriminator is demonstrated in Figure 14, which comprises
input, FC, LRELU, Sigmoid, and output layers. The input layer can be the hidden layer
and can be the output of each decoder. The dashed line indicates the two cases.

The deep learning parameters, such as image size, latent dimension, decoder number,
batch size, learning rate, and iteration epoch, are summarized in Table 4.

Table 4. The deep learning parameters.

Parameter Name Parameter Value

Image size 28 × 28 × 1
Latent Dimension 30
Decoder Number 3

Batch size 100
Learning Rate 0.0002

Iteration Epoch 100
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4.3. Experimental Results

The experimental results of the proposed and classical algorithms on the MNIST data
set, EMNIST data set, FMNIST data set, and MMNIST data set are respectively shown in
Tables 5–8. SSIM is the average structure similarity between reconstruction images and
original images. ∆SIMM is the average SSIM difference between the proposed approaches
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and the conventional AE approach. The experimental results are also displayed in Figure 15,
where the horizontal coordinate is data sets and the vertical coordinate is ∆SIMM.

It can be found in Tables 5–8 and Figure 15 that the proposed methods, except for
ACDAE and ACDAAE, are superior to the classical AE and AAE methods in the perfor-
mance of image reconstruction. Therefore, it proves the correctness and effectiveness of the
proposed cascade decoders-based auto-encoders for image reconstruction.

It can also be discovered in Tables 5–8 and Figure 15 that the proposed RCDAE and
RACDAAE algorithms post the best recovery performance across nearly all four data sets.
Hence, residual learning is very suitable for image recovery. This is owing to the fact that
the residual has a smaller average and variance than the original image, which is beneficial
for the deep neural network to learn relationships between the input and output.

Table 5. Experimental results on the MNIST data set.

Algorithms SSIM ∆SSIM

AE 0.97387 0.00000
GCDAE 0.97415 0.00028
RCDAE 0.97592 0.00205
ACDAE 0.97354 −0.00033

RACDAE 0.97574 0.00187
AAE 0.97304 −0.00083

GCDAAE 0.97397 0.00010
RCDAAE 0.97576 0.00189
ACDAAE 0.97381 −0.00006

RACDAAE 0.97589 0.00202

Table 6. Experimental results on the EMNIST data set.

Algorithms

SSIM
∆SSIM

EMNIST

Digits Letters Balanced Bymerge Byclass

AE 0.98322
0.00000

0.97466
0.00000

0.97277
0.00000

0.98288
0.00000

0.98309
0.00000

GCDAE 0.98380
0.00058

0.97466
0.00000

0.97315
0.00038

0.98423
0.00135

0.98432
0.00123

RCDAE 0.98528
0.00206

0.97672
0.00206

0.97528
0.00251

0.98589
0.00301

0.98597
0.00288

ACDAE 0.98285
−0.00037

0.97391
−0.00075

0.97223
−0.00054

0.98300
0.00012

0.98314
0.00005

RACDAE 0.98517
0.00195

0.97654
0.00188

0.97570
0.00293

0.98433
0.00145

0.98517
0.00208

AAE 0.98304
−0.00018

0.97434
−0.00032

0.97291
0.00014

0.98291
0.00003

0.98284
−0.00025

GCDAAE 0.98375
0.00053

0.97451
−0.00015

0.97305
0.00028

0.98413
0.00125

0.98476
0.00167

RCDAAE 0.98534
0.00212

0.97659
0.00193

0.97546
0.00269

0.98586
0.00298

0.98592
0.00283

ACDAAE 0.98305
−0.00017

0.97410
−0.00056

0.97275
−0.00020

0.98329
0.00041

0.98340
0.00031

RACDAAE 0.98543
0.00221

0.97708
0.00242

0.97593
0.00316

0.98529
0.00241

0.98531
0.00222
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Table 7. Experimental results on the FMNIST data set.

Algorithms SSIM ∆SSIM

AE 0.96335 0.00000
GCDAE 0.96463 0.00128
RCDAE 0.96620 0.00285
ACDAE 0.96329 −0.00006

RACDAE 0.96625 0.00290
AAE 0.96366 0.00031

GCDAAE 0.96458 0.00123
RCDAAE 0.96630 0.00295
ACDAAE 0.96353 0.00018

RACDAAE 0.96637 0.00302

Table 8. Experimental results on the MMNIST data set.

Algorithms

SSIM
∆SSIM

MedMNIST

Breast Chest Derma Oct Axial Coronal Sagittal Pathology Pneumonia Retina

AE 0.88868
0.00000

0.98363
0.00000

0.97103
0.00000

0.98851
0.00000

0.81806
0.00000

0.82470
0.00000

0.79883
0.00000

0.89644
0.00000

0.94760
0.00000

0.97366
0.00000

GCDAE 0.89228
0.00360

0.98836
0.00473

0.97103
0.00000

0.98856
0.00005

0.92817
0.11011

0.83320
0.00850

0.84211
0.04328

0.89720
0.00076

0.95782
0.01022

0.97751
0.00385

RCDAE 0.90574
0.01706

0.98857
0.00494

0.97396
0.00295

0.98927
0.00076

0.90092
0.08286

0.83467
0.00997

0.84180
0.04297

0.89724
0.00080

0.96115
0.01355

0.98233
0.00867

ACDAE 0.87883
−0.00985

0.98682
0.00319

0.96834
−0.00269

0.98780
−0.00071

0.93012
0.11206

0.83450
0.00980

0.84302
0.04419

0.89548
−0.00096

0.95469
0.00709

0.97892
0.00526

RACDAE 0.89908
0.01040

0.98543
0.00180

0.97028
−0.00075

0.98832
−0.00019

0.89931
0.08125

0.83494
0.01024

0.84155
0.04272

0.89594
−0.00050

0.95784
0.01008

0.98067
0.00701

AAE 0.88527
−0.00341

0.97240
−0.01230

0.97052
−0.00051

0.98858
0.00007

0.81498
−0.00308

0.83347
0.00877

0.84202
0.04319

0.89603
−0.00041

0.95356
0.00596

0.97646
0.00280

GCDAAE 0.89139
0.00271

0.98847
0.00484

0.97054
−0.00053

0.98867
0.00016

0.93736
0.11930

0.83347
0.01000

0.84261
0.04378

0.89714
0.00070

0.95811
0.01051

0.97839
0.00473

RCDAAE 0.89772
0.00094

0.98852
0.00489

0.97262
0.00159

0.98920
0.00069

0.89873
0.08607

0.83321
0.00851

0.84179
0.04296

0.89747
0.00103

0.96076
0.01316

0.98261
0.00895

ACDAAE 0.88895
0.00027

0.98673
0.00310

0.96987
−0.00116

0.98769
−0.00082

0.93286
0.11480

0.83421
0.00951

0.84129
0.04246

0.89695
0.00051

0.95389
0.00629

0.97942
0.00576

RACDAAE 0.90113
0.01245

0.98831
0.00468

0.97062
−0.00041

0.98865
0.00014

0.90580
0.08702

0.83380
−0.00090

0.83975
0.04092

0.89728
0.00084

0.95720
0.00510

0.98117
0.00751

It can further be observed in Tables 5–8 and Figure 15 that the proposed ACDAE
and ACDAAE algorithms yield some minus ∆SIMM across the four data sets. Thus, in
line with the predictions of this paper, pure adversarial learning is unsuitable for image
re-establishment. However, a combination of residual learning and adversarial learning,
such as the aforementioned RACDAAE, can obtain high re-establishment performance.

It can additionally be found in Tables 5–8 and Figure 15 that the AAE algorithm
possesses some minus ∆SIMM across the four data sets. Therefore, consistent with the
circumstances of this article, pure AAE cannot outperform AE in image reconstitution.
Nevertheless, a combination of residual learning and adversarial learning, such as afore-
mentioned RACDAAE, can produce high reconstitution performance.

Finally, it can be found in Tables 5–8 and Figure 15 that SSIM differences for MMNIST-
axial and MMNIST-sagittal are substantially higher than for other data sets. The reason for
this may be that these training and testing samples are more similar than other data sets.

In order to clearly compare the reconstruction performance between the proposed algo-
rithms and the classical algorithms, the reconstruction images are illustrated in Figures 16–25.
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Since the proposed RCDAE algorithm owns the best performance, it is taken as an example.
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Figure 16. Reconstruction images on the MNIST data set. For each subfigure, the top row shows 

the original images, the middle row shows the recovery images of AE, and the bottom row shows 

the recovery images of RCDAE. 

Figure 16. Reconstruction images on the MNIST data set. For each subfigure, the top row shows the
original images, the middle row shows the recovery images of AE, and the bottom row shows the
recovery images of RCDAE.
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Figure 17. Marked reconstruction images on the MNIST data set.

The recovery images on the MNIST data set are shown in Figure 16. For each subfigure
in Figure 16, the top row shows the original images, the middle row shows the recovery
images of AE, and the bottom row shows the recovery images of RCDAE. It is not easy to
find the SSIM differences between AE and RCDAE in Figure 16. Therefore, the marked
re-establishment images on the MNIST data set are illustrated in Figure 17. The left column
shows the original images, the middle column shows the re-establishment images of AE,
and the right column shows the re-establishment images of RCDAE. It is easy to notice the
SSIM differences between AE and RCDAE in the red marked squares in Figure 17.
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Figure 18. Reconstruction image on the EMNIST data set (big letters). For each subfigure, the top 

row displays the original images, the middle row displays the recovery images of AE, and the 

bottom row displays the recovery images of RCDAE. 

Figure 18. Reconstruction image on the EMNIST data set (big letters). For each subfigure, the top
row displays the original images, the middle row displays the recovery images of AE, and the bottom
row displays the recovery images of RCDAE.
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Figure 19. Marked reconstruction images on the EMNIST data set (big letters).

Similarly, the reconstitution images on the EMNIST data set (big letters) are demon-
strated in Figure 18; the marked reconstitution images on the EMNIST data set (big letters)
are demonstrated in Figure 19. The rebuilding images on the EMNIST data set (small
letters) are displayed in Figure 20; the marked rebuilding images on the EMNIST data
set (small letters) are displayed in Figure 21. The reconstruction images on the FMNIST
data set are shown in Figure 22; the marked reconstruction images on the FMNIST data
set are shown in Figure 23. The recovery images on the MMNIST data set are displayed in
Figure 24; the marked recovery images on the MMNIST data set are displayed in Figure 25.
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Figure 20. Reconstruction images on the EMNIST data set (small letters). For each subfigure, the 

top row exhibits the original images, the middle row exhibits the recovery images of AE, and the 

bottom row exhibits the recovery images of RCDAE. 

Figure 20. Reconstruction images on the EMNIST data set (small letters). For each subfigure, the top
row exhibits the original images, the middle row exhibits the recovery images of AE, and the bottom
row exhibits the recovery images of RCDAE.
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Figure 21. Marked reconstruction images on the EMNIST data set (small letters).

It is revealed from Figures 16–25 that the proposed algorithms achieve significant
improvements in re-establishment performance on the MNST and EMNIST data sets. It
is also manifested in Figures 16–25 that the proposed methods merely obtain unobvious
promotion of re-establishment performance on the FMNIST and MMIST data sets. For
instance, in the first row of Figure 25, the difference between the proposed and classical
methods can only be found after enlarging the images; in the eighth row of Figure 25,
conspicuous differences still cannot be found even after enlarging the images. Nevertheless,
both of them are the true experimental results, which should be accepted and explained.
The lack of differences in these results is attributed to four reasons. The first reason is
that the quality of the original images is low on the FMNIST and MMNIST data sets. The
second reason is that only the illumination component of original color images on part
of the MMNIST data sets is reserved. The reconstruction performance will be improved
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if the original color images are utilized. The third reason is that the dimension of latent
space is 30. It a very low choice compared with 784 (28 × 28), the dimensions of the
original image. The fourth reason is that the convolutional layer is not utilized in the
architecture of auto-encoders. For the purpose of decreasing the computational load, the
convolutional layer was not adopted in the proposed approaches. The convolutional layer
can effectively extract image features and reconstruct the original image, and is expected to
further improve the reconstruction performance of the proposed approaches; this will be
investigated in our future research.
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Figure 22. Reconstruction images on the FMNIST data set. For each subfigure, the top row demon-
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Figure 22. Reconstruction images on the FMNIST data set. For each subfigure, the top row demon-
strates the original images, the middle row demonstrates the recovery images of AE, and the bottom
row demonstrates the recovery images of RCDAE.
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Figure 23. Marked reconstruction images on the FMNIST data set.
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Figure 24. Reconstruction images on the MMNIST data set. For each subfigure, the top row reveals 
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Figure 24. Reconstruction images on the MMNIST data set. For each subfigure, the top row reveals
the original images, the middle row reveals the recovery images of AE, and the bottom row reveals
the recovery images of RCDAE.
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Figure 25. Marked reconstruction images on the MMNIST data set.

5. Conclusions

This paper proposes cascade decoders-based auto-encoders for image reconstruction.
They comprise the architecture of multi-level decoders and related optimization problems
and training algorithms. This article concentrates on the classical AE and AAE, as well
as their serial decoders-based versions. Residual learning and adversarial learning are
contained in the proposed approaches. The effectiveness of cascade decoders for image
reconstruction is demonstrated in mathematics. It is evaluated based on the experimental
results on four open data sets that the proposed cascade decoders-based auto-encoders
are superior to classical auto-encoders in the performance of image reconstruction. In
particular, residual learning is well suited for image reconstruction.

In our future research, experiments on data sets with large resolution images and
colorful images will be conducted. Experiments on other advanced auto-encoders, such



Appl. Sci. 2022, 12, 8256 32 of 33

as VAE and WAE, will also be explored. The convolutional layer or transformer layer
will be introduced into the proposed algorithms. The constraints on high-dimensional
reconstruction data, such as sparse and low-rank priors, will be utilized to advance the
reconstruction performance of auto-encoders. Generalized auto-encoders-based data com-
pression and signal-compressed sensing will also be probed. The auto-encoders-based
lossless reconstruction will further be studied.

6. Patents

The patent with application number CN202110934815.7 and publication number
CN113642709A results from the research reported in this manuscript.
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