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Abstract: With the in-depth integration of deep learning and side-channel analysis (SCA) technology,
the security threats faced by embedded devices based on the Internet of Things (IoT) have become
increasingly prominent. By building a neural network model as a discriminator, the correlation
between the side information leaked by the cryptographic device, the key of the cryptographic
algorithm, and other sensitive data can be explored. Then, the security of cryptographic products can
be evaluated and analyzed. For the AES-128 cryptographic algorithm, combined with the CW308T-
STM32F3 demo board on the ChipWhisperer experimental platform, a Correlation Power Analysis
(CPA) is performed using the four most common deep learning methods: the multilayer perceptron
(MLP), the convolutional neural network (CNN), the recurrent neural network (RNN), and the long
short-term memory network (LSTM) model. The performance of each model is analyzed in turn when
the samples are small data sets, sufficient data sets, and data sets of different scales. Finally, each
model is comprehensively evaluated by indicators such as classifier accuracy, network loss, training
time, and rank of side-channel attacks. The experimental results show that the convolutional neural
network CNN classifier has higher accuracy, lower loss, better robustness, stronger generalization
ability, and shorter training time. The rank value is 2, that is, only two traces can recover the correct
key byte information. The comprehensive performance effect is better.

Keywords: deep learning; side-channel analysis; multilayer perceptron; convolutional neural net-
work; recurrent neural network; long short-term memory network

1. Introduction

With the rapid development of the Internet of Things, the necessity of maintaining
information security has become increasingly prominent. The evaluation and analysis of
embedded devices such as FPGA and smart cards based on the Internet of Things have been
widely studied. In chip evaluation, intrusive, semi-intrusive, and non-invasive methods
are generally used. Among them, non-invasive analysis is represented by side-channel
attacks. In running cryptographic algorithms, cryptographic equipment will inevitably leak
side information such as power consumption, running time, and electromagnetic radiation.
Monitoring or analysing this physically leaked information can be used to speculate on
the operations performed inside the device and explore the risk of key and other sensitive
data leakages.

Side-channel analysis (SCA) was first proposed by Kocher [1] in 1996 to recover the
key by analysing the time series. Subsequently, algorithms such as the support vector
machine (SVM) [2] and the random forest (RF) [3] were widely used in the initial machine
learning algorithms, which promoted research on side-channel attacks based on machine
learning [4–6]. Whether the attacker has the same experimental equipment as the attack
target, the side-channel attack based on machine learning can be divided into supervised
and unsupervised, corresponding to profiling attack [7] and non-profiling attack [8], respec-
tively. For non-profiling attacks, simple energy analysis SPA, differential energy analysis

Appl. Sci. 2022, 12, 8246. https://doi.org/10.3390/app12168246 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12168246
https://doi.org/10.3390/app12168246
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app12168246
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12168246?type=check_update&version=1


Appl. Sci. 2022, 12, 8246 2 of 23

DPA [9], correlation energy analysis CPA [10], and mutual information analysis MIA [11]
have been proposed successively. Unlike non-profiling attacks, profiling attacks such as
template attacks [12] and random attacks [13] include two stages: analysis and learning of
the training set and attack testing. By learning the statistical model, we can test the general-
ization ability of the analysis model. In recent years, there has been a rapid development
of deep learning [14], a branch of machine learning that takes neural networks as its basic
architecture, which can be used as a universal tool for data representation learning. At
the same time, it is also a representative technology leading the third revival of artificial
intelligence. Maghrebi et al. [15] combined deep learning with SCA for the first time and
studied the application of deep learning models such as MLP and CNN in SCA. Then, the
research on SCA based on deep learning became a research hotspot [16–18].

Wang et al. [19] applied a dendrite net to SCA and proposed a side-channel hardware
encryption analysis method based on the dendrite net, which has a better analysis effect
than MLP, CNN, and RNN. It is of great significance to study the impact of different models
on attack results and the exact relationship between power traces and median values.
Ou et al. [20] proposed a Template Analysis Pre-trained DL Classification model named
TAPDC based on convolutional neural networks and autoencoders. The TAPDC model
completes the conversion of power traces to the intermediate value by detecting the period-
icity of the power traces and mines deeper features through a multi-layer convolutional
network. Using the same dataset to train the three network models of MLP, CNN, and
TAPDC respectively, the results show that TAPDC greatly improves the efficiency of energy
consumption attacks. Liu et al. [21] proposed a side-channel analysis method based on a
combination of embedded and LSTM by first using word embeddings to replace points
of interest (POIs) and dimensionality reduction, and the power traces are transformed
into a sensitivity vector by vectorizing the power values. Second, the sensitive vectors are
combined with long short-term memory (LSTM) to perform SCA based on FPGA cryp-
tographic implementation. By comparison with a traditional template attack (TA), MLP,
and CNN, the results show that this model helps to improve training accuracy and attack
effect, but its training time and attack time are much higher than other models. Aiming at
the inability of deep learning models to effectively learn the internal features of the data
when the size of the training set is limited, Hu et al. [22] proposed a cross-subkey training
method for enhancing power traces, using multiple subkeys to construct a model with a
better fit. The accuracy of the subkey combination training model is 28.20% higher than
that of the single subkey training model. At the same time, the number of power traces
that need to be captured when training the neural network model is greatly reduced.

However, the existing research lacks the quantitative research and experimentation
of each deep learning model in SCA, so it cannot deeply evaluate the effectiveness of
various deep learning models. In this paper, the CW308T-STM demo board is used on the
ChipWhisperer experimental platform [23] to convert the extracted power trace during
the encryption process of the unmasked AES-128 cipher algorithm into an experimental
data set. It analyses the data set in combination with Correlation Power Analysis. After
determining the interesting interval, the established MLP, CNN, RNN, and LSTM models
are used to train and test small data sets, sufficient data sets, and samples of different
scales. Finally, the side-channel attack capability of each model is evaluated through the
indicators of classifier accuracy, network loss, training time, and rank of the side-channel
attack. This paper only focuses on the AES-128 algorithm and studies the experiments
under the condition of balanced samples and good data signal-to-noise ratio, and it lacks
validation on public datasets and protected datasets. The actual test environment will have
low signal-to-noise ratio datasets or other more complex interference situations.

The remainder of this paper is divided into five sections. Section 2 describes the four
deep learning models built in the experiments, including multilayer perceptions, convolu-
tional neural networks, recurrent neural networks, and long short-term memory networks.
In Section 3, we introduce the relevant information on the AES-128 target encryption algo-
rithm. Section 4 studies the CPA side channel analysis based on deep learning, including
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CPA-related principles, the CPA experimental environment configuration, and the CPA
experimental analysis process. The specific experimental process and the model evaluation
is provided Section 5.

2. Four Deep Learning Models
2.1. Multilayer Perceptron

The multilayer perceptron (MLP) is a fully connected neural network composed of
multiple perceptron units [24]. Its input and output layers contain at least one hidden layer
transformed by the ReLU function or the sigmoid function. It can deal with nonlinear
separable problems and has very powerful adaptive and self-learning functions. However,
it is difficult to select the number of hidden nodes in the network. Moreover, it is widely
used in image recognition, speech recognition, machine translation, and other fields. If s is
the operation of the softmax function, λn is the full connection layer, and σi is the activation
function, then the MLP can be composed of a series of linear functions and nonlinear
activation functions, and the function F is expressed as:

F(x) = s ◦ λn ◦ σn−1 ◦ λn−1 ◦ · · · ◦ λ1(x) = y (1)

Each layer of the MLP is connected to the neurons of adjacent layers, and multiple
input data sets are mapped to a single output data set. Let each neuron in the network have
a bias value b and an activation function f ; the neuron connection weight value between
adjacent layers is wi, and i ∈ {1, · · · , m}; m is the number of connection layers, and xi
represents the input of layer i. Then, the output of each neuron can be expressed as:

o = f (
m

∑
i=1

wixi + b) (2)

The MLP shown in Figure 1 consists of an input layer, an output layer, and a hidden
layer. The number of inputs and outputs is three and two, respectively, and the hidden
layer in the middle contains four hidden units.
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2.2. Convolutional Neural Network

A convolutional neural network (CNN or convnet) is a deep feedforward neural net-
work composed of a convolution layer, a convergence layer, and a full connection layer [25].
It has local connection characteristics and weight sharing and can fit any continuous func-
tion. It is a neural network specially used to process data with a similar network structure.
CNN-designed neurons have three dimensions: width, height, and depth. However, the
scale of parameters will increase sharply with the increase in the number of hidden-layer
neurons, which makes the training efficiency of the whole neural network very low and
prone to overfitting. Secondly, because the fully connected feedforward network is dif-
ficult for extracting the local invariance features of objects, data enhancement methods
are needed to improve the performance. The output of the feedforward neural network
only depends on the current input, that is, the input is independent, which requires the
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input and output of data with fixed dimensions. It is difficult to process video, voice, and
other timing data. The CNN has a wide range of speech recognition, language detection,
document analysis, and image recognition applications. The commonly used structure of
the convolution network is shown in Figure 2 below.
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Figure 2. Structure of the ordinary convolutional network.

A convolutional network stacks N consecutive convolutional blocks and connects K
fully connected layers. A convolution block contains consecutive M convolution layers
and b pooling layers. Generally, the value range of N is large, and 0 ≤ K ≤ 2, 2 ≤M ≤ 5;
b = 0 or 1:

ReLU(x) = max(0, 1) =
{

0, x ≤ 0
x, x > 0

(3)

The model’s accuracy is obtained by activating the input feature data through the
Softmax activation function of the output layer. The number of output values is equal to
the number of label categories, which is a single-layer neural network. The loss function
corresponding to the activation function is the multiclass Cross-Entropy Loss Function.

2.2.1. Softmax Function

For K scalar x1, · · · , xK, the Softmax function can be defined as:

zk = so f tmax(xk) =
exp(xk)

K
∑

i=1
exp(xi)

(4)

When a K-dimensional vector represents the input of the Softmax function x = [x1; · · · ; xK],
the Softmax function can be abbreviated as:

z̃ = so f tmax(x) = 1
K
∑

k=1
exp(xk)

 exp(x1)
...

exp(xK)


=

exp(x)
K
∑

k=1
exp(xk)

=
exp(x)

1T
K exp(x)

(5)

2.2.2. Softmax Regression

Softmax regression makes a linear superposition of input features and weights. The
Softmax regression model is also called conditional maximum entropy or a logarithmic
linear model. If a linear log model is used to model the conditional probability p(y|x) , then

p(y|x; θ) = 1
Z(x;θ) exp(θT f (x, y))

= 1
∑y exp(θT fy(x,y)) exp(θT f (x, y)) (6)

The Softmax operation transforms the output into a legal category prediction dis-
tribution. For sample i, construct vector yi ∈ Rq so that the y(i) element of the discrete
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value of sample i category is 1 and the rest is 0. The smaller the difference between the
predicted probability distribution ŷ(i) and the real label probability distribution y(i), the
better. However, to make the prediction classification result correct, it only needs to mea-
sure the difference between the two probability distributions when calculating the error on
the discrete label. We use the Cross-Entropy Loss Function to measure. If the element not 0
or 1 in the vector y(i) is set as y(i)j , the definition of cross-entropy is as follows:

H(y(i), ŷ(i)) = −
q

∑
j=1

y(i)j log ŷ(i)j = − log ŷ(i)
y(i)

(7)

Assuming that the number of samples in the training data set is n, the Cross-Entropy
Loss Function can be defined as:

`(Θ) =
1
n

n

∑
i=1

H(y(i), ŷ(i)) (8)

In the above formula, Θ is the model parameter. When each sample has only one label,
the corresponding cross-entropy loss is:

`(Θ) = − 1
n

n

∑
i=1

log ŷ(i)
y(i)

(9)

2.3. Recurrent Neural Network

A recurrent neural network (RNN) is a kind of neural network with short-term memory
capability that can simulate any program and store the information of previous time steps
through a hidden state [26]. Using the neuron with self-feedback, it can process any length
of time series data and can be used to mine the time series and semantic information in the
data. One time, the back-propagation algorithm is used to learn the parameters, but when
the input sequence is too long, the gradient explosion and disappearance problem may
occur. Therefore, the gating mechanism is introduced to solve this long-range dependence
problem. It can be extended to the recursive neural network (recNN) and the graph neural
network (GNN). The RNN is widely used in video processing, speech recognition, text
generation, image processing, and other fields. If Xt represents the input of time t, Ot
represents the output of time t, and St represents the memory of time t, the cyclic neural
network structure diagram is shown in Figure 3 below.
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The corresponding expression is:

Ot = g(V · St) (10)



Appl. Sci. 2022, 12, 8246 6 of 23

St = f (U · Xt + W · St−1) (11)

2.4. Long Short-Term Memory Network

To improve the gradient explosion or gradient disappearance problem of the simple
recurrent neural network, the Long Short-Term Memory Network (LSTM) based on gating
is introduced, which is a variant of a cyclic neural network [27,28] and is widely used in
speech recognition, text generation, machine translation, image description, and video
marking. Due to its complex structure, it has high computational complexity and is difficult
to carry out in-depth learning. To control the path of information transmission, the three
gates in the gating mechanism introduced by the LSTM network are the input gate it, the
forgetting gate ft, and the output gate ot. The input gate controls the amount of information
to be stored in the candidate state c̃t at the current time, the output gate determines the
amount of information transmitted from the internal state ct at the current time to the
external state ht, and the forgetting gate controls whether the internal state ct−1 information
at the previous time is retained or discarded. The expression is as follows:

it = σ(Wixt + Uiht−1 + bi)
ft = σ(W f xt + U f ht−1 + b f )
ot = σ(Woxt + Uoht−1 + bo)

(12)

Among them, the input of the current time is xt, σ(·) is the logistic function, and the
corresponding interval of the value range is (0, 1). The recurrent cell structure of the LSTM
network is shown in Figure 4 below.

Figure 4. Recurrent structure of LSTM network.

The timing dependency of the LSTM network can be expressed by the following formula:
c̃t
ot
it
ft

 =


tanh

σ
σ
σ

(W
[

xt
ht−1

]
+ b
)

(13)

ct = ft � ct−1 + it � c̃t (14)

ht = ot � tanh(ct) (15)
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3. AES-128 Algorithm

On 15 April 1997, the National Institute of Standard Technology (NIST) launched the
activity of soliciting AES (Advanced Encryption Standard), which aims to replace the DES
(Data Encryption Standard) cryptographic algorithm and determine a new data encryption
standard, with a message block length of 128 bits and a key length of 128/192/256 bits or
16/24/32 bytes, faster than triple DES and at least as secure as triple DES. Until 2 October
2000, NIST announced the Rijndael algorithm proposed by Belgian scholars Joan Daemen
and Vincent Rijmen as the new AES [29]. The Rijndael block cipher algorithm integrates
security, high performance, and adaptability. According to the different key lengths, it is
recorded as AES-128, AES-192, and AES-256, respectively. This paper takes the most widely
used AES-128 algorithm as the research object and carries out security analysis combined
with deep learning and SCA technology.

The state of the AES-128 algorithm corresponds to a 4 × 4 = 16 byte matrix, and the
encryption process needs to go through 10 rounds of function iteration operations. Except
for the 10th round, every other round needs to go through SubByte, ShiftRow, MixColumn,
and AddRoundKey. The tenth round does not include MixColumn. Among them, SubByte
is the only nonlinear transformation in the AES algorithm, which constitutes the nonlinear
substitution layer of the AES algorithm, that is, the S box. The ShiftRow and MixColumn
transformation constitute the linear mixing layer of the AES algorithm, that is, the P box.
Therefore, the AES algorithm is a typical SP (substitute-permutation) structure. In this
paper, for the 16-bytes data blocks of the AES algorithm state, the “divide and conquer”
strategy is adopted to analyze and crack each byte one by one and to finally realize the
recovery of all keys. The pseudocode of the AES algorithm is shown in Algorithm 1 below.

Algorithm 1: Preudocode of the AES-128 algorithm

//AES-128 Cipher
//in: 128 bits (plaintext)
//out: 128 bits (ciphertext)
//Nr: number of rounds, Nr = 10
//Nb: number of columns in state, Nb = 4
//w: expanded key K, Nb * (Nr + 1) = 44 words, (1 word = Nb bytes)
state = in;
AddRoundKey (state, w [0, Nb − 1]);
for round = 1 step 1 to Nr − 1 do

SubBytes (state); // Attack Point, at round 1.
ShiftRows (state);
MixColumns (state);
AddRoundKey (state, w [round * Nb, (round + 1) * Nb − 1]);

end for
SubBytes (state);
ShiftRows (state);
AddRoundKey (state, w [Nr * Nb, (Nr + 1) * Nb − 1]);
out = state;

4. CPA Side-Channel Analysis Based on Deep Learning
4.1. CPA-Related Principles

The principle of CPA is that the instantaneous energy consumed by electronic equip-
ment during encryption and decryption operations is related to the data written in the
register and the operation. Usually, the correlation between the Hamming weight and the
voltage of the processed data is studied. The weight of Hamming is introduced as follows:

r(H, V) =
1
N

N

∑
i=1

(zH)i · (zV)i (16)
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In an m-bit microprocessor, binary data are encoded as D =
m−1
∑

j=0
dj · 2j, where bit

dj = 0 or 1, and its Hamming weight refers to the number of nonzero symbols in the string,

which can be expressed as H(D) =
m−1
∑

j=0
dj. In this paper, the Hamming weight model is

defined as:
T = a · H(D) + b + r (17)

In the above formula, a and b are constants, H(D) is the Hamming weight, and r is
random noise. The basic idea of CPA is as follows:

(1) The selection of the attack position of the algorithm. The attack point needs to be
selected after the key is used. For the AES algorithm, the target attack point is generally
selected after the S-box or MixColumn. This paper selects the output position of the first
round S-box of the AES-128 cipher algorithm as the target attack point.

(2) Measure of relevance. The Hamming weight and voltage are regarded as two
random variables H and V. Through analysis, an expression similar to Vi = α · Hi + β can
be obtained to solve the correlation coefficient between them. In this paper, the Pearson
correlation coefficient [30] describes the correlation between the Hamming weight and the
voltage. The Pearson correlation coefficient is expressed as follows:

r(H, V) =
1
N

N

∑
i=1

(zH)i · (zV)i (18)

In the above formula zx = x−x
σx

, N is the total number of samples selected, and z is the
result of the standardization of random variables.

(3) The specific attack process:
Step 1: Randomly select plaintext bytes P1, · · · , PN , and input them into the encryption

unit of the target cipher algorithm to perform the encryption operation. Then, the power
trace in the encryption process, the voltage V is collected, and each power trace contains M
sampling points. The power trace refers to the information leaked by different plaintexts
in the encryption process under the correct key. In the experiment, the power trace at the
same sampling point is selected as the N sample values of the variable V.

Step 2: Generate the corresponding intermediate value by guessing the key and
calculating the assumed energy consumption D according to the Hamming weight leakage
of the intermediate value.

Step 3: Calculate the correlation coefficient between the assumed energy consumption
trace and the measured value. The pseudocode of the attack process is shown in Algorithm
2 below.

Algorithm 2: Randomly select plaintext P1, · · · , PN and collect a power trace; each power
trace has M sampling points

For byte = 1:16
For k = 0:255

H = HammingWeight(Sbox(Pbyte⊕k)) // Pbyte: The byte-th byte of each Pn
For m = 1:M

V = vm // vm: The m-th sampling point of each power trace v
Corr (k) = r(V,H)

rightkeybyte = find(max{Corr})

When distinguishing whether the key guessed is correct, it is not necessary to find
when the attack point is executed, but only to solve the correlation coefficient of all positions
and find the maximum value. The point with the greatest correlation corresponds to the
correctly guessed key, so the correct key and the output position of the S-box are determined.



Appl. Sci. 2022, 12, 8246 9 of 23

4.2. CPA Experimental Environment Configuration

The computer hardware configuration used in the experiment is Intel® CoreTM i7-
7700HQ CPU @ 2.80 GHz and an NVIDIA GeForce GTX 1060 6 GB GPU, combined
with the ChipWhisperer physical chip attack platform and the CW308T-STM32F3 demo
board running AES-128 cryptographic algorithm, the energy consumption data is sampled
at 40 MHz. Combined with the keras2.3.1 [31] and tensorflow2.1.0 [32] deep learning
framework, using an open-source package and environment manager python3.6 to compile
and execute on the Anaconda Jupiter notebook, after completing the construction, training,
and testing of the four models, all experiments are finally completed. The experimental
equipment is shown in Figure 5 below.
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4.3. CPA Experimental Analysis Process

(1) Collection and pre-processing of side-channel data. This experiment uses the
ChipWhisperer platform to perform SCA on the AES-128 cryptographic algorithm through
the CW308T-STM32F3 demo board. When pre-processing the side channel data, it must
first be aligned. Since the ChipWhisperer platform in the experiment has automatically
aligned all collected data, this operation can be ignored. When the data are unstable, the
variance or the degree of dispersion is large; it is necessary to normalize the data. The
sample diagram of the power trace collected in the experiment is shown in Figure 6 below,
and each trace contains 3000 data points.

Appl. Sci. 2022, 12, x  10 of 24 
 

4.3. CPA Experimental Analysis Process 
(1) Collection and pre-processing of side-channel data. This experiment uses the 

ChipWhisperer platform to perform SCA on the AES-128 cryptographic algorithm 
through the CW308T-STM32F3 demo board. When pre-processing the side channel data, 
it must first be aligned. Since the ChipWhisperer platform in the experiment has automat-
ically aligned all collected data, this operation can be ignored. When the data are unstable, 
the variance or the degree of dispersion is large; it is necessary to normalize the data. The 
sample diagram of the power trace collected in the experiment is shown in Figure 6 below, 
and each trace contains 3000 data points. 

 
Figure 6. Single power trace waveform. 

(2) Determine the location of the target attack point. The target attack point in the 
experiment is the output position of the first round S-box of the AES-128 cryptographic 
algorithm, and its output state can be expressed as 0 0 0( )state Sbox p k= ⊕ , where subscript 
0 represents the attack on the first byte of the key stream, S-box represents the byte sub-
stitution operation in the S-box, and p and k represent the input random plaintext and 
random key information, respectively. Thus, the first byte K[0] of the key of the first round 
is recovered. 

(3) CPA attack on the power trace to find the data interest interval. The point of in-
terest is the interval range of the encryption operation corresponding to the location of the 
attack point in a complete power trace, that is, the interesting interval. The detailed steps 
of CPA are as follows: 

Firstly, the power trace matrix T of the original side-channel data is established. A 
total of 50,000 energy consumption tracks were collected in this experiment, with 3000 
sampling points on each track. Therefore, the energy consumption trajectory matrix T can 
be established, and its dimension is 50,000 × 3000. 

Secondly, construct the output state matrix S. For an 8-bit key byte, the value of the 
key space ranges from 0 to 255, with a total of 256 possibilities. For all possible key values, 
obtain the output state matrix S of all target positions, and the matrix dimension is 50,000 
× 256. 

Finally, using the Pearson correlation coefficient [30] calculation method, the corre-
lation between the power trace matrix T and the output state matrix S is calculated, and 
the final correlation coefficient matrix R is obtained with a dimension of 3000 × 256, which 
represents the correlation coefficients of all possible key operations at all timing sampling 
points. Thus, the data point’s position with the greatest correlation with the key in the 
power race is determined. The value range of the final interest interval is [850:930], with 
a total of 80 sampling points. Figure 7 shows the waveform of power trace information 
related to the first round of the encryption operation in the CPA of a single power trace. 
Figure 8 is the amplification result of the corresponding interest interval in the CPA, that 

Figure 6. Single power trace waveform.

(2) Determine the location of the target attack point. The target attack point in the
experiment is the output position of the first round S-box of the AES-128 cryptographic
algorithm, and its output state can be expressed as state0 = Sbox(p0 ⊕ k0), where subscript
0 represents the attack on the first byte of the key stream, S-box represents the byte sub-
stitution operation in the S-box, and p and k represent the input random plaintext and
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random key information, respectively. Thus, the first byte K[0] of the key of the first round
is recovered.

(3) CPA attack on the power trace to find the data interest interval. The point of interest
is the interval range of the encryption operation corresponding to the location of the attack
point in a complete power trace, that is, the interesting interval. The detailed steps of CPA
are as follows:

Firstly, the power trace matrix T of the original side-channel data is established. A total
of 50,000 energy consumption tracks were collected in this experiment, with 3000 sampling
points on each track. Therefore, the energy consumption trajectory matrix T can be estab-
lished, and its dimension is 50,000 × 3000.

Secondly, construct the output state matrix S. For an 8-bit key byte, the value of
the key space ranges from 0 to 255, with a total of 256 possibilities. For all possible key
values, obtain the output state matrix S of all target positions, and the matrix dimension is
50,000 × 256.

Finally, using the Pearson correlation coefficient [30] calculation method, the correla-
tion between the power trace matrix T and the output state matrix S is calculated, and the
final correlation coefficient matrix R is obtained with a dimension of 3000 × 256, which
represents the correlation coefficients of all possible key operations at all timing sampling
points. Thus, the data point’s position with the greatest correlation with the key in the
power race is determined. The value range of the final interest interval is [850:930], with
a total of 80 sampling points. Figure 7 shows the waveform of power trace information
related to the first round of the encryption operation in the CPA of a single power trace.
Figure 8 is the amplification result of the corresponding interest interval in the CPA, that
is, it contains the energy consumption information of the first round of the S-box byte
substitution operation.
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(4) According to the position of the determined interest interval, the original side-
channel data are subjected to dimensionality reduction processing. In this experiment, the
range of interest intervals is 850~930, that is, the original 3000-time series sampling points
are reduced to 80, which greatly reduces the computational complexity of the deep learning
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model and improves the computational efficiency. For the power consumption data of the
CW308T-STM32F3 demo board, the correlation curve of all possible keys analyzed by CPA
technology is shown in Figure 9 below. The range within the dotted line in the figure is the
corresponding interval of the target byte in the experiment.
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(5) After processing all side-channel data, the entire dataset is divided into training
and test sets. The detailed results of this experiment can be found in Section 5.

(6) Building deep learning models. Under the Keras framework, the four deep learning
models of MLP, CNN, RNN, and LSTM are built, and the model structure, parameter scale,
and hyperparameters of each model under different scale data are the same. Model example
diagrams are shown in Figure 10 below. The RNN model has the smallest parameter
scale, with only 84,616 parameters, and the CNN model has the largest parameter scale,
with 269,484 parameters. In addition, the parameters of MLP and LSTM are 250,336 and
106,996, respectively.

(7) Train and test each model. All models are trained and tested using datasets of
different sizes. The model accuracy is obtained by activating the input feature data through
the Softmax activation function of the last layer, that is, the output layer, which is used to
characterize and evaluate the classification ability of the model. To describe the degree of
deviation between the predicted value of each model and the actual value, that is, to test
the robustness of each model, the multicategory cross-entropy loss function is used in this
experiment to calculate the loss value of the model. The Adam optimizer [33] is used for
each model.

(8) Recover key byte information. This experiment uses the rank function to calculate
the key recovery ability of each deep learning model. Using the training model to predict
the test set and get a score vector D, each test data corresponds to a vector D. Then, multiply
the D results of multiple data, and sort the data in the matrix according to the multiplied
results (in descending order) until the position of the correct key is ranked at the highest
position. The corresponding position number is 0, and the rank can be calculated to be 0.
The number N of test data used in this process indicates the minimum number of power
traces for the model to successfully recover the correct key.
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The hyperparameter settings corresponding to each model in all experiments in this
paper are shown in Table 1 below.

Table 1. Corresponding hyperparameter settings.

Model Optimizer Learning_Rate Mini_Batch Epochs

MLP Adam 0.0005 128 400
CNN Adam 0.0005 128 400
RNN Adam 0.0005 128 400
LSTM Adam 0.0005 128 400

5. Experiment and Model Evaluation
5.1. Experiment A: Small Sample Data Experiment

Under the small data set sample, the experiment uses 1500 random key data sets
and randomly divides 1200 training sets and 300 test sets, accounting for 4:1, respectively.
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The training set is used for model learning and training, and the testing set is used to
characterize the generalization ability of the model. To describe the experimental results
more accurately, the results recorded in all experiments in this paper are the average results
with epochs between 350 and 400. Four deep learning models are used to conduct side-
channel analysis experiments on the demo board. The final experimental results of each
model classification are shown in Figures 11–14, which represent the training accuracy,
training loss value, training time, and training rank value of each model when the epochs
are 400 and are analyzed in detail.
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From the experimental performance of each model on the demo board, it can be seen
that in the training of the first 50 epochs, with the increase in the number of iterations,
the RNN and MLP models converge rapidly. The accuracy rose to 0.0373 and 0.0187,
respectively, and the loss dropped to 4.2227 and 4.7532, respectively. During this period, the
training accuracy and loss value curves of the CNN and LSTM models hardly fluctuated.
At the 50th epoch, the accuracy of both on the training set was 0.0027, and the loss values
were 5.6303 and 5.6518, respectively. After the 100th epoch, the training accuracy and loss
values of the CNN and LSTM models did not change significantly. For example, at the
150th epoch, the training accuracies of the RNN, CNN, MLP, and LSTM models reached
0.0907, 0.0480, 0.0427, and 0.0347, respectively, and the model loss values were 3.8305,
4.6636, 4.2096, and 4.2431, respectively. With the increase in the number of iterations, the
training accuracy and loss value curves of each model gradually converge smoothly and
become stable. When the training reaches the 400th epoch, each model achieves the optimal
effect. Between the 350th and 400th epochs, the average training accuracies of the RNN,
CNN, MLP, and LSTM are 0.2471, 0.1438, 0.1399, and 0.0676, respectively, the training loss
values are 2.5843, 3.4043, 3.0573, and 3.6028, the test accuracies are 0.1300, 0.0940, 0.1180,
0.0600, and the test loss values are 3.4500, 3.6542, 3.1467, and 3.8582, respectively. There is
no overfitting phenomenon in each model. On the whole, the RNN model has the highest
training accuracy and the smallest loss value, but the volatility is too large. The accuracy
of the MLP model is comparable to the CNN model, but the MLP model has a slower
convergence speed and the CNN model is more stable. The LSTM model has the least
volatility and is smooth and stable, but the accuracy is too low.

Figure 13 shows the training time of each model when the epoch is 400. The training
time of MLP is the shortest, which is the same as that of the CNN model, saving 34% and
81% compared to the RNN and LSTM models, respectively. It can be seen from Figure 14
that with the increase in the number of power traces, the rank value of each model gradually
decreases to be flat, and the RNN model has the most obvious change. The rank values
of the final MLP, CNN, RNN, and LSTM models are 3, 2, 3, and 4, respectively. The CNN
model has the smallest rank value, and only two traces are needed to recover the correct
key bytes.

The specific parameters and experimental results of each model in Experiment A are
shown in Table 2 below.

Table 2. Specific parameters and experimental results of each model.

Model Train_Acc Train_Loss Test_Acc Test_Loss Time (s) Param# Rank

MLP 0.1399 3.0573 0.1180 3.1467 26.6 250,336 3
CNN 0.1438 3.4043 0.0940 3.6542 26.8 269,484 2
RNN 0.2471 2.5843 0.1300 3.4500 139.3 84,616 3
LSTM 0.0676 3.6082 0.0600 3.8582 40.3 106,996 4
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5.2. Experiment B: Sufficient Sample Data Experiment

With sufficient data set samples, the experiment uses 50,000 random key data sets and
randomly divides 45,000 training sets and 5000 test sets, accounting for 9:1, respectively.
Four deep learning models are used to conduct side-channel analysis experiments on the
encrypted board. The final experimental results of each model classification are shown in
Figures 15–18, which represent the training accuracy, training loss value, training time, and
training rank value of each model when the epoch is 400 and analyzed in detail.
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It can be seen from the experimental performance of each model on the demo board
that in the training of the first 50 epochs, with the increase in the number of iterations,
the four models of CNN, RNN, LSTM, and MLP converge rapidly. At the 50th epoch, the
accuracy of the model on the training set rose to 0.4637, 0.2922, 0.1879, and 0.1772, and the
loss dropped to 0.5292, 0.4116, 0.3071, and 0.2656, respectively. After the 50th epoch, the
CNN model converged at a slow speed. After the 300th epoch, with the increase in the
number of iterations, the training accuracy and loss value curves of each model gradually
converged smoothly and tended to be stable. At 400 epochs, each model achieves the
optimal effect. Between the 350th and 400th epochs, the average training accuracies of the
CNN, LSTM, RNN, and MLP are 0.5745, 0.5666, 0.5128, and 0.4944, respectively, the training
loss values are 1.2589, 1.2700, 1.4618, and 1.4880, the test accuracies are 0.5496, 0.5680, 0.4550,
0.5084, and the test loss values are 1.3214, 1.2813, 1.6926, and 1.4599, respectively. The MLP
and LSTM models show a slight overfitting phenomenon. Overall, the CNN model has the
highest training accuracy and the smallest loss value, and the model has the strongest model
stability. The accuracy of the RNN and MLP models ranks second, and the convergence
speed is also faster, but the training loss value is higher. Although the training loss value of
the LSTM is low, the convergence speed is slow and the stability is not very good.

Figure 17 shows the training time of each model when the epoch is 400. The MLP
has the shortest training time, saving 20%, 38%, and 82%, respectively, compared with the
CNN, LSTM, and RNN models. As can be seen from Figure 18, with the increase in the
number of power traces, the rank value of each model gradually decreases to a flat level,
among which the change of the MLP model is the most obvious. Finally, the rank values of
the MLP, CNN, RNN, and LSTM are all 2.

The specific parameters and experimental results of each model in Experiment B are
shown in Table 3 below.

Table 3. Specific parameters and experimental results of each model.

Model Train_Acc Train_Loss Test_Acc Test_Loss Time (s) Param# Rank

MLP 0.4944 1.4880 0.5084 1.4599 390.6 250,336 2
CNN 0.5745 1.2589 0.5496 1.3214 488.0 269,484 2
RNN 0.5128 1.4618 0.4550 1.6926 2192.0 84,616 2
LSTM 0.5666 1.2700 0.5680 1.2813 628.0 106,996 2

5.3. Experiment C: Experiments with Sample Data of Different Scales

In Experiment C, five data sets of different sizes were used, and each data set was
randomly divided into training and test sets on a 9:1 scale. Four in-depth learning models
are used to perform side-channel analysis experiments on the demo board. The final
experimental results of each model classification are as follows and analyzed in detail.
Figures 19 and 20 show the performance of MLP for different size data and MLP loss values
under different scales of data, respectively.
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For the MLP model, in the training of the first 50 epochs, with the increase in the
number of iterations, the model converges rapidly under the number of 40k and 30k data.
At the 100th epoch, the accuracy of the model under the amount of 40k, 30k, 20k, and
10k data increases to 0.2028, 0.2082, 0.0626, and 0.0585 respectively, and the loss value
decreases to 2.5285, 2.5969, 3.4728 and 3.5789, respectively. After the 100th epoch, the
training accuracy of the MLP model changes significantly under each scale data. With the
increase in iteration time, the training accuracy and loss value curve of the MLP model
under different scale data gradually converge smoothly and tend to be stable. Between
350 and 400 epochs, the average training accuracy of the MLP under 5k, 10k, 20k, 30k, and
40k data volume are 0.1358, 0.2606, 0.2884, 0.4164, and 0.4023, respectively, the training loss
values are 3.0848, 2.2648, 2.1439, 1.7370, and 1.7705, respectively, the test accuracy rates are
0.1480, 0.2470, 0.3055, 0.4350, and 0.4145, respectively, and the test loss values are 2.9956,
2.3530, 2.1393, 1.6421, and 1.7597, respectively. There is no fitting phenomenon in MLP
under 10k data volume. The rank value under this data volume is 3, and the rank value
under other data volumes is 2. For the MLP model, in the training of the first 50 epochs,
with the increase in the number of iterations, the model converges quickly under the data
volume of 40k and 30k, and at the 100th epochs, the model is under the data volume of 40k,
30k, 20k, and 10k. The accuracies rose to 0.2028, 0.2082, 0.0626, and 0.0585, respectively, and
the loss values dropped to 2.5285, 2.5969, 3.4728, and 3.5789, respectively. After the 100th
epoch, the training accuracy of the MLP model under various scales of data has changed
significantly. With the increase in the number of iterations, the training accuracy and loss
curve of the MLP model under different scales of data gradually converge smoothly and
tend to be stable. Between the 350th and 400th epochs, the average training accuracy of
the MLP under 5k, 10k, 20k, 30k, and 40k data volumes is 0.1358, 0.2606, 0.2884, 0.4164,
0.4023, the training loss values are 3.0848, 2.2648, 2.1439, 1.7370, 1.7705, the test accuracy
rates are 0.1480, 0.2470, 0.3055, 0.4350, 0.4145, respectively, the test loss values are 2.9956,
2.3530, 2.1393, 1.6421, 1.7597, and there is no overfitting phenomenon in MLP only under
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10k data volume. The rank value of the data volume is 3, and the rank value of the rest of
the data volume is 2.

The specific parameters and experimental results of the MLP model are shown in
Table 4 below.

Table 4. Specific parameters and experimental results of the MLP model.

Data Size Train_Acc Train_Loss Test_Acc Test_Loss Time (s) Param# Rank

5k 0.1358 3.0848 0.1480 2.9956 40.1 250,336 2
10k 0.2606 2.2648 0.2470 2.3530 81.7 250,336 3
20k 0.2884 2.1439 0.3055 2.1393 156.7 250,336 2
30k 0.4164 1.7370 0.4350 1.6421 236.6 250,336 2
40k 0.4023 1.7705 0.4145 1.7597 312.1 250,336 2

Figures 21 and 22 show the performance of CNN for different size data and CNN loss
values under different scales of data, respectively. For the CNN model, during the training
of the first 100 epochs, the model fluctuated significantly with the increase in the number
of iterations. At the 100th epoch, the accuracy of the model under 40k, 30k, 20k, 10k, and
5k data increased to 0.3197, 0.3197, 0.2033, 0.1599, and 0.1125, respectively, and the loss
value decreased to 2.3388, 2.3388, 2.8812, 3.2683, and 3.6635, respectively. With the increase
in the number of iterations, after the 300th epoch, the training accuracy and loss value curve
of the MLP model under different scale data gradually converge smoothly and tend to be
stable. Between 350 and 400 epochs, the average training accuracy of the MLP under 5k,
10k, 20k, 30k, and 40k data volume is 0.3045, 0.3826, 0.5258, 0.5352, and 0.5441, respectively,
the training loss values are 2.4804, 2.1234, 1.4856, 1.4234, and 1.3806, respectively, and
the test accuracy rates are 0.2180, 0.3450, 0.4820, 0.5133, and 0.5265, respectively. The test
loss values are 2.8696, 2.2371, 1.6300, 1.4520, and 1.4232, respectively. There is no fitting
phenomenon of MLP under each data volume, and the rank value is 2.
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The specific parameters and experimental results of the CNN model are shown in
Table 5 below.

Table 5. Specific parameters and experimental results of the CNN model.

Data Size Train_Acc Train_Loss Test_Acc Test_Loss Time (s) Param# Rank

5k 0.3045 2.4804 0.2180 2.8696 45.9 269,484 2
10k 0.3826 2.1234 0.3450 2.2371 84.0 269,484 2
20k 0.5258 1.4856 0.4820 1.6300 163.8 269,484 2
30k 0.5352 1.4234 0.5133 1.4520 247.8 269,484 2
40k 0.5441 1.3806 0.5265 1.4232 328.5 269,484 2

Figures 23 and 24 show the performance of RNN for different size data and RNN loss
values under different scales of data, respectively. For the RNN model, during the training
of the first 100 epochs, the model converges rapidly with the increase in the number of
iterations. At the 100th epoch, the accuracy of the model under the data of 40k, 30k, 20k,
10k, and 5k increases to 0.3067, 0.3229, 0.2267, 0.1393, and 0.1245, respectively, and the
loss value decreases to 2.3427, 2.1726, 2.5977, 3.1857, and 3.3066, respectively. With the
increase in iteration time, the training accuracy and loss value curve of the MLP model
under different scale data gradually converge smoothly and tend to be stable. Between
350 and 400 epochs, the average training accuracy of the MLP under 5k, 10k, 20k, 30k, and
40k data volume is 0.2025, 02809, 0.4281, 0.4818, and 0.5237, respectively, the training loss
values are 2.7272, 2.3556, 1.7523, 1.5794, and 1.4271, respectively, and the test accuracy rates
are 0.1100, 0.2350, 0.4105, 0.4390, and 0.4265, respectively. The test loss values are 3.5471,
2.7587, 1.8600, 1.7173, and 1.8233, respectively. There is no fitting phenomenon of RNN
under each data volume. The rank value under 5k data volume is 3, and the rank value
under other data volumes is 2.
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The specific parameters and experimental results of the RNN model are shown in
Table 6 below.

Table 6. Specific parameters and experimental results of the RNN model.

Data Size Train_Acc Train_Loss Test_Acc Test_Loss Time (s) Param# Rank

5k 0.2025 2.7272 0.1100 3.5471 238.0 84,616 3
10k 0.2809 2.3556 0.2350 2.7587 464.7 84,616 2
20k 0.4281 1.7523 0.4105 1.8600 927.3 84,616 2
30k 0.4818 1.5794 0.4390 1.7173 1410.2 84,616 2
40k 0.5237 1.4271 0.4265 1.8233 1895.4 84,616 2

Figures 25 and 26 show the performance of LSTM for different size data and LSTM loss
values under different scales of data, respectively. For the LSTM model, during the training
of the first 100 epochs, with the number of iterations, the model has no obvious fluctuation
under the amount of 5k data. At the 100th epoch, the accuracy of the model under the
number of 40k, 30k, 20k, 10k, and 5k data increased to 0.1922, 0.1825, 0.1448, 0.0837, and
0.0252, respectively, and the loss value decreased to 2.6289, 2.6858, 2.9755, 3.4882, and
4.1442, respectively. With the increase in iteration time, the training accuracy and loss value
curve of the MLP model under different scale data gradually converge smoothly and tend
to be stable. Between 350 and 400 epochs, the average training accuracy of MLP under 5k,
10k, 20k, 30k, and 40k data volume is 0.1932, 0.2820, 0.3826, 0.3954, and 0.4671, respectively,
the training loss values are 2.6546, 2.2234, 1.8559, 1.7949, and 1.5768, respectively, and
the test accuracy rates are 0.1780, 0.2770, 0.3695, 0.3863, and 0.3718, respectively. The test
loss values are 2.8335, 2.2410, 1.9201, 1.8032, and 2.0258, respectively. There is no fitting
phenomenon of the LSTM under each data volume. The rank value under 5k and 20k data
volumes are 3, and the rank value under other data volumes is 2.
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The specific parameters and experimental results of the LSTM model are shown in
Table 7 below.

Table 7. Specific parameters and experimental results of the LSTM model.

Data Size Train_Acc Train_Loss Test_Acc Test_Loss Time (s) Param# Rank

5k 0.1932 2.6546 0.1780 2.8335 68.0 106,996 3
10k 0.2820 2.2234 0.2770 2.2410 128.0 106,996 2
20k 0.3826 1.8559 0.3695 1.9201 255.0 106,996 3
30k 0.3954 1.7949 0.3863 1.8032 386.0 106,996 2
40k 0.4671 1.5768 0.3718 2.0258 511.2 106,996 2

Overall, the model accuracy does not necessarily have a linear relationship with the
amount of training data. Except for the MLP model, the other three models have no
overfitting phenomenon. In terms of training time and accuracy, under different sample
data, the CNN model has the highest training accuracy, small training loss value, the
shortest time consumption, and the lowest model construction cost, but its parameter scale
is the largest, and its structure is complex. The RNN model has the smallest parameter scale
and relatively high model accuracy, but the training takes the longest time and requires a
lot of time and resources. With the increase in sample data, the accuracy of the LSTM model
increases the fastest, which is more suitable for data processing in the case of large-scale
samples. However, at this time, the stability of the model is slightly poor, the volatility is
large, and the convergence speed is slow.

6. Conclusions

Since deep learning can learn data directly from raw power trajectories, there is no
need to rely on artificially designed features or assumptions. Further, the side-channel
analysis based on deep learning can directly predict the target intermediate value through
the training data set, further simplifying the attack design and reducing the requirements
for professional knowledge in specific fields. Based on the above two points, deep learning
technology can study the SCA.

By combining the ChipWhisperer experimental platform with the CW308T-STM demo
board, this paper extracts the power trace in the encryption process of the unmasked AES-
128 cryptographic algorithm and takes it as the experimental data set. Using the established
MLP, CNN, RNN, and LSTM models, this paper trains and tests from small data set samples
to sufficient data sets and data samples of different scales, and the quantitative experiments
of each deep learning model in SCA are deeply studied to evaluate the effectiveness of
each deep learning model for subsequent improvement. The experimental results show
that the CNN model has better comprehensive performance among all models under the
existing data set. From the visualization results of model accuracy and loss, it can be fully
demonstrated that the accuracy of its classifier is very high, the loss is very low, and the
stability of the model is better. During the whole training process, the experimental curve
of the CNN model is smooth, and there is no violent jitter, which means it has stronger
robustness. The training time is also short, and the rank value of the side-channel attack is
very low. Only two tracks are needed to recover the correct key byte information.

However, compared to the ChipWhisperer experimental platform, the actual test
environment has low signal-to-noise ratio data sets or other more complex interference situ-
ations. Therefore, to improve the security protection capability of cryptographic equipment,
it is necessary to further study the data sets with less obvious information characteristics,
and to thus analyze and evaluate the comprehensive performance of each deep learning
model in SCA. At the same time, given the complexity of the attack process and implemen-
tation details in the SCA experiment, the research direction of the future should investigate
the possibility of using statistical testing, computing information entropy, and other formal
methods to automatically analyze and evaluate the strength of the encryption system
against a side-channel attack.
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