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Abstract: Metal–organic frameworks are recognized as a new generation of emerging porous materi-
als in a variety of applications including adsorption and photocatalysis. The present study presents
the development of ternary composite materials made through the coupling of UiO-66 with paly-
gorskite (Pal) clay mineral and titanium dioxide (TiO2) applied as adsorbent and photocatalyst for the
removal of methyl orange (MO) from aqueous solutions as a typical anionic dye. The prepared materi-
als were characterized using XRD, ATR, DR UV/Vis, and TGA analysis. Detailed kinetic experiments
revealed that the presence of the clay at low amounts in the composite outperformed the adsorption
efficiency of pure UiO-66, increasing MO adsorption by ca. 8%. In addition, coupling Pal/UiO-66
with TiO2 for the production of ternary composites provided photocatalytic properties that resulted
in complete removal of MO. This was not observed in the pure UiO-66, the Pal/UiO-66 composite,
or the pure TiO2 material. This study presents the first example of clay mineral/MOF/TiO2 com-
posites with improved performance in removing dyes from aqueous solutions and highlights the
importance of coupling MOFs with low-cost clay minerals and photocatalysts for the development of
multifunctional advanced composites.

Keywords: metal–organic frameworks; UiO-66; palygorskite; anatase; TiO2; methyl orange; dye
adsorption; dye degradation; photocatalysis

1. Introduction

The decrease in environmental quality made clear the need to fill the void between
development and sustainability. High amounts of pollutants end up in the aquatic environ-
ment [1]. Among the different xenobiotics that enter into the environment, synthetic dyes
are a common class of organic pollutants with high concentrations in wastewater since they
are used in many different industries (paper, printing, textiles, food, and pharmaceutical
industry) [2–5]. Different technologies have been suggested for dye removal from effluents,
among which adsorption [6–9] and photocatalysis [10–12] are considered suitable mostly
due to the environmentally friendly character of the process. Adsorption offers the benefit
of simplicity, high efficiency, and cost-effectiveness. On the other hand, photocatalysis is
highly favorable when solid materials are applied as photocatalysts and when solar light is
used for the decomposition of organic pollutants.

In both processes, efficiency is driven by the properties of the material used. Regarding
adsorption, many different types of materials have been developed and applied in dye
removal from the aquatic phase [13–15]. Metal–organic frameworks (MOFs) have been
effectively applied as solid absorbing media including dye removal [2,16–21]. MOFs are
highly porous synthetic materials that offer the benefit of chemical, textural, and compo-
sitional tunability [2]. In addition, they have also been applied as photocatalysts for the
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degradation of organic dyes [11,22] and have been coupled efficiently with traditional
photocatalysts to improve performance [16,17,23,24] or the development of multifunctional
composites [17,25]. Clay minerals have been also extensively studied as adsorbents for
dyes removal [19,26,27]. They are low-cost, nontoxic materials with significant cation
exchange capacity. However, their negative charge in neutral conditions limits their appli-
cation as adsorbents of anionic chemical species [28,29]; therefore, chemical modification is
required [30,31].

TiO2 is the most used photocatalyst owing to its inherent properties such as high
photocatalytic activity and nontoxicity [32–34]. Among the different polymorphs of TiO2,
anatase is preferred mostly due to the better charge handling properties [33]. Numerous
studies have applied TiO2-based materials for the degradation of dyes [35]. Formation of
composites through the coupling of TiO2 with MOF structures has also been exploited in
photocatalytic reactions [11,16,17,22,24,25,36]. Clay mineral/TiO2 composites have also
proven to be more active than the individual counter parts in a variety of photocatalytic
reactions [37–39]. Since adsorption is a prerequisite for photocatalytic degradation reactions,
adsorption of dyes on TiO2 [40,41] or MOF/TiO2 composites [42] has also been investigated.
As expected, pure TiO2 materials present much lower adsorption capacity than MOF
structures. Recently, Wu et al. showed that coupling MIL-101 (Cr) with TiO2 increased
the adsorption performance against methyl orange (MO) (Scheme 1) [42]. In addition, the
adsorption of cationic dyes onto UiO-66/TiO2 composites was not affected by the presence
of TiO2, while the composites presented superior photocatalytic activity [25]. Clay/MOF
composites have also been developed and studied as adsorbents. However, the effect of
the presence of both clay minerals and TiO2 has never been studied.
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Herein, novel ternary composites bearing UiO-66, palygorskite, and TiO2 were de-
veloped using wet chemical processes. The materials were characterized and tested as
adsorbents and photocatalysts for the removal of MO from aqueous solutions. The presence
of palygorskite in the composite increased the adsorption efficiency while TiO2 provided
photocatalytic properties able to decompose MO. To the best of our knowledge, such
composites made of these particular phases have never been reported before.

2. Materials and Methods

All chemicals were used as received without further purification. Palygorskite (Pal,
from Ventzia continental basin, Western Macedonia, Greece) was obtained as follows:
particles <2 µm were collected by gravity sedimentation, and the clay fraction was separated
using centrifugation methods [38,39]. Only the clay fraction of the sample was used for the
preparation of the composites in order to avoid other mineral impurities.

2.1. Synthesis of UiO-66

Synthesis of UiO-66 (U) was based on a previous reported process [17,43]. Briefly,
1.25 g of zirconium (IV) chloride (ZrCl4, 99.5%, Aldrich, Germany) was dissolved in 50 mL
of N,N-dimethyl formamide (DMF, 99.9%, Aldrich) followed by the addition of 10 mL of
acetic acid, forming solution A. On the other hand, 1.23 g of terephthalic acid (Aldrich) was
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mixed in 100 mL of DMF, forming solution B. The two solutions were mixed and heated
under stirring to 150 ◦C for 24 h in an oil bath. The material formed was collected by
centrifugation and washed three times with ethanol and with acetone. Solvent exchange
with acetone was performed over a period of 4 days. The solvent was changed every
second day. Finally, the material was dried at 100 ◦C over night and stored in a desiccator.

2.2. Synthesis of TiO2

Anatase TiO2 (T) was synthesized using the microemulsion process [44]. Titanium(IV)
isopropoxide (Aldrich, Germany) was added to an inverse emulsion of 50 mL of water and
n-heptane (85/10 v/v vs. H2O). The water/Ti molar ratio was equal to 100. Triton X-100
was used as a surfactant in 1-hexanol (105/100 v/v vs. surfactant). The solution was stirred
for 24 h at room temperature. The material was collected and washed thoroughly with
methanol by centrifugation and dried at 110 ◦C overnight. Anatase TiO2 was obtained by
calcination for 2 h at static air and 400 ◦C using a ramp of 1 ◦C·min−1.

2.3. Synthesis of Binary Palygorskite/UiO-66 Composite

For the development of the palygorskite/UiO-66 composite (PU), a similar synthesis
process was used with a slide modification. Firstly, 0.1 g of palygorskite was added to the
ZrCl4 solution, and the amounts of ZrCl4 and terephthalic acid were adjusted, keeping the
same ratio, such that the final composite contained a theoretical nominal amount of 10%
by weight of palygorskite. The same washing and activation process was used as in the
U sample.

2.4. Synthesis of Palygorskite/UiO-66/TiO2 Composite

The Pal/UiO-66/TiO2 ternary composite (PUT) was developed using a facile wet
impregnation method. Preformed PU and TiO2 were mixed at a mass ratio equal to 6/4 in
100 mL of double-distilled water. The mixture was first sonicated for 30 min and then stirred
overnight. Mixing was followed by removing the solvent using rotary evaporation, drying
overnight at 100 ◦C, and a thermal treatment step at 200 ◦C for 4 h (ramp 1 ◦C·min−1).

2.5. Materials Characterization

X-ray diffraction (XRD) measurements were performed using a Bruker D8-Advance
diffractometer equipped with a Lynx Eye detector operating at 40 kV and 40 mA, using
Kα radiation of Cu at 1.5418◦. A Thermo Fisher Nicolet iS10 spectrometer was used to
obtain the attenuated total reflectance (ATR) IR spectrum in the 400–4000 cm−1 range.
Thermogravimetric analysis (TGA) was performed using a TA Instrument Q5000IR. Each
sample was heated under air flow (25 mL·min−1) up to 650 ◦C with a dynamic ramping rate
depending on the weight loss. Diffuse reflectance UV/Vis absorption spectra were recorded
in the range of 200–800 nm using a PerkinElmer Lambda 950 Scan spectrophotometer
equipped with integrating sphere. For this analysis, BaSO4 was used as the reference. An
X-band Bruker ER200D electron paramagnetic resonance (EPR) spectrometer operating
at the X-band frequencies was used to perform spin trap experiments. The 5,5-dimethyl-
1-pyrroline N-oxide (DMPO) was used as spit trap for the detection of hydroxyl radicals
(OH•) at room temperature. A suspension of 1 mg·mL−1 of the catalyst in water was
sonicated for 10 min. Then, 100 µL of the above suspension was mixed with 100 µL of
0.005 M DMPO directly in the EPR flat cell. A quartz EPR flat cell was used.

2.6. Adsorption Experiments

The material (20 mg) was placed in an Erlenmeyer flask containing 50 mL of 90 mg·L−1

MO aqueous solution. The pH of the suspension was adjusted to 5. Adsorption experiments
were performed in a temperature-controlled incubator. The temperature was maintained at
25 ◦C, and the adsorption process was performed under dark conditions throughout the
whole experiment. For the preparation of all solutions, Milli-Q water was used. Adsorption
of MO was quantified through the following process; aliquots of 1.5 mL were periodically
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taken, filtered using a 0.45 µm PTFE Millipore disc, and measured using a Varian Cary 100
Scan spectrophotometer. Quantification of MO was based on comparison with standards.
The adsorption capacity evaluation was performed using the following equation:

qe =
(C0 − Ce)×V

m
, (1)

where qe (mg·g−1) is the adsorbed amount at equilibrium, C0 and Ce (mg·L−1) are the
initial dye concentrations and at equilibrium, respectively, V is the volume of the mixture
(mL), and m is the mass of the adsorbent (mg). The removal efficiency was calculated using
the following equation:

RE =
(C0 − Ce)×100

C0
. (2)

2.7. Photocatalytic Reactions

Photocatalytic tests were carried out after the adsorption process reached equilibrium.
In brief, after incubating the material with the MO solution under dark conditions for 1.5 h,
the mixture was irradiated using six UV lamps (Philips 24W/10/4P lamps, λmax = 365 nm)
symmetrically positioned in the periphery of the photoreactor. The temperature of the
mixture was maintained at 25 ◦C with water circulation by means of a cryostat. Reactions
were performed at ambient pressure. Samples were periodically taken and filtered using a
0.45 µm PTFE Millipore disc. The UV/Vis spectra were then collected using a Varian Cary
100 Scan spectrophotometer.

2.8. Recycling of the Materials

Recycling was performed by redispersing the materials in water at pH 10 to accelerate
the desorption process followed by sonication for 10 min and washing thoroughly via
centrifugation until pH was neutral. Then, the material was washed ethanol three times
and finally dried at 100 ◦C under vacuum for 5 h.

3. Results and Discussion
3.1. Materials Characterization

Structural information of the prepared materials was first obtained by means of X-ray
diffraction (XRD) analysis. Figure 1 presents the diffraction patters of all materials. A
typical diffraction pattern for the pure UiO-66 was observed [25,45]. The PU composite
presented the same diffraction pattern as the U sample. This observation verified that the
presence of Pal did not affect the synthesis of UiO-66. No diffraction peak attributed to
Pal was detected in the PU sample. Two reasons are probably responsible for this. Firstly,
the amount of Pal in the composite was small. Secondly, there was an intense diffraction
peak from UiO-66 in the ca. 8.5◦ region that overlapped with the main diffraction peak of
Pal. TiO2 presented the typical diffraction pattern of anatase. The PUT composite had a
diffraction pattern that was a combination of the pure UiO-66 and TiO2 sample, without
any obvious differences compared with the patterns of their pure counterparts.

The materials were further characterized using attenuated total reflection Fourier-
transform infrared (ATR-FTIR) spectroscopy, and the data are given in Figure 2a. The
characteristic peaks of UiO-66 were observed in the materials containing this specific MOF
(U, PU, and PUT) [46–48]. The symmetric and asymmetric stretch vibrations in the COO−

group of the organic linker were observed at 1392 cm−1 and 1582 cm−1, while the vibra-
tional mode of the C=C bond in the benzene ring was centered at 1510 cm−1. Vibrational
modes of the C–H, C=C, O–H, and OCO bonds were detected in the region 810–710 cm−1.
The broad peak at the beginning of the spectra (400–800 cm−1) was attributed to the
presence of TiO2 [44,49]. Regarding the Pal sample, an intense peak was observed in the
region 97–1060 cm−1. This was not observed in the pure UiO-66 sample but was present in
all composites bearing Pal (i.e., PU and PUT). This peak was attributed to the Si–O–Mg
asymmetric stretching vibration [39,46,50] and verified the presence of Pal in the composite
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materials. It should be noted that the peak centered at 1582 cm−1 in the UiO-66 sample
was shifted to higher wavenumbers in the composite samples bearing Pal (Figure 2b).
This is probably linked with the in-situ development of UiO-66 in the presence of Pal and
suggests an interaction of the clay mineral with the carboxylate groups of the organic linker
in the MOF structure. Overall, ATR verified the presence of UiO-66, Pal, and TiO2 in the
composite materials.
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In order to get information regarding the amount of the different parts in the com-
posites, the prepared materials were subjected to thermogravimetric (TGA) analysis. The
TGA profiles of all materials are illustrated in Figure 3. A smooth mass decrease was
observed in the pure TiO2 that ended at ca. 7% total mass loss at 550 ◦C. The mass loss was
greater in the Pal sample (ca. 18% at 550 ◦C). In this temperature range, the mass loss in
the Pal sample was attributed to both superficially adsorbed and loosely bound zeolitic
water, as well as structural OH2 [51,52]. In the materials containing UiO-66, the small
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weight loss in the temperature range 50–400 ◦C was due to the loss of guest molecules
(DMF). The fast drop in mass loss at temperatures higher than 450 ◦C was attributed to
the decomposition of the organic framework of UiO-66. This second drop in mass was
observed at lower temperatures in the composite bearing TiO2. Taking into account the
mass loss in the composites at temperatures higher than 400 ◦C (indicated by ∆mass in
Figure 3 for sample U) and the corresponding weight loss in the pure Pal and TiO2, the Pal
content was calculated equal to 7 wt.% in the PU and PUT samples, and the TiO2 content
was calculated equal to 39 wt.% in the PUT composite.
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Diffuse reflectance UV/Vis spectroscopy was applied to study the electronic properties
related with light absorption. Figure 4a presents the UV/Vis absorption spectra of the
materials. The corresponding Tauc plots [38,39,53] used to estimate the bandgap energies
(Eg) are given in Figure 4b. Materials containing TiO2 were treated as direct, while the
remaining materials were treated as indirect semiconductors [17]. Pure UiO-66 absorbed
light at wavelengths lower than 310 nm in accordance with the literature [24]. The same
absorption onset was observed for the PU sample. This corresponded to Eg values of ca.
4 eV. The absorption edge of TiO2 was observed at ca. 390 nm, while Pal absorbed light in
the whole visible region [38,39]. Light absorption of the composites was a combination of
the absorption of the individual counter parts. The absorption onset of the PUT material
was observed at ca. 390 nm, as for the pure TiO2. This corresponded to an Eg value of
3.18 eV, typical for pure anatase TiO2 [16]. A broad absorption was observed in visible
region (400–800 nm) for both PU and PUT samples. This was strictly attributed to the
presence of Pal. Overall, it was verified through DR UV/Vis spectroscopy that all parts in
the composite contributed to the light absorption properties of the material.
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3.2. Dye Adsorption Evaluation

The effect of contact time on MO adsorption over the prepared materials is given in
Figure 5a. Adsorption equilibrium was achieved within less than 5 min for all materials
containing UiO-66. On the contrary, equilibrium was reached at longer reaction times
for pure Pal and TiO2. Significant differences were also detected in the experimentally
observed adsorption capacity at equilibrium (qe,exp). The qe,exp together with the removal
efficiency (RE %) are given in Table 1. Both TiO2 and Pal presented low qe and removal
efficiency. On the contrary, the pure U and PU composite presented high adsorption
capacity, with the PU sample being the most efficient (qe = 213.3 mg·g−1). This suggests
that the presence of Pal at low amounts in the composite was beneficial for MO adsorption.
An increase in the adsorption capacity of dyes was previously shown in oxide/MOFs or
clay mineral/MOF composites including UiO-66 [25,42,54,55], as well as in other MOF-
based composites [20,21]. In the specific case of Pal/UiO-66 composites, formation of
microporosity at the interface of the two parts was shown to increase the specific surface
area that may affect adsorption efficiency [56]. A decrease in the qe and the removal
efficiency was observed in the composite bearing TiO2 (i.e., PUT). This was probably
related to the relatively high amount of TiO2 in the PUT composite that presented low
qe. However, the removal efficiency in these composites was not a linear combination
of the individual counter parts considering their content in the composites. Taking into
account the fast kinetic profile of MO adsorption, the high qe, and the removal efficiency,
the adsorption behavior of the PUT composite was dominated by UiO-66. Lastly, in order
to verify the stability of the composites, recycling adsorption experiments using the most
efficient composite were performed (Figure S1). The stability was evidenced by the small
loss of adsorption efficiency after three consecutive cycles [56].

Table 1. Experimentally obtained and calculated values for qe, removal efficiency (RE %), and
correlation coefficient (R2) for the pseudo-second-order kinetic model used to simulate the adsorption
process and photocatalytic rate constant (k).

Sample qe,exp
(mg·g−1) RE (%) 1 qe,cal

(mg·g−1)
k2

(g·mg−1·min−1) 2 R2 k
(min−1) 3

U 195.7 87.1 196.1 0.012 0.999
PU 213.3 94.9 212.8 0.074 0.999

PUT 174.7 77.5 175.4 0.108 0.999 0.0153
TiO2 41.3 18.3 0.0043
Pal 20.9 9.3

1 Removal efficiency; 2 k2: rate constant of the second-order adsorption kinetics; 3 k: first-order rate constant of
the photocatalytic removal of MO.
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composites (PU and PUT) (a). Pseudo-second-order rate law for MO adsorption on materials
containing UiO-66 (b). Experimental conditions: 90 mg·L−1 initial MO concentration, 0.4 g·L−1 of
the adsorbent, pH = 5, volume = 50 mL, and T = 25 ◦C.

The pseudo-second-order kinetic model [54,55,57–59] was used to fit the experimental
data as represented by Equation (3).

t
qt

=
1

k2q2
e
+

t
qe

, (3)

where qe is the amount of MO adsorbed at equilibrium, qt the MO adsorbed at time t, and
k2 is the rate constant (g·mg−1·min−1) of the second-order adsorption kinetics. The fitted
adsorption kinetic curves for the materials containing UiO-66 as a function of time are
given in Figure 5b. The correlation coefficient R2 together with the calculated adsorption
at equilibrium (qe,cal) is given in Table 1. High correlation coefficients were obtained for
all materials. In addition, qe,cal matched the experimental observation. These findings
indicate that MO adsorption onto the pure U sample and all composites containing UiO-66
followed the pseudo-second-order kinetic model [54,55,57,58]. Overall, the adsorption
experiments showed that Pal induced an increase in MO adsorption, while the presence of
ca. 40 wt.% TiO2 did not significantly affect the adsorption given its relatively high content
in the composite and the low adsorption capacity.

3.3. Photocatalytic Activity Evaluation

The materials were further tested as photocatalysts for the degradation of MO. Be-
fore starting the catalytic process, the mixture containing 90 mg·L−1 MO and 20 mg of
the material was stirred in dark conditions for 1.5 h, as indicated by the adsorption ex-
periments. The shaded area in Figure 6a corresponds to the adsorption process. After
adsorption/desorption equilibrium was achieved, the sample was irradiated with UV
light. The kinetics of MO photocatalytic degradation was monitored for 2 h. The data are
presented in Figure 6a. No obvious degrease in MO concentration was detected by the Pal,
pure UiO-66, and PU composite. Clay minerals do not possess any photocatalytic activity.
On the contrary, UiO-66 is photoactive [37,53]. However, on the basis of the U and PU light
absorption properties (Figure 4), light irradiation at wavelengths lower than 310 nm was
required for their activation. Therefore, it is not surprising that U and PU were not active
under the conditions of our experiment. MO concentration was reduced when materials
containing TiO2 were used. This implies that PUT is photoactive and able to degrade MO.
UiO-66/TiO2 composites were previously proven to be active in photocatalytic degradation
of dyes [25,60]. Pure TiO2 removed approximately 50% of the initial MO. Comparing the
materials presenting photoactivity, complete decolorization was achieved only in the PUT
composite within less than 2 h irradiation. The composite bearing UiO-66 and TiO2 (UT)
also presented photoactivity, but the removal efficiency was lower than that of the PUT
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composite. The high removal efficiency of PUT against MO was linked to both functions
of the PUT composite (i.e., adsorbent and photocatalyst). Most of the MO (77.5%) was
adsorbed, while the remainder was decomposed via photocatalysis.
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first-order kinetic plots (b). Experimental conditions: 90 mg·L−1 initial MO concentration, 0.4 g·L−1

of the material, pH = 5, volume = 50 mL, T = 25 ◦C, and adsorption period = 1.5 h.

In order to further evaluate the photocatalytic efficiency of the prepared materials, the
photocatalytic degradation rates were calculated. The data were well fitted with a fist-order
kinetic model. Rate constants (k) were estimated by fitting the experimental data with the
following equation:

ln
C0

C
= kt, (4)

where k is the apparent first-order rate constant (min−1), t is the irradiation time (min), C0 is
the initial concentration (i.e., after the adsorption/desorption process reached equilibrium),
and C is the concentration of MO at reaction time t. The data are presented in Figure 6b,
and the photocatalytic degradation rates (k) are summarized in Table 1. The PUT composite
presented higher degradation rates than the pristine TiO2. This has previously been seen
in UiO-66/TiO2 [24,60] composites, as well as in clay/TiO2 or TiO2-based composites
containing other natural porous minerals [37–39,61].

The improved photoactivity in TiO2 composites has been linked with synergistic effects
related to the increase in charge availability [11,25,45], as well as the deposition of TiO2
nanoparticles on the support, which decreases agglomeration phenomena [37,39]. Both
factors are important for photocatalytic reactions in the liquid phase [12]. An additional
contributor to the improved photoactivity was the increase in the contact between TiO2 and
the substrate [17,53]. This could be achieved through the increase in MO concentration close
to TiO2 due to the high adsorption efficiency of UiO-66. The large size of MO molecular
structure and the fast adsorption kinetics suggest that MO was most likely adsorbed onto
the external surface of UiO-66 where TiO2 particles were present. This potentially increased
the contact between TiO2 and MO, improving photoactivity.

To further verify the photocatalytic activity of the composites, in situ spin-trap electron
paramagnetic resonance (EPR) spectroscopy was performed using DMPO to study the
reactive oxygen species formed under irradiation. Figure 7 presents the EPR spectrum
obtained at room temperature after 15 min irradiation of a PUT aqueous suspension
under light irradiation conditions identical to the photocatalytic experiments. An EPR
signal with a 1:2:2:1 intensity ratio corresponding to the DMPO–OH• spin adduct was
observed. These data clearly indicate that the PUT composite was able to produce OH•

under irradiation. A similar analysis was performed for the PU composite. However, no
DMPO–OH• was detected (Figure 7). This suggests that TiO2 was required in the composite
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to produce reactive oxygen species. These data may explain the inability of PU and pure U
to decompose MO under the conditions of our experiment.
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Figure 7. Room temperature DMPO spin-trapping EPR spectra of the PUT and PU composites in
aqueous suspensions under 15 min of light irradiation.

4. Conclusions

A facile two-step synthesis process was applied for the synthesis of clay mineral/MOF/
TiO2 ternary composites as adsorbents and photocatalysts for the removal of MO from
aqueous solutions. Pure Pal and TiO2 presented low adsorption capacities. Low amounts
of Pal in the composite increased adsorption by ca. 8%. The presence of TiO2 at 40 wt.% re-
duced the adsorption efficiency but not significantly. In addition, it induced photocatalytic
properties in the composite. Materials made of Pal, UiO-66, and TiO2 completely removed
MO, while pure TiO2 removed ca. 50% of the initial dye concentration. This study high-
lights the importance of composites for the development of efficient materials presenting
multifunctionality and presents the first example of coupling UiO-66 with low-cost clay
minerals and TiO2 for the development of dual-function advanced materials.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/app12168223/s1: Figure S1. Percentage removal efficiency of
MO by the PU composite over three consecutive cycles.
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