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Abstract: The wave passage effect is a measure of the wave passage delay due to the apparent velocity
of waves, which is one of spatially varying properties of multivariate random processes. The phase
of coherence function reflects the wave passage effect of wind fields. In the wind field, simulation by
the spectral representation method, the classical phase formula, is not rigorous. This may affect the
accuracy of simulation results and even cause incorrect simulations. In this study, the influences of the
phase on stationary and nonstationary wind field simulations are researched and discussed in detail.
Two schemes containing the classical phase formula and the separated phase scheme are compared in
four types of wind field simulation. The qualitative analysis based on theoretical correlation function
formula is first made to study the influence of the phase. Then, four numerical examples are utilized
to quantitatively study the magnitude of the influence on the sample time history and correlation
function of the simulated wind field. Results show that the classical phase formula will result in
considerable simulation error for all four types of wind fields because it cannot completely represent
the phase angle of a complex number.
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1. Introduction

With the rapid development of computer technology, Monte Carlo simulation is widely
used in the field of engineering to solve complex problems, such as nonlinearity, system
randomness, and stochastic stability [1,2]. An important part of the Monte Carlo simulation
is to simulate the samples of random excitations, such as wind, ground motion, and
wave [3]. Wind field and ground motion are usually modeled as random processes, while
wave field is usually modeled as random field or random wave. Depending on the situation,
the above simulations can be classified as one-dimensional or multidimensional [1,4], single
or multi-point [5,6], ergodic or non-ergodic [6,7], stationary or nonstationary [8–11], or
Gaussian or non-Gaussian [12–16]. In this study, the wind field is taken as an example to
research the simulation of one-dimensional, multi-point, and Gaussian random processes.

The one-dimensional, multi-point, and Gaussian random wind field can be classified as
four types: non-ergodic stationary wind field, ergodic stationary wind field, time-invariant
coherent nonstationary wind field, and time-varying coherent nonstationary wind field,
based on the probabilistic characteristics. The task of wind field simulation is to generate
sample functions having prescribed probabilistic characteristics. In wind field simulation,
the spectral representation method is more widely used than other approaches, such as
the time series method and time-frequency analysis method, because of its accuracy and
simplicity. In recent decades, researchers have done a lot of work to optimize and improve
the spectral representation method in wind field simulation.

In the simulation of the non-ergodic stationary wind field, Yang et al. [7] proposed
a closed-form solution of Cholesky decomposition to simplify the spectral matrix decom-
position. Chen et al. [17] introduced an improved fast Fourier transform (FFT) method to
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simulate the short-term wind velocity field. In addition, some methods based on stochastic
wave were developed [18,19]. In terms of the ergodic stationary wind field, Cao et al. [20]
introduced the closed-form solution of Cholesky decomposition. Togbenou et al. [21] pro-
posed an efficient simulation method for vertically distributed wind velocity field, based
on approximate piecewise wind spectrum. Zhao and Huang [22] proposed an enhanced
closed-form solution of Cholesky decomposition for the wind field along an arbitrary axis.
Zhao et al. [23] established an enhanced spectral representation method with high accu-
racy and efficiency for the ergodic wind field simulation. Additionally, the interpolation
schemes were also developed to optimize the spectral matrix decomposition [24,25]. For
the time-invariant coherent nonstationary wind field, the spectral matrix decomposition is
the same as the stationary simulation, and thus most studies focus on the introduction and
optimization of FFT [26–29]. Besides, the stochastic wave approach is also introduced to
the nonstationary simulation by proper orthogonal decomposition [30]. The simulation
of the time-varying coherent nonstationary wind field is optimized and enhanced mainly
based on the interpolation and time-frequency decoupling techniques [31–34].

However, the classical phase formula in almost all the above-mentioned simulation
methods is not rigorous. This may cause misunderstanding for the wind field simulation,
considering the wave passage effect. In this study, the influence of the classical phase
formula on the simulation of stationary and nonstationary wind fields is analyzed and
discussed in depth. Firstly, the theory of the wind field simulation based on spectral
representation method are reviewed. Secondly, two treatment schemes of deterministic
phases in the simulation formula are introduced. Then, the influence of phase on correlation
functions in four types of the wind field simulation is qualitatively discussed, based on the
theoretical formula. Further, numerical examples of four types of the wind field simulation
are utilized to conduct a quantitative analysis about the influence of phase on samples and
correlation functions. Finally, some conclusions are drawn.

2. Wind Field Simulation by Spectral Representation Method

Based on the different probabilistic properties of a given wind field, the wind speed
field can be described as the following four types: (1) stationary non-ergodic wind field,
(2) stationary ergodic wind field, (3) nonstationary wind field with time-invariant coherence
function, and (4) nonstationary wind field with time-varying coherence function. The first
two are stationary wind fields and the last two are nonstationary wind fields. The spectral
representation simulation process of these four wind fields will be, respectively, introduced
below. In order to clearly reflect the phases of coherence functions, the SRM based on the
decomposition of coherence matrix [35,36] will be presented.

2.1. Stationary Wind Fields

Consider an n-variate vector-value stationary wind fluctuation process
x(t) = [x1(t), x2(t), · · · , xn(t)]

T , where T denotes transpose. Its spectral matrix is given by

S(ω) =


S11(ω) S12(ω) · · · S1n(ω)
S21(ω) S22(ω) · · · S2n(ω)

...
...

. . .
...

Sn1(ω) Sn2(ω) · · · Snn(ω)

 (1)

Sjk(ω, t) =
√

Sjj(ω, t)Skk(ω, t)γjk(ω) (2)

where S(ω) = a Hermitian matrix with positive definite property; ω = circle frequency;
Sjj(ω), j = 1, 2, · · · , n = auto-PSD function of xj(t) and a real and non-negative function of
ω; Sjk(ω), j = 1, 2, · · · , n; j 6= k = cross-PSD function between xj(t) and xk(t) and a complex
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function of ω; γjk(ω) = coherence function between xj(t) and xk(t). In order to consider
the wave passage effect, γjk(ω) should be a complex number and can be expressed as

γjk(ω) =
∣∣∣γjk(ω)

∣∣∣eiϑjk(ω) (3)

where i =
√
−1 = imaginary unit; | · | = modulus of a complex number; ϑjk(ω) = complex

phase of γjk(ω).
According to Equations (1) and (2), the spectral matrix can be represented as

S(ω) = D(ω)Γ(ω)D(ω) (4)

where D(ω) is a diagonal matrix composed of auto-PSDs, i.e.,

D(ω) = diag
[√

S11(ω),
√

S22(ω), · · · ,
√

Snn(ω)

]
(5)

and Γ(ω) is the coherence matrix composed of coherence functions, i.e.,

Γ(ω) =


1 γ12(ω) · · · γ1n(ω)

γ21(ω) 1 · · · γ2n(ω)
...

...
. . .

...
γn1(ω) γn2(ω) · · · 1

 (6)

Because Γ(ω) is also a Hermitian matrix with positive definite property, it can be
decomposed by the following Cholesky decomposition

Γ(ω) = B(ω)BT∗(ω) (7)

B(ω) =


β11(ω) 0 · · · 0
β21(ω) β22(ω) · · · 0

...
...

. . .
...

βn1(ω) βn2(ω) · · · βnn(ω)

 (8)

where ∗ denotes complex conjugate; B(ω) = decomposed coherence matrix and a lower
triangular matrix; β jj(ω), j = 1, 2, · · · , n = a real and non-negative function of ω; β jk(ω), j =
1, 2, · · · , n; j 6= k = a complex function of ω; these complex functions can be written in polar
form, i.e.,

β jk(ω) =
∣∣∣β jk(ω)

∣∣∣eiθjk(ω) (9)

where θjk(ω) = complex phase of β jk(ω).
Then, the samples of xj(t) can be generated by [35]

xj(t) = 2
√

∆ω
j

∑
k=1

N

∑
l=1

√
Sjj(ωl)

∣∣∣β jk(ωl)
∣∣∣ cos[ωlt− θjk(ωl) + φkl ]; j = 1, 2, · · · , n (10)

where ωl = l∆ω = discrete frequency; N = frequency discrete number; ∆ω = ωu/N = fre-
quency increment; ωu = upper cutoff frequency; φkl = independent random phase angle
uniformly distributed in [0, 2π]. Obviously, the deterministic phase θjk(ω) in the simulation
Equation (10) is derived from the phase of coherence functions, reflecting the wave passage
effect of the wind field.

In order to simulate the ergodic stationary wind field, the single-index frequency ωl
in Equation (10) need to be replaced by the double-index frequency ωkl , which can be
calculated by [6]

ωkl = (l − 1)∆ω +
k
n

∆ω, k = 1, 2, · · · , n; l = 1, · · · , N (11)
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2.2. Nonstationary Wind Fields

The nonstationary wind field is generally characterized by the evolutionary power
spectrum. Replace the PSD in stationary wind field simulation Equation (10) with the non-
stationary evolutionary power spectrum density (EPSD), and then the stationary simulation
algorithm can be extended to a non-stationary one, i.e., [9]

x̂j(t) = 2
√

∆ω
j

∑
k=1

N

∑
l=1

√
Sjj(ωl , t)

∣∣∣β jk(ωl)
∣∣∣ cos[ωlt− θjk(ωl) + φkl ]; j = 1, 2, · · · , n (12)

where x̂j(t) = the jth nonstationary wind fluctuation; Sjj(ω, t), j = 1, 2, · · · , n = auto-EPSD
of x̂j(t).

Obviously, the above simulation Equation (12) is only suitable for the nonstationary
wind fields with time-invariant coherence functions. When the wind field to be simulated
has a time-varying coherence function γjk(ω, t), the Cholesky decomposition needs to be
executed for the time-varying coherence matrix Γ(ω, t), and the corresponding simulation
formulation is given as [27]

x̂j(t) = 2
√

∆ω
j

∑
k=1

N

∑
l=1

√
Sjj(ωl , t)

∣∣∣β jk(ωl , t)
∣∣∣ cos[ωlt− θjk(ωl , t) + φkl ]; j = 1, 2, · · · , n (13)

where β jk(ω, t) = the element in the decomposed time-varying coherence matrix;
θjk(ω, t) = complex phase of β jk(ω, t).

3. Treatment of Phases of Coherence Functions

The deterministic phase angle in the simulation formula can be obtained in two
ways: complex phase angle formula and separated phase. Here are two ways to solve the
phase angle. Since the calculation of time-varying phase angle in time-varying coherent
nonstationary simulation is similar, only the calculation of time-invariant phase angle
is given.

3.1. Phase Formulation
Based on the decomposition result β jk(ω) of complex coherence matrix, its phase angle

θjk(ω) can be obtained by the phase formula of complex number and can be represented as

θjk(ω) =



tan−1
{

Im[β jk(ω)]
Re[β jk(ω)]

}
, when Re[β jk(ω)] > 0

± π
2 , when Re[β jk(ω)] = 0 and Im[β jk(ω)] 6= 0

tan−1
{

Im[β jk(ω)]
Re[β jk(ω)]

}
± π, when Re[β jk(ω)] < 0 and Im[β jk(ω)] 6= 0

π, when Re[β jk(ω)] < 0 and Im[β jk(ω)] = 0

(14)

where “Im” and “Re” denote imaginary and real parts, respectively. Based on the definition
of complex phase, its value should fall into the range of [−π, π]. However, in almost all
previous studies [6], the phase is generally expressed as

θjk(ω) = tan−1

 Im
[

β jk(ω)
]

Re
[

β jk(ω)
]
 (15)

In this study, this is termed as ”classical phase formula”. Obviously, Equation (15) can
only represent the phase in the range of (−π/2, π/2). Thus, the complex phase calculated
by Equation (15) may introduce errors for the simulation results. In this study, the influence
of Equation (15) on the four wind field simulations will be studied in detail, in terms of
time history samples and correlation functions.
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3.2. Separated Phase

On the other hand, the phases in coherence matrix can be separated out to avoid
participating in the Cholesky decomposition [36]. The coherence matrix Γ(ω) is first
represented by its modulus matrix and phase matrix, i.e.,

Γ(ω) = Π(ω)⊗Θ(ω) (16)

where ⊗ denotes the multiplication operation between the corresponding elements of two
matrices; Π(ω) = lagged coherence matrix and given by

Π(ω) =


1 |γ12(ω)| · · · |γ1n(ω)|

|γ21(ω)| 1 · · · |γ2n(ω)|
...

...
. . .

...
|γn1(ω)| |γn2(ω)| · · · 1

 (17)

and Θ(ω) = phase matrix of Γ(ω) and given by

Θ(ω) =


1 eiϑ12(ω) · · · eiϑ1n(ω)

eiϑ21(ω) 1 · · · eiϑ2n(ω)

...
...

. . .
...

eiϑn1(ω) eiϑn2(ω) · · · 1

 (18)

Because Π(ω) is also a Hermitian matrix with positive definite property, it can also be
decomposed by the Cholesky decomposition, i.e.,

Π(ω) = L(ω)LT(ω) (19)

where L(ω) = the decomposed lower triangular matrix. According to [36], the following
two equations are true:

L(ω) =


|β11(ω)| 0 · · · 0
|β21(ω)| |β22(ω)| · · · 0

...
...

. . .
...

|βn1(ω)| |βn2(ω)| · · · |βnn(ω)|

 (20)

and
θjk(ω) = ϑjk(ω) (21)

4. Verification of Correlation Functions

The simulation effectiveness is generally verified by comparing the consistency of
the simulated and target correlation functions. In the following, the influence of phase on
correlation functions for four wind field simulations will be respectively discussed.

4.1. Stationary Process

Based on the target PSD and coherence function, the target auto-/cross- correlation
functions R0

jk(τ) of the stationary process can be calculated by

R0
jk(τ) =

∫ ∞

−∞

√
Sjj(ω)Skk(ω)γjk(ω)eiωτdω; j, k = 1, 2, · · · , n (22)
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In order to verify the effectiveness of the simulated nonergodic wind field, the ensem-
ble auto-/cross-correlation functions R

jk
(τ) need to be calculated by the generated multiple

numerical samples xj(t), j = 1, 2, · · · , n, i.e.,

Rjk(τ) = E[xj(t)xk(t + τ)] (23)

where E[· · · ] denotes mathematical expectation. For the ergodic wind field, the temporal
auto-/cross-correlation function R(i)

jk (τ) need to be calculated by the generated numerical
samples xj(t), j = 1, 2, · · · , n, i.e.,

R(i)
jk (τ) =

1
T

∫ T

0
xj(t)xk(t + τ)dt (24)

where T = time duration of ergodic samples. When the estimated correlation functions
match the corresponding targets, the simulated wind field is considered to be effective.

Before numerical examples, it is necessary to qualitatively study the influence of phase
on simulation from the perspective of theoretical analysis, as follows.

Based on the stationary simulation formulation Equation (10), the ensemble auto-/cross-
correlation function of the simulated samples xj(t), j = 1, 2, · · · , n can be represented by

Rjk(τ) = 2∆ω
n
∑

m=1

N
∑

l=1

√
Sjj(ωl)Skk(ωl)

∣∣β jm(ωl)
∣∣|βkm(ωl)|

× cos[ωlτ + θjm(ωl)− θkm(ωl)]; j, k = 1, 2, · · · , n
(25)

which will converge to the corresponding target R0
jk(τ) as the frequency increment ∆ω de-

creases. Equation (25) presents the analytical correlation functions, which are theoretically
identical to the numerical simulation results. Therefore, they can be utilized to qualitatively
analyze the influence of phases on correlation functions. It can be seen from Equation (25)
that the ensemble autocorrelation function of the simulated samples is independent on the
phase, while the ensemble cross-correlation function of the simulated samples is related to
the phase.

For the ergodic stationary simulation, the single-index ωl in Equation (25) is replaced
by the double-index ωml , and the ensemble auto-/cross-correlation function of the simu-
lated samples xj(t), j = 1, 2, · · · , n can be expressed as [6]

Rjk(τ) = 2∆ω
n
∑

m=1

N
∑

l=1

√
Sjj(ωml)Skk(ωml)

∣∣β jm(ωml)
∣∣|βkm(ωml)|

× cos[ωmlτ + θjm(ωml)− θkm(ωml)]; j, k = 1, 2, · · · , n
(26)

When the time duration of the simulated sample T is equal to the period T0, the tem-
poral auto-/cross-correlation function R(i)

jk (τ) of the sample function xj(t), j = 1, 2, · · · , n
has the same expression, i.e.,

R(i)
jk (τ) = Rjk(τ) for T = T0 (27)

T0 = n
2π

∆ω
(28)

Obviously, the temporal autocorrelation function of the simulated ergodic samples is
also independent on the phase, while the temporal cross-correlation function is related to
the phase.

4.2. Nonstationary Process

Based on the target EPSD and coherence function, the target auto-/cross- correlation
functions R0

jk(t, t + τ) of the time-invariant coherent nonstationary process can be calculated by

R0
jk(t, t + τ) =

∫ ∞

−∞

√
Sjj(ω, t)Skk(ω, t + τ)γjk(ω)eiωτdω; j, k = 1, 2, · · · , n (29)
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In order to verify the effectiveness of the simulated nonstationary wind field, the en-
semble auto-/cross-correlation functions Rjk(t, t+ τ) need to be calculated by the generated
multiple numerical samples x̂j(t), j = 1, 2, · · · , n, i.e.,

Rjk(t, t + τ) = E[x̂j(t)x̂k(t + τ)] (30)

Similar to the stationary simulation, the analytical correlation functions of the nonsta-
tionary simulation can be also obtained by its simulation formula, i.e., Equation (12). The
ensemble auto-/cross-correlation function of the simulated nonstationary samples x̂j(t),
j = 1, 2, · · · , n can be represented by [9]

Rjk(t, t + τ) = 2∆ω
n
∑

m=1

N
∑

l=1

√
Sjj(ωl , t)Skk(ωl , t + τ)

∣∣β jm(ωl)
∣∣|βkm(ωl)|

× cos
[
ωlτ + θjm(ωl)− θkm(ωl)

]
; j, k = 1, 2, · · · , n

(31)

It can be seen that the ensemble autocorrelation function is independent of the phase,
while the ensemble cross-correlation function will be affected by the phase.

For the time-varying coherent nonstationary simulation, the target auto-/cross- corre-
lation functions R0

jk(t, t + τ) can be computed by [27]

R0
jk(t, t + τ) =

∫ ∞
−∞

√
Sjj(ω, t)Skk(ω, t + τ)

n
∑

m=1
β jm(ω, t)β∗km(ω, t + τ)eiωτdω;

j, k = 1, 2, · · · , n
(32)

Based on Equation (13), the ensemble auto-/cross-correlation function of the simulated
time-varying coherent nonstationary samples x̂j(t), j = 1, 2, · · · , n can be represented by

Rjk(t, t + τ) = 2∆ω
n
∑

m=1

N
∑

l=1

√
Sjj(ωl , t)Skk(ωl , t + τ)

∣∣β jm(ωl , t)
∣∣|βkm(ωl , t + τ)|

× cos
[
ωlτ + θjm(ωl , t)− θkm(ωl , t + τ)

]
; j, k = 1, 2, · · · , n

(33)

Clearly, both the ensemble auto- and cross-correlation functions are dependent on
the phase.

5. Numerical Examples

In this section, the influence of the phase on the simulated samples and correlation
functions will be quantitatively discussed by the four numerical examples corresponding
to four wind fields.

It is assumed that the four wind fields possess the same simulation points distributing
along the deck of a cable-stayed bridge with the length of 400 m. These wind fields consist
of 41 simulation points, where the distance between two adjacent simulation points is 10 m,
as indicated in Figure 1.
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5.1. Stationary Wind Fields

In terms of stationary wind field, the widely used two-sided Kaimal spectrum is
selected as the target PSD, i.e.,

S(ω) =
200
4π

z
U

u2
∗[

1 + 50 ωz
2πU

] 5
3

(34)

where the height of simulation points z = 60 m; the mean wind velocity U = 40 m/s; the
shear velocity u∗ = kU/ ln(z/z0) in which the coefficient k = 0.4 and the ground roughness
z0 = 0.01 m. It is assumed that all the simulation points possess the same auto-PSDs.

The coherence function between two simulation points adopts the following Daven-
port’s coherence function with the complex phase [37]

γjk(ω) = exp

(
−

Cy
∣∣yj − yk

∣∣ω
2πU

)
exp

(
−i

(yj − yk)ω

vapp

)
(35)

where yj and yk = the horizontal coordinates of Points j and k; Cy = attenuation coefficient
and takes 10; vapp = apparent wave velocity and takes 10 m/s. Then, the deterministic
phase θjk(ω) in simulation formulation can be readily calculated by the aforementioned
two schemes, based on the given coherence function. The typical phase results θ42(ω)
obtained by the classical formula and separated phase are, respectively, shown in Figure 2.
It can be seen that the two phases are periodic and the period of the latter is twice that of
the former. Additionally, the value range of the latter is twice that of the former.
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42 ( )θ ω  obtained by the classical formula and separated phase are, respectively, shown in 
Figure 2. It can be seen that the two phases are periodic and the period of the latter is twice 
that of the former. Additionally, the value range of the latter is twice that of the former. 
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Figure 2. Phases obtained by two schemes.

5.1.1. Non-Ergodic Stationary Wind Fields

In the non-ergodic stationary wind field, the time and frequency parameters are
selected as: upper cutoff frequency ωu = 4π rad/s; frequency interval ∆ω = 0.006 rad/s;
number of frequency divisions N = 2048; time duration 1024 s; time interval ∆t = 0.25 s;
number of time divisions M = 4096.

Figure 3 shows the simulated sample time histories at Points 1, 21, and 41, based on
the above two phase results under the same random phase. It can be seen that the two
results at Point 1 are identical and have no difference, while the results at Points 21 and 41
have an evident distinction and the difference becomes larger and larger with the increase
in the distance. This is because the sample at Point j is only related to the jth row of the
decomposed coherence matrix, as shown in Equation (10). The larger the simulation point
number, the more complex phases involved in the simulation, and the greater the influence
of the phase on the simulation results. Therefore, using the classical formula to calculate
the phase will have a certain impact on the simulated samples, and this impact will be
greater for the later simulation points.
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(c) Point 41.

In order to further study the influence of the phase on correlation function, 1000 samples
are generated to estimate the ensemble auto-/cross- correlation function by Equation (23).
Figure 4 shows a typical autocorrelation function R21,21(τ) of Point 21 and a typical cross-
correlation function R1,21(τ) between Points 1 and 21, where the targets are calculated by
Equation (22). Comparing the results based on two phase schemes and the corresponding
target, it can be found that two estimated autocorrelation functions are completely coinci-
dent, which shows that the phase has no effect on the autocorrelation function. However,
the estimated cross-correlation functions are totally different, and the result obtained by
the classical phase formula seriously deviated from the target. Therefore, the influence of
the phase on the cross-correlation function is considerably great and the classical phase
formula will cause the obvious simulation error.
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Figure 4. Estimated correlation functions by nonergodic stationary wind fluctuation samples
(1000 samples): (a) R21,21(τ); (b) R1,21(τ).

5.1.2. Ergodic Stationary Wind Fields

Based on the double-index frequency, ωkl , the ergodic stationary wind field can be
simulated. The time duration of generated samples adopts a period, i.e., 41,984 s. The
other time and frequency parameters are the same as the last example. The first 1024 s of
generated ergodic wind fluctuation samples at Points 1, 21, and 41 are displayed in Figure 5,
which comparing the samples obtained by two phase schemes under the same random
phase. Obviously, the influence of the phase on the simulated ergodic sample is similar to
that of the non-ergodic stationary simulation. Therefore, using the classical phase formula
to simulate the ergodic stationary wind field will still cause errors.
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Figure 5. Simulated ergodic stationary wind fluctuation samples (first 1024 s): (a) Point 1; (b) Point
21; (c) Point 41.
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Based on Equation (24), the temporal auto-/cross-correlation functions of the simu-
lated ergodic samples can be estimated. Figure 6 shows the comparison of two typical
correlation functions obtained by two phase schemes with the corresponding targets, where
the targets are also calculated by Equation (22). The same phenomenon as the above non-
ergodic simulation can be observed in this ergodic simulation. Thus, the classical phase
formula will also lead to the incorrect simulation of ergodic wind fields.
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Figure 6. Estimated correlation functions by ergodic stationary wind fluctuation samples:
(a) R21,21(τ); (b) R1,21(τ).

5.2. Nonstationary Wind Fields

For the nonstationary wind field, the target auto-EPSD is assumed to be the extended
Kaimal spectrum, which can be obtained by replacing the constant mean wind velocity as
the time-varying one Û(t) in Equation (34). The time-varying mean wind velocity Û(t) is
generally given by

Û(t) = d(t)U (36)

where d(t) = time modulation function with three parameters [38], i.e.,

d(t) = α0tβ0 e−λt, α0 > 0, β0, λ ≥ 0 (37)

in which the parameter α0 = λβ0 /β
β0
0 eβ0 and assume the maximum value of this function

occurs at tmax = β0/λ. In this simulation, the parameters tmax = 300 and β0 = 2 are
adopted. Assume that each simulation point has the same auto-EPSD.

The time-invariant coherence function adopts Equation (35). The time-varying coher-
ence function is obtained by extending the Davenport’s model, i.e., [37]

γjk(ω, t) = exp

(
−

Cy
∣∣yj − yk

∣∣ω
2πU(t)

)
exp

(
−i

(yj − yk)ω

vjk
app(t)

)
(38)

where U(t) =
[
Uj(t) + Uk(t)

]
/2 = averaged time-varying mean wind velocity and adopts

the following simplified form:

U(t) = U ·
[
1 + γ cos

(
ω′t
)]

= 40[1 + 0.3 cos(2π/1200 · t)] (39)

and the apparent wave velocity vjk
app(t) is given by [37]

vjk
app(t) =

2πU(t)
Cθ

(40)

in which Cθ = a coefficient obtained by experiments and generally takes 5.5.
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In the following, two nonstationary wind fields with time-invariant coherence and
time-varying coherence will be simulated based on the two phase schemes to study the
influence of the phase on the nonstationary simulation. The time and frequency pa-
rameters used to the nonstationary wind field are the same as the above non-ergodic
stationary simulation.

5.2.1. Nonstationary Wind Fields with Time-Invariant Coherence

Figure 7 presents the comparison of two samples obtained by two phase schemes
with the same random phase at Points 1, 21, and 41. It can be observed that the samples
at Point 1 are totally consistent and the samples at other simulation points have more
or less differences. Therefore, the nonstationary simulation using the classical phase
formula possesses an evident error. Furthermore, the error becomes larger and larger as
the simulation point number increases.
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Figure 7. Simulated time-invariant coherent nonstationary wind fluctuation samples: (a) Point 1;
(b) Point 21; (c) Point 41.

Further, 1000 samples are generated to estimate the ensemble auto-/cross-correlation
functions based on Equation (30). The target correlation functions are computed by Equa-
tion (29). Figure 8 compares the typical correlation functions obtained by the two phase
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schemes with the corresponding targets when the time lag τ = 0, 16, and 32 s. It can also be
found that the phase has no effect on autocorrelation function, while the influence on the
cross-correlation function is rather strong. This shows that the nonstationary simulation
using the classical phase formulation is erroneous.
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Figure 8. Estimated correlation functions by time-invariant coherent nonstationary wind fluctuation
samples (1000 samples): (a) R21,21(t, τ); (b) R1,21(t, τ).

5.2.2. Nonstationary Wind Fields with Time-Varying Coherence

Based on the given time-varying coherence function, the deterministic phase θjk(ω, t)
in the simulation formulation can be calculated by the aforementioned two schemes. The
typical time-varying phases θ12(ω, t) obtained by two schemes are shown in Figure 9.
Obviously, two phases are the periodic function of ω. The amplitude and period of the
separated phase are twice the phase, using the classical formulation.
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Figure 9. Time-varying phases obtained by two schemes: (a) separated phase; (b) classical formulation.

Substituting the phases to the simulation formulation, the time-varying coherent
nonstationary wind fluctuation samples can be generated. Figure 10 displays three typical
sample time histories and compares the samples based on the above two phases. The
similar laws can be observed. The higher the phase participation of the sample, the greater
the error caused by the classical phase formula. In addition, it can be also found that the
influence of the phase on the time-varying coherent nonstationary simulation is less than
the time-invariant coherent nonstationary simulation.
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Figure 10. Simulated time-varying coherent nonstationary wind fluctuation samples: (a) Point 1;
(b) Point 21; (c) Point 41.

The ensemble auto-/cross-correlation functions can be estimated by 1000 simulated
samples, based on Equation (30). The target correlation functions are calculated by
Equation (32). Figure 11 verifies the estimated correlation functions and the targets when
the time lag τ = 0, 16, and 32 s. Although the autocorrelation function is affected by the
phase (see Equation (33)), the impact is small and can be ignored (see Figure 11). However,
the cross-correlation function based on the classical phase formula is still seriously devi-
ated from the target. Therefore, the classical phase formula cannot be directly used in the
nonstationary simulation.
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Figure 11. Estimated correlation functions by time-varying coherent nonstationary wind fluctuation
samples (1000 samples): (a) R21,21(t, τ); (b) R1,21(t, τ).

6. Conclusions

The wave passage effect of multi-point wind field is generally considered by the phase
of coherence function. However, in the wind field simulation by the spectral representation
method, the classical phase formula is not rigorous. This will affect the accuracy of the
simulation results and even cause incorrect simulations. In this study, the influences of the
phase on four wind field simulations are investigated and discussed in detail. The qualita-
tive analysis based on the theoretical correlation function formula is first made to study the
influence of the phase. Then, four numerical examples are utilized to quantitatively study
the magnitude of the influence on the sample time history and correlation function of the
simulated wind field. Some conclusions are given as follows:

1. The period of the classical phase is only 50% of the exact result and the amplitude of
the classical phase is also only 50% of the exact result.

2. The errors induced by the phase formula occur mainly in the simulation results with
high phase participation, such as the samples at the farther simulation points and all
cross-correlation functions. The maximum error is even more than 100%. The sample
at the first simulation point and all autocorrelation functions are not affected by the
phase formula.

3. The classical phase formula has a serious influence on the simulation of four kinds
of wind fields. The influence of the phase on the non-ergodic and ergodic station-
ary wind fields are roughly equivalent. The influence of the phase on the time-
varying coherent nonstationary simulation is less than the time-invariant coherent
nonstationary simulation.

4. The classical phase formula cannot be used for the wind field simulation, considering
the wave passage effect, otherwise it will result in incorrect simulation results and
then affect the subsequent structural analysis.
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