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Abstract: A landslide is a kind of geological disaster with high frequency, great destructiveness, and
wide distribution today. The occurrence of landslide disasters bring huge losses of life and property. In
disaster relief operations, timely and reliable intervention measures are very important to prevent the
recurrence of landslides or secondary disasters. However, traditional landslide identification methods
are mainly based on visual interpretation and on-site investigation, which are time-consuming and
inefficient. They cannot meet the time requirements in disaster relief operations. Therefore, to solve
this problem, developing an automatic identification method for landslides is very important. This
paper proposes such a method. We combined deep learning with landslide extraction from remote
sensing images, used a semantic segmentation model to complete the automatic identification process
of landslides and used the evaluation indicators in the semantic segmentation task (mean IoU [mIoU],
recall, and precision) to measure the performance of the model. We selected three classic semantic
segmentation models (U-Net, DeepLabv3+, PSPNet), tried to use different backbone networks for
them and finally arrived at the most suitable model for landslide recognition. According to the
experimental results, the best recognition accuracy of PSPNet is with the classification network
ResNet50 as the backbone network. The mIoU is 91.18%, which represents high accuracy; Through
this experiment, we demonstrated the feasibility and effectiveness of deep learning methods in
landslide identification.

Keywords: deep learning; semantic segmentation; PSPNet; landslide

1. Introduction

Landslides are common and frequent geological hazards around the world. The
occurrence of landslides affects the terrain and causes different degrees of damage [1]. Fur-
thermore, when residential areas or public buildings are close to a landslide site, the event
is often accompanied by emergencies. Landslides in specific areas need to be identified
within a short period to intervene and resolve the crisis [2,3]. With the rapid development
of remote sensing technology, these methods have been widely used [4,5]. Currently, the
landslide identification methods based on remote sensing images are mainly divided into
visual interpretation, pixel-based and object-oriented landslide identification methods.

Visual interpretation is the earliest landslide identification method applied to remote
sensing images. Visual interpretation is when the interpreter extracts the landslide shape
from the remote sensing image according to his or her professional knowledge and related
research materials. Data extracted by this method have high accuracy. However, the visual
interpretation also has the disadvantages of being time-consuming, having an overrelian
on manual discrimination and inefficient [6].
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Pixel-based landslide identification methods focus on pixel values and pixel value
changes in remote sensing images and classify them according to pixel changes or change
characteristics [7]. Although this method overcomes the shortcomings of visual interpreta-
tion, it is only judged by a single pixel value; moreover, it does not consider the correlation
between pixels, resulting in an indistinct recognition of landslide edge regions and poor
performance [8].

Object-oriented landslide identification methods utilize the attribute features of raw data
(such as texture, spectrum, etc.) to classify remote sensing images by one or more attributes [9].
However, this method uses one or more attribute features to set thresholds, and the process is
complicated and cannot process large-scale remote sensing images in time.

With the continuous increase in high-resolution remote sensing images, how to quickly
and efficiently identify targets from massive remote sensing images has become a key prob-
lem for scholars and experts to study. In recent years, with the rapid development of deep
learning, computer vision and image processing technology have been introduced into the
field of remote sensing as a new method for remote sensing image classification and target
detection [10]. Research has shown that deep learning methods do not require many of the
data provided in traditional landslide identification methods to help identify landslides;
they only need enough landslide images as samples and training, which greatly simplifies
the complex calculation process, makes up for the shortcomings of the above-mentioned
traditional landslide identification methods, and realizes automatic identification of land-
slides. At the same time, deep learning methods are higher accuracy than the traditional
landslide identification methods [11]. The main contributions of this article are as follows:

(1) We process the landslide data in the Bijie landslide dataset, create a landslide dataset,
and preprocess the dataset (data cleaning, data enhancement);

(2) On the landslide dataset, we use three models (U-Net, DeepLab v3+ and PSPNet) to
conduct experiments and test the performance changes in the models when different
classification networks are used as the backbone network;

(3) We use the above pretrained model to test the landslide test set and use mIoU,
precision, and recall to evaluate the model performance to obtain the optimal model
for landslide identification performance.

The remainder of this paper is structured as follows. Section 2 introduces related work.
Section 3 shows the data and methodology we used. Section 4 presents and analyzes the
experiment results. Section 5 presents our conclusions.

2. Related Work

Convolutional neural networks (CNN) [12] have achieved great success in the field
of image processing because of their nonlinear learning ability [13], driving the rapid
development of computer vision [14,15]. Based on CNN studies, various models have been
developed for image classification [16], object detection [17,18], semantic segmentation [19],
etc., where semantic segmentation performs pixel-level segmentation of the images. These
models have achieved satisfactory results in traditional vision tasks. Therefore, people have
begun to apply these deep learning models to landslide identification in remote sensing
images in the past few years.

Ye et al. (2019) proposed a constrained deep learning model, applied it to identifying
landslides in hyperspectral images, and compared the results with the support vector
machine–spectral information divergence–spectral angle matching method. They that the
extraction of high-level features by deep learning has great potential for improving the
accuracy of landslide identification [20]. Ghorbanzadeh et al. (2019) used CNNs for Hi-
malayan landslide identification and compared them with state-of-the-art machine learning
methods (artificial neural networks, support vector machines, and random forests); the
results show that deep learning is superior to machine learning in landslide identification
experiments [21]. Prakash et al. (2020) proposed an improved U-Net model that uses
ResNet34 blocks for feature extraction and enables landslide identification in Douglas
County, south of Portland, Oregon, USA [22]. Zhu et al. (2020) proposed a method based
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on U-Net architecture to fuse local and nonlocal features, upsampling by dilated convolu-
tion, and the corresponding spatial pyramid expanded receptive field and scale attention
mechanism to identify the landslide caused by the earthquake in Jiuzhaigou, China [23].
Ji et al. (2020) developed a CNN-based spatial channel attention mechanism to classify and
identify landslides in Bijie City, China, from available satellite imagery and DEM datasets;
this experiment concludes that the attention mechanism and DEM data can effectively
improve the accuracy of landslide identification [24]. Liu (2020) proposed to use ResU-Net
to identify earthquake landslides in Jiuzhaigou, Sichuan Province, China, and obtained an
F1 value of 93.3%, and an mIoU value of 87.5% [25]. Ju et al. (2020) identified old loess
landslides on Google Earth images using the two-stage algorithm Mask R-CNN; although
the accuracy rate did not reach a high level, it confirmed the feasibility of Mask R-CNN to
identify old landslides [26]. Dai et al. (2021) proposed an improved U-Net neural network
and completed the automatic identification of the deformation features of the landslide
time series [27]. Ullo et al. (2021) used the Mask R-CNN model with ResNet101 as the
backbone network and the transfer learning algorithm to complete landslide recognition
in digital images of hilly areas obtained by drones, and the results show that the method
is superior to the existing research in both algorithm performance and robustness [28].
Liu (2021) proposed to use an improved Mask R-CNN to identify earthquake landslides
in the Jiuzhaigou area of Sichuan Province, China, and obtained an F1 value of 94.5%
and an mIoU value of 89.6% [29]. Ghorbanzadeh (2022) combined the object-based image
analysis (OBIA) approach with the fully convolutional network (FCN) model to complete
the landslide detection in Sentinel-2 images and verified the method’s feasibility [30].

Therefore, deep learning methods have been applied to landslide identification. How-
ever, due to the diversity and complexity of landslides, these methods still have many
problems to be solved. For example, in order to improve the ability to identify landslides,
the model needs to learn a large number of data [31]; this is a key issue because there is very
little landslide data currently available. In addition, for this work, more data information
can help the model to better improve the landslide recognition accuracy [32]; however,
the acquisition, retrieval, and annotation of datasets is often a difficult point in landslide
identification tasks. Therefore, to address the issues mentioned above, we conducted
this study. Since there are few publicly available landslide datasets and their quality is
uneven, to have a good experimental basis, we selected the Bijie dataset published by
Ji et al. (2020) [24]. The Bijie dataset is the first large-scale, public remote sensing landslide
dataset and has a double check; more detailed dataset information will be introduced in
Section 3.1. At the same time, since the interpretation of landslide images has very high
professional requirements, in the re-labeling of samples, we strictly follow the samples
provided by the Bijie dataset to ensure the reliability of the data. In the final sample set, we
expand the sample set through the data augmentation method and finally obtain a data set
containing 2500 landslide images.

3. Materials and Methods
3.1. Data Source

Remote sensing datasets of landslide are difficult to obtain, we used the open source
Bijie landslide dataset [24]. The Bijie landslide dataset is the first open remote sensing
landslide dataset with careful triple inspection; the data set was proposed by scholars such
as Ji et al. (2020), and the classification research of landslides was carried out on it. Its study
area is located in Bijie City, Guizhou Province, China, with about 26,853 square km and
an altitude ranging from 457 m to 2900 m. The soil on the slopes caused by the perennial
rainfall is soft and prone to landslides, and it is one of the most prone areas in China.

The remote sensing images in the Bijie landslide dataset were captured by the TripleSat
satellite, and the RGB images have a resolution of 0.8 m. Seven hundred and seventy
landslide images and two thousand and three other types of images were intercepted from
the captured remote sensing images. The dataset consists of satellite optical images and
label files. In the process of making the dataset, two methods were adopted to interpret the
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landslide images to ensure the reliability of the database: One is the visual interpretation by
geologists through optical remote sensing images; the other is based on residents’ reports
and field surveys. Throughout the work, the shapes of landslide samples were drawn with
the help of ArcGIS.

3.2. U-Net

U-Net is a semantic segmentation network proposed by Olaf Ronneberger in the ISBI
Cell Segmentation Competition in 2015. It utilizes a U-shaped network structure to capture
contextual information and location information. It was initially used to solve medical
image segmentation problems, especially cell-level segmentation tasks, and was gradually
used to solve problems in other fields [33].

The network structure of U-Net, which is an encoder-decoder structure, is shown in
Figure 1.The encoder utilizes the idea of stacking convolutional layers, downsampling
the feature map through convolution and pooling, and performing four total pooling
operations. After each stacking convolution layer operation, the size of the feature map is
halved and, at the same time, the pooling result of each step is passed to the decoder; in
the decoder, the feature map is first upsampled or deconvolved and then concatted on the
channel with the previous feature map of the same size. Convolution and upsampling is
then performed, and after upsampling four times, an output result of the same size as the
original image is obtained.
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Figure 1. U-Net architecture. The blue box represents the multichannel feature layer. The channel
number is shown at the top of the box. The white boxes represent the replicated feature maps. The
arrows represent operations on the feature layers.

3.3. DeepLab v3+

DeepLabv3+ was proposed by the Google team in 2018 and is the DeepLab series
model [34]. DeepLabv3+ is based on DeepLabv3 and improves it. It uses Deeplabv3 as
the encoder, introduces atrous convolution in the encoder for downsampling and uses the
spatial pyramid pooling module to extract multiscale information, which improves the
accuracy by fusing low-level and high-level features.

Its specific structure is shown in Figure 2. The encoder extracts image features through
a deep convolutional neural network (DCNN), and the extracted feature layers are input to
the decoder for 1 × 1 convolution. Meanwhile, the feature layers extracted by DCNN use
1 × 1, 3 × 3, 3 × 3, and 3 × 3 atrous convolutions for downsampling and pooling, where the
expansion rates of atrous convolution are 1, 6, 12 and 18, respectively. Then, the obtained
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new feature layer is concatted, its channel is changed to 1/5 of the original through 1 × 1
convolution, and the decoder is entered for upsampling. The unsampled feature layer
is concatted with the feature layer in the decoder, and then the 3 × 3 convolution and
upsampling are gone through to obtain the final prediction map.

Atrous Conv

1×1 Conv

3×3 Conv

rate 6

3×3 Conv

rate 12

3×3 Conv

rate 18

Image

Pooling

1×1 Conv

1×1 Conv
Upsample

by 4
Concat 3×3 Conv

Upsample

by 4
Low-Level

Features

Decoder

Encoder

DCNN
Image

Prediction

Figure 2. DeepLabv3+ architecture. DCNN stands for deep convolutional neural network, and
Atrous Conv stands for atrous convolution. Cyan, orange, pink and green represent the extracted
feature layers. The dark blue boxes represent the operations taken on the feature layers.

3.4. PSPNet

PSPNet is a semantic segmentation model jointly proposed by the Chinese University
of Hong Kong and Shangtang Technology and it won the championship in the 2016 Ima-
geNet Challenge [35]. The original intention of PSPNet was to improve the FCN. The most
prominent feature of PSPNet is that it adds a PSP module between the encoder and the
decoder, which is also the main difference between it and the FCN.

The structure of PSPNet is shown in Figure 3; the input layer obtains the feature layer
of the input image through CNN, and the feature layer size is changed to 1/5 of the original
through. Then, the obtained feature map is input to the pyramid pooling module. First,
this module divides the input feature layer into 6 × 6, 3 × 3, 2 × 2 and 1 × 1 sized areas;
the ave-pooling operation is performed in the divided area to obtain four feature layers
of different sizes (corresponding to the green, blue, orange and red outputs in Figure 3,
respectively); then, 1 × 1 convolution operations are performed on these feature layers;
next, the number of channels of the feature layer is changed to one-fourth of the original;
and finally, the feature layer is up-sampled by bilinear interpolation. The upsampled
feature map and the feature layer obtained by CNN are concatenated, and finally, the final
output is obtained through the convolution operation.
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Figure 3. PSPNet architecture. First, a CNN is used to obtain the last convolutional feature map
given an input image. A pyramid parsing module is then applied to collect different subregion repre-
sentations, followed by upsampling and concatenation layers to form the final feature representation.
Finally, the representation is fed into convolutional layers to obtain the final per-pixel predictions.

3.5. Evaluation Metrics

In deep learning methods, recall rate and accuracy rate are indicators that can evaluate
the recognition effect of the model, and they are associated with the confusion matrix; As
Table 1 shows, T and F represent the prediction of true or false; P (positive) and N (negative)
represent the type of prediction; TP (true positive), TN (true negative), FP (false positive),
and FN (false negative) are used to classify pixels. Taking this article as an example, TP
means that the pixel is identified as a landslide pixel; the identification is correct. TN means
that the pixel is identified as a nonlandslide pixel; the identification is correct. FP indicates
that the pixel was identified as a landslide pixel and identified incorrectly. FN indicates
that the pixel was identified as a nonlandslide pixel and identified incorrectly.

Table 1. Confusion matrix of classification results.

Actual Values
Predicted Values

Positive Negative

Positive TP FN
Negative FP TN

Precision represents the proportion of the actual landslide pixels in the pixels predicted
by the model as landslides, as shown in Equation (1):

Precision =
TP

FP + TP
, (1)

Recall represents the proportion of landslide pixels predicted by the model in all actual
landslide pixels, as shown in Equation (2):

Recall =
TP

FN + TP
, (2)

In addition, mIoU is a widely used metric in semantic segmentation tasks and is used
as a standard measure to measure semantic segmentation models. Intersection over union
(IoU) represents the ratio between the intersection and union of the predicted results of
landslide pixels and the actual landslide pixels, and mIoU represents the average of all
categories of IoU. The IoU is shown by Equation (3):

mIoU =
1

k + 1

k

∑
i=0

pii

∑k
j=0 pij + ∑k

j=0 pji − pii
, (3)
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In this formula, i represents the real pixel, j represents the predicted pixel, pij represents
that i will be predicted as j, pii represents that i will be predicted as i and pji represents that
j will be predicted as i.

4. Results and Discussion
4.1. Data Preprocessing

Data preprocessing includes relabeling samples and implementing data augmentation
strategies on samples. Due to different target tasks, we only selected 770 landslide samples
in the Bijie landslide dataset as the original data. In the labeling work, in order to obtain
reliable data, we relabeled according to the original labels provided in the Bijie dataset. At
the same time, we processed the data according to the research goals and finally obtained
510 landslide samples. Among these obtained data, 90% of the data was used for training
and validation of the model, and 10% of the data was used for testing the model.

The deep learning model learns the features of the image through the provided image
samples during the training process. Therefore, the more samples that are provided
to the model, the more the model can learn the features of such images and the better
its predictions. For the model, if an image is rotated, cropped and then passed into
the model, the model will consider it a new image, so we can enhance the sample by
expanding it. We implemented a data enhancement strategy for the existing training set
according to the characteristics of sample landslides with different directions, different
structures and different boundary shapes. We enhance the dataset’s quality through
augmentation techniques, we thereby improved the model’s training effect. However,
excessive rotation and flipping of images will cause overfitting of the model, thereby
reducing its generalization and causing causing the model to achieve high accuracy on
the training set but but not achieve very high accuracy on the test set. Considering these
problems in the process of data expansion, we rotate, scale and flip the sample set according
to a certain probability based on experience. These expanded data were all used in our
model training; after expansion, the training samples were changed from the original 510
to 2500. For more details on data preprocessing, see Table 2.

Table 2. Data augmentation.

Method Probability of Execution Specific Operations

random rotation 50% rotate 20°, +90°, −90°
left-right flipping 100% flip the image left and right
image cropping 100% original image 0.7× dimension

4.2. Training

The training effect of the deep learning model is closely related to the accuracy of the
data set, suitable parameters, and training methods. Therefore, in this study, we selected
three models, U-Net, DeepLab v3+, and PSPNet, and used two different classification
networks as the backbone network of each model; the backbone network selection of the
model is shown in Table 3. We record these models as U-Net (VGG), U-Net (ResNet50),
DeepLab v3+ (MobileNet), DeepLab v3+ (Xception), PSPNet (MobileNet), and PSPNet
(ResNet50).

In the experiment, we set and adjusted the training parameters uniformly for all the
models, as shown in Table 4. The input image size is fixed at 473 × 473. The classification
of pixel types is landslide and background. The model training adopts the method of
freezing training, which divides the training into two stages: freezing and unfreezing. In
the freezing stage, the backbone of the model is frozen, and the feature extraction network
does not change. At this time, 50 rounds of fine-tuning are performed on the network. The
video memory occupied in the freezing phase is small, so the batch_size and learning rate
are set larger. In the unfreezing stage, the backbone network of the model is unfrozen,
and the feature extraction network will change; at this time, the network is trained for
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100 rounds. Due to a large amount of video memory occupied, the batch_size is set to 0.5
times that of the frozen phase, and the learning rate is reduced.

Table 3. The backbone network selection of the models.

Model Backbone

U-Net VGG
U-Net ResNet50

DeepLab v3+ MobileNet
DeepLab v3+ Xception

PSPNet MobileNet
PSPNet ResNet50

Table 4. Parameters for our models.

Hyper-Parameter Parameter Values

input_shape [473, 473]
classes landslide, background

freeze_Train True
pretrained weights True

datasets used for pre-training VOC data set
Init_Epoch 0

downsample_factor 8
freeze_epoch 50

unfreeze_epoch 100
freeze_learning_rate 10−4

freeze_batch_size 8
unfreeze_batch_size 4

unfreeze_learning_rate 10−5

focal_loss True
dice_loss True

eager pattern False
aux_branch False

early_stopping True
num_workers 1

cls_weights np.array([1, 2], np.float32)

In addition, during model training, we use the pre-trained weights obtained in the
VOC dataset as the initial parameters of the model and set dice_loss to balance the number
of training categories. We set focal_loss to balance positive and negative samples and use
the NumPy form to give different loss weights to the background and landslides so that
the model focuses on landslide pixels. In order to improve the recognition effect, we set
the downsample_factor to 8, but it will also occupy much memory; therefore, in order to
reduce the occupation of video memory, we do not use aux_branch by default, do not use
multi-threading to read data and use the early stop strategy to save computing resources.

The hardware environment of this experiment: GPU: 4*NVIDIA Tesla K80, CPU: 32*In-
tel (R) Xeon (R) CPU E5-2620 v4 @ 2.10GHz, OS: CentOS 8.3. The software environment of
this experiment: CUDA 11.2, Python 3.6, PyTorch 1.10.1, Tensorflow 2.2.0.

4.3. Experimental Results and Analysis

Pretrained models obtained by the experiment were used to predict the test set. The
prediction results show that these models can effectively identify landslides. At the same
time, according to the experimental results, we conclude that the PSPNet model using
ResNet50 as the backbone network has the best recognition effect. We will discuss the
results first from the perspective of image recognition and then from the perspective of
index evaluation.



Appl. Sci. 2022, 12, 8153 9 of 15

A total of 51 remote sensing images of landslides were included in the test set; all of
the images were from the eastern part of the Qinghai–Tibet Plateau in Bijie City, Guizhou
Province, China. As shown in Figure 4, we show some landslide images in the test set, and
none of the images in the test set participated in the training, through which we evaluated
the performance of each model. We have selected some of these samples for analysis, as
shown in Figure 5. The figure includes four samples of landslide images that occurred
in different places, marked as Landslide I, Landslide II, Landslide III, and Landslide IV.
Among them, I, II, and III are new landslides with various characteristics and shapes of
landslides, and IV is an old landslide with inconspicuous characteristics of landslides.
In addition, the figure also includes the label file of the landslide, which was used for
comparison with the predicted map. We use the pretrained model to obtain the predicted
map; we will analyze the predicted maps of the four landslide samples separately.

Figure 4. Examples of landslide samples in the test set, all from Bijie, Guizhou, China.

Figure 5. Model prediction of landslide results. Horizontally, they are Landslide I, Landslide II,
Landslide III and Landslide IV. Vertically, they are the landslide image, label map (for comparison) ,
U-Net (VGG) recognition map, DeepLabv3+ (Xception) recognition map, DeepLab v3+ (MobileNet)
recognition map, U-Net (ResNet50), the recognition map of PSPNet (MobileNet) and the recognition
map of PSPNet (ResNet50).
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Landslide I: U-Net (VGG) has a high error rate in identifying landslide images; it
identifies the background associated with the landslide color as a landslide. However,
the majority of these environments are land and cultivated land. There are 15 additional
prediction maps for the same situation. DeepLab v3+ (Xception) is similar to U-Net
(VGG). DeepLab v3+ (MobileNet), U-Net (ResNet50), PSPNet (MobileNet), and PSPNet
(ResNet50) can more accurately identify landslides; in contrast, PSPNet (ResNet50) has
better performance in recognizing landslides.

Landslide II: U-Net (VGG) and DeepLab v3+ (MobileNet) cannot fully identify land-
slides, so the effect is poor. DeepLabv3+ (Xception) recognizes roads with similar colors as
landslides. U-Net (ResNet50) recognizes other objects with similar shapes to landslides
as landslides and cannot distinguish the landslide from other content in the background.
PSPNet (MobileNet) and PSPNet (ResNet50) perform better.

Landslide III: There is a chasm in identifying the landslide by U-Net (VGG); the
color of the chasm part is darker, so the background color is closer, which is caused by
the new vegetation growing on the landslide, the model cannot recognize this and thus
identifies errors. The situation of DeepLab v3+ (Xception) is just the opposite. Although
it can distinguish landslides from vegetation, it cannot distinguish the features between
landslides and roads. DeepLabv3+ (MobileNet), U-Net (ResNet50), PSPNet (MobileNet)
and PSPNet (ResNet50) can identify landslides more accurately; however, their sensitivities
to landslide boundaries vary.

Landslide IV: Landslide IV has been formed for a long time, the landslide has been cov-
ered with vegetation, and the entire landslide is green. Because its landslide characteristics
are not prominent, they are not easy to separate. This type of landslide is too complex for
the model to recognize. Fortunately, according to the recognition effect of these models on
Landslide IV, the model can distinguish the landslide from the features of the surrounding
vegetation. However, the segmentation effect of the boundary is not accurate enough.

We evaluated the model using the metrics in Section 3.5, and the evaluation results
are shown in Table 5. Observing the recall index and precision index values, we found
that the recall rate of all models is higher than the precision; this means that these models
can identify real landslide pixels but also identify many non-landslide pixels as landslide
pixels. It can also be seen from the analysis of Figure 6 that when identifying Landslide
I and Landslide II, U-Net (VGG), DeepLabv3+ (Xception) and U-Net (ResNet50) easily
confuse other objects with similar colors and shapes to landslides.

In Table 5, mIoU values are used to evaluate model performance comprehensively.
Among these pretrained models, PSPNet (ResNet50) produced the best landslide recog-
nition effect, with an mIoU value of 91.18%, and obtained the highest precision index
(93.76%); this means that the model has a good effect on the recognition of landslide pixels.
Followed by PSPNet (MobileNet) and U-Net (ResNet50), the mIoU values of which are
89.11% and 88.75%, respectively; PSPNet (MobileNet) obtained the highest recall index
(97.39%), which means that the model can identify most of the landslide pixels. U-Net
(VGG) has the worst landslide recognition effect, with a mIoU of 81.64% and a recall and
precision of 89.34% and 89.22%, respectively.

Table 5. The results of the suggested model. Numbers in bold represent the best model for identifying
landslides (with mIoU metric as the final criterion).

Model Backbone mIoU Recall Precision

U-Net VGG 81.64% 89.34% 89.22%
DeepLab v3+ Xception 86.15% 92.26% 92.20%
DeepLab v3+ MobileNet 87.06% 94.06% 91.64%

U-Net ResNet50 88.75% 96.15% 91.82%
PSPNet MobileNet 89.11% 97.39% 92.61%
PSPNet ResNet50 91.18% 96.9% 93.76%



Appl. Sci. 2022, 12, 8153 11 of 15

Below, we combine the chart to discuss the recognition effect of PSPNet on landslides
when MobileNet and ResNet50 are used as the backbone network, respectively. As shown
in Table 6, we used precision, recall and IoU to evaluate the model’s ability to recognize
landslide and background pixels, respectively, when using two different backbone net-
works. P is the abbreviation for precision, R is the abbreviation for recall and IoU represents
intersection over union. In identifying background pixels, when ResNet50 is used as the
backbone network, the IoU value is 97.76%, which is 14.79% higher than when MobileNet
is used as the backbone network; this can be seen intuitively from the landslide predic-
tion map. In Figure 6, the blue boxes mark the parts of PSPNet (ResNet50) and PSPNet
(MobileNet) that misidentify the background pixels as landslide pixels. Compared with
PSPNet (MobileNet), PSPNet (ResNet50) is less likely to mistakenly identify content in the
background (such as roads, green vegetation, bare land) as landslides. At the same time,
the precision and recall of ResNet50 are higher than MobileNet. In identifying landslide
pixels, when ResNet50 is used as the backbone network, the IoU value is 84.6%, which is
3.45% higher than when MobileNet is used as the backbone network. At the same time,
the precision is 5.35% higher than that of PSPNet (MobileNet), and the recall is lower than
1.9%. Therefore, its landslide recognition effect is better.

Figure 6. The comparison results of landslide identification of PSPNet using MobileNet and ResNet50
as the backbone network, respectively. Behaviors 1, 3 and 5 use MobileNet as the identification result
of the backbone network, and behaviors 2, 4 and 6 use ResNet50 as the identification result of the
backbone network. The blue box marks the background pixels that the model misidentified as part of
the landslide.
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Table 6. The performance of PSPNet under different backbone networks. The numbers in bold are
the highest IoU values obtained for landslide and background recognition, respectively.

Backbone Evaluate Landslide Background

MobileNet
P 82.79% 97.08%
R 97.37% 97.41%

IoU 81.15% 82.97%

ResNet50
P 88.14% 99.41%
R 95.47% 98.34%

IoU 84.6% 97.76%

4.4. Discussion

In previous research on landslide recognition based on deep learning, Ghorbanzadeh
used CNN to train and test landslides in the Himalayas and obtained an F1 value of
87.8% and an mIoU value of 78.26% [21]. Liu (2020) proposed to use ResU-Net to identify
earthquake landslides in Jiuzhaigou, Sichuan Province, China, and obtained an F1 value
of 93.3% and an mIoU value of 87.5% [25]. Ullo (2021) applied Mask R-CNN to landslide
recognition in digital images of target hilly areas acquired by drones; and when ResNet101
was used as the backbone network, the obtained F1 value was 97% [28]. Liu (2021) proposed
to use an improved Mask R-CNN to identify earthquake landslides in the Jiuzhaigou
area of Sichuan Province, China, and obtained an F1 value of 94.5% and an mIoU value
of 89.6% [29]. Ghorbanzadeh (2022) obtained an F1 of 84.03% and an mIoU value of
72.49% when using ResU-Net and OBIA for landslide detection in multitemporal Sentinel-
2 images [21]. Our proposed PSPNet, using the classification network ResNet50 as the
backbone network, achieves a 91.18% mIoU value on the Bijie landslide dataset; however,
due to the differences in datasets and evaluation metrics, we cannot compare it with other
models; however, according to the current experimental results, the method proposed in
this paper is effective for landslide recognition.

Although PSPNet (ResNet50) achieves good results in landslide identification, it still
has some shortcomings. For example, its segmentation of landslide boundaries still needs
further improvement. Landslide images are different from traditional remote sensing
images. In addition to the information of the images themselves, remote sensing images
also contain rich geological information. For example, a digital elevation model (DEM) can
reflect local terrain features at a specific resolution. Therefore, we should further combine
deep learning with remote sensing to maximize the role of remote sensing data. If the DEM
data and remote sensing images are fused, we can obtain the local terrain information
of the landslide from the DEM, which will help the model to improve the segmentation
accuracy of the landslide boundary.

At present, the automatic identification of landslides based on deep learning still
presents research challenges and problems to be solved. For example, the scarcity of open
source code for landslide identification research and the lack of high-resolution public
landslide remote sensing image datasets and validation areas have brought great difficulties
to such research. At the same time, the further improvement in landslide identification
accuracy remains to be explored. Given these problems, we need to continue research
on automatic landslide identification. In terms of datasets, we will try to integrate the
DEM data into remote sensing images so that the datasets contain more information about
landslides, thereby improving the accuracy of landslide identification. In terms of models,
we will further discuss the influence of model structure on landslide identification and then
improve the model to improve the effect of landslide identification.

5. Conclusions

In this study, we proposed a deep learning-based research method for the automatic
identification of landslides and obtained good results on the Bijie landslide dataset. First,
we reconstructed the dataset for semantic segmentation and preprocessed the landslide data
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based on the Bijie landslide dataset. We then used three models: U-Net, DeepLabv3+ and
PSPNet, each using two classification networks as the backbone network, and completed
training and validation on the Bijie landslide dataset on these models. Finally, we used
the experimentally obtained pretrained model for landslide recognition and used mIoU,
precision and recall to evaluate the model’s recognition effect on landslides. According
to the experimental results, we obtained the best recognition effect of the PSPNet model
with ResNet50 as the backbone network, with an mIoU of 91.18%. This experimental result
shows that it is feasible to detect the automatic identification of landslides by using the
deep learning method; simultaneously, our proposed PSPNet method with ResNet50 as the
backbone network can effectively identify landslides.

Based on the above experimental results, we believe that this research will be helpful
to landslide relief operations in real life. The automatic identification method can effectively
make up for the shortcomings methods, which are time-consuming, labor-intensive and
highly dependent on labor; save much time and human resources for emergency rescue
work; and reduce the loss of life and property. At the same time, it can help geologists
significantly improve their work efficiency and allow them to spend more time on work
that requires more geologists. Therefore, this research has significant practical potential.

In future work, we will contribute to the lack of high-resolution landslide remote
sensing image datasets and open source code for landslide identification research. We will
try to enrich the landslide data set by adding more factors so that it contains more landslide
information for the model to improve the recognition accuracy of landslides further. In
terms of models, we will try to explore, for example, the self-attention mechanism is
introduced into the model so that the model can learn the characteristics of landslides
in a more targeted way, thereby improving its accuracy. In addition, compared with
new landslides, the characteristics of old landslides are less obvious, and it is not easy to
realize automatic identification. Thus, we will also try to apply the training model of new
landslides to the extraction of old landslides through transfer learning, thereby improving
the accuracy of deep learning methods in the automatic identification of old landslides.
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