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Abstract: Coronary artery disease (CAD) is a common major disease. Revascularization with percu-
taneous coronary intervention (PCI) or coronary artery bypass graft (CABG) could relieve symptoms
and myocardial ischemia. As the treatment improves and evolves, the number of aged patients with
complex diseases and multiple comorbidities gradually increases. Furthermore, in patients with
multivessel disease, 3-vessel PCI may lead to a higher risk of complications during the procedure,
leading to further ischemia and higher long-term mortality than PCI for one vessel or two vessels.
Nevertheless, the risk factors for accurately predicting patient mortality after 3-vessel PCI are unclear.
Thus, a new risk prediction model for primary PCI (PPCI) patients’ needs to be established to help
physicians and patients make decisions more quickly and accurately. This research aimed to construct
a prediction model and find which risk factors will affect mortality in 3-vessel PPCI patients. This
nationwide population-based cohort study crossed multiple hospitals and selected 3-vessel PPCI
patients from January 2007 to December 2009. Then five different single machine learning methods
were applied to select significant predictors and implement ensemble models to predict the mortality
rate. Of the 2337 patients who underwent 3-vessel PPCI, a total of 1188 (50.83%) survived and 1149
(49.17%) died. Age, congestive heart failure (CHF), and chronic renal failure (CRF) are mortality’s
most important variables. When CRF patients accept 3-vessel PPCI at ages between 68–75, they
will possibly have a 94% death rate; Furthermore, this study used the top 15 variables averaged
by each machine learning method to make a prediction model, and the ensemble learning model
can accurately predict the long-term survival of 3-vessel PPCI patients, the accurate predictions rate
achieved in 88.7%. Prediction models can provide helpful information for the clinical physician
and enhance clinical decision-making. Furthermore, it can help physicians quickly identify the risk
features, design clinical trials, and allocate hospital resources effectively.

Keywords: percutaneous coronary intervention; National Health Insurance Research Database;
mortality prediction; machine learning; ensemble learning model; feature selection

Appl. Sci. 2022, 12, 8135. https://doi.org/10.3390/app12168135 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12168135
https://doi.org/10.3390/app12168135
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-0872-8664
https://orcid.org/0000-0001-5724-2797
https://orcid.org/0000-0002-8278-0033
https://doi.org/10.3390/app12168135
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12168135?type=check_update&version=2


Appl. Sci. 2022, 12, 8135 2 of 16

1. Introduction

Coronary artery disease (CAD) is a common global health problem and is the main
cause of death [1,2]. The main purpose of using percutaneous coronary intervention (PCI)
or coronary artery bypass graft (CABG) to treat patients with multivessel CAD is to
relieve myocardial ischemia and other symptoms. PCI for multivessel diseases can result
in inadequate revascularization or contrast-induced acute kidney injury. There is also a
50% probability of cardiac or noncardiac death associated with this procedure [3,4].

Compared to CABG surgery, PCI is relatively less invasive. PCI is increasingly being
accepted as a treatment option with improved skills and instruments [5]. This procedure
can be used to treat patients who refuse or cannot tolerate CABG and is estimated to
gradually become the treatment of choice for CAD [6–8].

Although many studies mention PCI as the optimal treatment, patient comorbidities
can affect morbidity and mortality [9–17]. When three vessels are treated simultaneously,
the probability of complications, or even death, during or after surgery is higher than
when one or two are treated [18]. Many risk factors for mortality after PCI have been
identified [19,20], including clinical and anatomic variables. Clinical variables include age,
sex, diabetes mellitus, chronic lung disease, prior myocardial infarction, impairment of
left ventricular function, renal dysfunction, cardiogenic shock, left main coronary artery
(LMCA), and age are the most important predictors of 1-year mortality postoperatively [21].
Thus, postoperative death remains a major issue for PCI.

Several studies have only used single machine learning methods to make the predic-
tion model, such focused on the degree of revascularization [22,23] or logistic regression
(LGR) for predicting in-hospital mortality [24]. Nevertheless, some mortality prediction
models after PCI have been constructed using the data of significantly older people or
clinical factors [25–28]. No study has focused on mortality risk factors among patients who
initially underwent 3-vessel PCI, and there are no machine learning prediction models.

The present study collected data from the Taiwan National Health Insurance Research
Database (NHIRD), one of Asia’s largest databases, and aimed to identify variables that
affect the survival of patients undergoing 3-vessel primary PCI (PPCI). The patient’s risk
factors and baseline characteristics were collected the year before surgery. After identifying
the optimal features, ensemble learning methods were used to construct a prediction model.
Five machine learning methods were applied, and majority voting was used to develop the
model. This prediction model can be a basis for clinical decision-making and healthcare
management policies.

2. Materials and Methods
2.1. Data Source

Data from patients who underwent 3-vessel PCI for the first time were collected
from the NHIRD. The NHI system was launched in March 1995, and approximately
23 million beneficiaries joined this program. The NHIRD collects patient demographics,
treatments, medication, total expenditure, admissions, and outpatient medical records from
every medical institution. The diagnosis code identifies a patient’s history, as defined by
the International Classification of Diseases, 9th Revision. Clinical Modifications ICD-9-CM
and ICD-10-CM were added to the database in 2016. The Institutional Review Board of Fu
Jen Catholic University Ethics Institutional Review Board in Taiwan approved the protocol
of this study and waived the need for informed consent (IRB approval number: C108121).

2.2. Study Framework

The main goal of this research was to identify the factors affecting the mortality of
patients undergoing 3-vessel primary PCI and construct a prediction machine learning
model. For this aim, a three-stage framework was designed. In the first stage, data of
patients who underwent 3-vessel PCI for the first time between 1 January 2007, and
31 December 2009, were extracted (operation codes 33078A and 33078B) from the NHIRD
in Taiwan (n = 2647). The exclusion criteria were missing information (n = 6) and patients
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who underwent PCI in 2002–2006 (n = 304). Finally, 2337 patients were enrolled in this
study; 1188 (50.83%) survived, and 1149 (49.17%) died. The initial inpatient date of PCI
was set as the index date. The final follow-up time was the day of death or follow-up until
the end of the time in the database (31 December 2019). Death records were extracted from
the National Death Registry. Figure 1 presents the overall conceptual framework.
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After selecting the population (stage 2), we trained five different machine learning
models using five cross-validations to find the optimal features. A fivefold cross-validation
approach was applied to divide five equal subset folds in the training dataset randomly,
and four subset folds were used to build the model as a training dataset. The remaining
fold (1-fold) was used to validate the model. The five machine models included LGR,
classification and regression tree (CART), multivariate adaptive regression splines (MARS),
random forests (RF), and extreme gradient boosting (XGboost). In the final stage, the
feature scores for each method were averaged, and single and ensemble prediction models
were implemented; finally, the final prediction result was evaluated.

2.3. Risk Features

Overall, 42 risk factors that affected the survival rate in the patients were selected. The
baseline variables in X1–X3 were sex (male/female), age, and Charlson Comorbidity Index
(CCI). The X4–X7 variables included the preoperative 1-year history, including previous CABG
surgery, the average length of ICU stays, average bags of blood transfused (94001C, 94002C,
4013C, 94015C, 94003C), and average days on mechanical ventilation (57001B, 57002B, 57003B).
X8–X11 were surgical variables, and X12–X39 were all underlying diseases.

Underlying diseases were divided into the following: baseline characteristics, includ-
ing hypertension (X12), hyperlipidemia (X13), hyperuricemia (X14), diabetes (X15), liver
cirrhosis (X16), chronic obstructive pulmonary disease (COPD; X17), skin and bone dis-
eases (X18), stroke (X19), gout (X20), biliary stones (X21), hepatitis B virus (HBV, X22), and
hepatitis C virus (HCV, X23); heart-related characteristics, including atrial fibrillation (AF,
X24), CHF (X25), peripheral vascular disease (PVD, X26), acute coronary syndrome (ACS,
X27), malignant dysrhythmia (X28), and cardiogenic shock (X29); renal-related diseases,
including kidney disease (X30; contain: glomerulonephritis, nephritis, acute renal failure,
and chronic renal failure), chronic renal failure (CRF, X31), and acute kidney failure (AKF,
X32); infection-related characteristics, including septicemia (X33), lower respiratory tract
infections (Lower RTI, X34), and gastrointestinal infections (GTIs, X35); and bleeding-
related characteristics intracranial bleeding (X36), transient ischemic attack (TIA, X37),
gastrointestinal bleeding (X38), and major bleeding (X39).

Hospital variables included the following: hospital status (medical/nonmedical cen-
ter) (X40), hospital ownership (public/private hospital) (X41), and hospital area (cen-
tral/northern/southern/eastern) (X42).

2.4. Outcome Definition

According to a previous study, medical records of up to 1 year were useful predictors
of mortality [29]. Therefore, data from inpatient and outpatient records in the previous year
and the variables of current surgery were included as predictive variables. The primary
outcome of death was collected from the Taiwan Cancer Registry files.

3. Feature Selection and Methodology

The medical information for patients was extensive and poorly organized. Checking
past medical records before making clinical decisions is time-consuming. When estimating
risk factors, essential variable selection is a crucial preprocessing step. Variable selection
excludes extraneous risk factors while focusing on strongly correlated features without
losing information [29–31]. The prediction model was designed to identify the risk features
affecting mortality, and the optimal features were used to construct the prediction model
for 3-vessel PCI patients. Machine learning involves using data to improve learning au-
tomatically. The most commonly used method is LGR. In the present study, we applied
five different single machine learning methods, extracted the advantage from each model,
and used majority voting to ensure an optimal ensemble learning model. The predicted
accuracy of the above methods was then evaluated and used to calculate accuracy, kappa,
sensitivity, specificity, AUC, and F1_Score. All machine learning prediction methods were
implemented in the R studio software with version 3.6.2. The “glm” package was used for
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LGR, “rpart” was used for CART, “earth” was used for MARS, “randomForest” was used
for RF, and “xgboost” was used for XGBoost. The parameter is shown in supplementary
(Table S1).

3.1. Feature Selection

Prompt decision-making in a limited time is challenging for physicians. This makes
feature selection significantly important. Feature selection involves preprocessing to reduce
computation time, improve prediction performance, and identify the optimal features for
overcoming problems.

To enhance the accuracy of prediction, multiple collinearities and low correlation fea-
tures between dependent variables should be eliminated, then the rate can be improved [32].
Thus, we take advantage of each machine learning algorithm to find which risk features
correlate highly with PCI death.

3.2. LGR

LGR is a classical statistical classification model that evolved from linear regression.
LGR can be used to perform binary classification tasks by predicting the probabilities of
outcomes. The model offers only two possible outcomes: Y; e.g., yes (1) or no (0). LGR can
be used to analyze the correlation between one or more independent variables. The basic
Equation (1) for LGR is as follows:

log
(

b
1 − b

)
= β0 + β1x1 + β2x2 + β3x3 . . . βixi, (1)

where β0 is the intercept term or error, β1 is the coefficient of the independent variable (x1),
and the output number b is the probability between 0 and 1.

3.3. CART

The decision tree is a flexibility classification model, and the rule is defined as if/else
instruction [33]. This structure of decision-tree formation using a classifier method involves
the creation of an observation model and classifying input data by the tree from the node
to the target or node to the node. The branches are the link between each node [34].

3.4. RF

RF comprises many decision trees, and the resulting forest is trained by bagging or
bootstrap aggregation. It can improve the accuracy of machine learning algorithms and
prevent the overfitting of the dataset. The final result is obtained by combining each decision
tree’s mode or weighted average to make predictions. With the use of out-of-bag (OOB)
error, it is possible to evaluate the constructed model’s performance and determine the
input factors’ importance [35,36]. Compared with ANN, RF has the advantage of allowing
the improvement of predictive performance and easier understanding [35,37].

3.5. MARS

MARS is a nonparametric statistical method proposed by Friedman et al. in 1991 [38].
It can automatically create standard models and handle high-dimensional data [39]. MARS
proceeds in a forward-backward pattern. Typically, pair basis functions are added to the
model in the forward aspect until the maximum value is reached. In the backward aspect,
an overfit model with being built, and the least efficient terms will be pruned until the best
sub-model is found [39,40]. The MARS model is presented in Equation (2).

f (X) = β0 + ∑I
i=1 βi ∗ λi ∗ (Y), (2)

where λi ∗ (Y) can be one or more spline functions, and β (constant) is the coefficient
calculated using the least squares estimation method to estimate the coefficients.
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3.6. XGboost

XGboost is an ensemble machine learning algorithm based on trees and uses a gradient
boosting technique to significantly reduce learning time and regulation function to prevent
overfitting [35]. Boosting can group weak learners into a set and predict accuracy. When the
gradient descents, it will weigh the error of weak learning prediction models and present
them sequentially in the next learned model to minimize loss function fitting the residuals
and construct a strong prediction model. The loss function derives from Taylor’s expansion.

3.7. Ensemble Modeling Methods

No single prediction model can achieve perfect accuracy because, under different data
and assumptions, different algorithms have different inductive biases. Therefore, ensemble
learning takes advantage of each classifier to improve accuracy and combines them to reach
the final result [41,42]. The main concept of ensemble methodology is constructing multiple
individual classifiers according to each learner’s performance and stability, then combining
them to obtain better performance in the single classifier [43,44]. Ensemble modeling has
been successfully applied to various decision-making problems, such as feature selection,
classification, and prediction [41]. It can reduce the estimated error variance and avoid
overfitting problems [42,43,45].

3.8. Performance Metrics

The performance metrics are common to use in model evaluation to evaluate the
performance of each prediction model, and it is calculated by confusion matrix value: true
positive (TP), true negative (TN), false positive (FP), and false negative (FN). TP and TN
are the cases where the actual value is correctly predicted. FP and FN are observed when
the case predicted the actual value was incorrect. The equations for the metrics of accuracy,
kappa, sensitivity, specificity, and F1 score are defined in Equations (3)–(7), respectively:

Accuracy =
TP + TN

TP + TN + FP + FN
∗ 100 (3)

y =

[
(TP + FP)×

(
TP

Accuracy

)]
+ [(FN + TN)× (Accuracy)]

Accuracy

Kappa =
(y − Accuracy)
(100% − y)

(4)

Sensitivity =
TP

TP + FP
(5)

Specificity =
TP

TP + FN
(6)

F1 − score = 2 × Sensitivity × Specificity
Sensitivity + Specificity

(7)

Hosmer et al. categorized AUC values as follows: AUC ≥ 0.9, outstanding discrimina-
tion; 0.8 ≤ AUC < 0.9, good discrimination; 0.7 ≤ AUC < 0.8, acceptable/fair discrimination;
0.6 ≤ AUC < 0.7, poor discrimination; and AUC < 0.6, no discrimination [46]. Higher accu-
racy, sensitivity, specificity, and kappa are better.

4. Results
4.1. Demographics of the Study Population

Table 1 presents the patients’ demographic characteristics and underlying diseases
who underwent 3-vessel PCI for the first time. Patients who fulfilled the criteria from
1 January 2007 to 31 December 2009 were selected from the NHIRD. The mean follow-up
periods were approximately 12 years in the survival group and approximately five years in
the death group (p < 0.001). Men had a higher survival rate (p < 0.001).
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Table 1. Baseline characteristics of patients who underwent 3-vessel PCI.

Variables

PCI (n = 2337) p-Value

Survive
(n = 1188)

Death
(n = 1149)

N (%)

Survival time (mean, SD) in years 11.34 (0.87) 4.57 (3.51) <0.001

Baseline

X1 Sex
Male 941 (79.21) 765 (66.58)

<0.001Female 247 (20.79) 384 (33.42)

X2 Age (mean, SD) 60.09 (10.18) 71.18 (10.24) <0.001

X3 CCIS stratified

0 185 (15.57) 58 (5.05)

<0.001

1 340 (28.62) 134 (11.66)
2 284 (23.91) 197 (17.15)
3 180 (15.15) 193 (16.8)
4 90 (7.58) 165 (14.36)
5 47 (3.96) 136 (11.84)

6+ 62 (5.22) 266 (23.15)

CCI score (mean, SD) 2.09 (1.80) 3.85 (2.50) <0.001

One year before variables

X4 Previous CABG surgery 7 (0.59) 13 (1.13) 0.1549
X5 Length of ICU stay (Days) 0.16 (1.69) 0.94 (6.83) <0.001
X6 Blood transfusion (Bags) 0.12 (0.85) 0.88 (3.82) <0.001
X7 Mechanical ventilation (Days) 0.12 (1.05) 0.87 (11.25) 0.0244

Current surgical variables

X8 Blood transfusion (Bags) 0.17 (1.55) 3.42 (15.78) <0.001
X9 Mechanical ventilation (Days) 0.13 (1.23) 3.45 (24.23) <0.001

X10 Length of ICU stay (Days) 0.23 (2.07) 0.65 (4.80) 0.0063
X11 Length of Stay (Days) 4.29 (4.74) 9.85 (12.30) <0.001

Underlying diseases

X12 Hypertension 52 (4.38) 73 (6.35) 0.0338
X13 Hyperlipidemia 850 (71.55) 470 (40.91) <0.001
X14 Hyperuricemia 52 (4.38) 30 (2.61) 0.0204
X15 Diabetes 499 (42) 644 (56.05) <0.001
X16 Liver cirrhosis 6 (0.51) 27 (2.35) <0.001
X17 COPD 108 (9.09) 228 (19.84) <0.001
X18 Skin bone 128 (10.77) 158 (13.75) 0.0282
X19 Stroke 105 (8.84) 228 (19.84) <0.001
X20 Gout 156 (13.13) 166 (14.45) 0.3561
X21 Biliary stone 27 (2.27) 25 (2.18) 0.8738
X22 HBV 39 (3.28) 21 (1.83) 0.0262
X23 HCV 19 (1.6) 24 (2.09) 0.3788

Heart-related characteristics

X24 AF 32 (2.69) 105 (9.14) <0.001
X25 CHF 175 (14.73) 537 (46.74) <0.001
X26 PVD 49 (4.12) 102 (8.88) <0.001
X27 ACS 487 (40.99) 654 (56.92) <0.001
X28 Malignant dysrhythmia 21 (1.77) 80 (6.96) <0.001
X29 Cardiogenic shock 11 (0.93) 87 (7.57) <0.001

Renal-Related characteristics

X30 KD 79 (6.65) 389 (33.86) <0.001
X31 CRF 35 (2.95) 296 (25.76) <0.001
X32 AKF 12 (1.01) 112 (9.75) <0.001
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Table 1. Cont.

Variables

PCI (n = 2337) p-Value

Survive
(n = 1188)

Death
(n = 1149)

N (%)

Infection-related characteristics

X33 Septicemia 412 (34.68) 439 (38.21) 0.0765
X34 Lower RTI 77 (6.48) 260 (22.63) <0.001
X35 GTI 123 (10.35) 247 (21.5) <0.001

Bleeding-related characteristics

X36 Intracranial bleeding 13 (1.09) 28 (2.44) 0.0135
X37 TIA 108 (9.09) 233 (20.28) <0.001
X38 Gastrointestinal bleeding 62 (5.22) 133 (11.58) <0.001
X39 Major bleeding 44 (3.7) 52 (4.53) 0.3169

Hospital variables

X40 Hospital status
Medical
center 821 (69.11) 700 (60.92)

<0.001
Non-medical

center 367 (30.89) 449 (39.08)

X41
Hospital

ownership

Public
hospital 361 (30.39) 332 (28.89)

0.4297
Private
hospital 827 (69.61) 817 (71.11)

X42
Hospital area

type

Central 197 (16.58) 234 (20.37)

<0.001
Northern 647 (54.46) 467 (40.64)
Southern 332 (27.95) 407 (35.42)
Eastern 12 (1.01) 41 (3.57)

ACS, acute coronary syndrome; AKF, acute kidney failure; AF, atrial fibrillation; CABG, coronary artery bypass
grafting; CAD, coronary artery disease; CCI, Charlson Comorbidity Index; CHF, congestive heart failure; KD,
kidney disease; COPD, chronic obstructive pulmonary disease; CRF, chronic renal failure; GTI, gastrointestinal
Infection; ICU, intensive care unit; LOS, length of stay; Lower RTI, lower respiratory tract infections; PCI,
percutaneous coronary intervention; PVD, peripheral vascular disease; SD, standard deviation; TIA, transient
ischemic attack.

Some patient characteristics were significantly different between the survival and
death groups. The mean ages were 60.09 years and 71.18 years (p < 0.001), and the mean
CCI scores were 2.09 ± 1.80 points and 3.85 ± 2.50 points (p < 0.001), respectively. In
the year before PCI, the mean length of ICU stay (0.16 ± 1.69 vs. 0.94 ± 6.83 days,
p < 0.001), blood transfusion (0.12 ± 0.85 vs. 0.88 ± 3.82, p < 0.001), and days on me-
chanical ventilation (0.12 ± 1.05 vs. 0.87 ± 11.25, p = 0.0244) were significantly different
for the surviving and death groups. The surgical variables, including average bags of
blood transfused (0.17 ± 1.55 vs. 3.42 ± 5.78, p < 0.001), days on mechanical ventilation
(0.13 ± 1.23 vs. 3.45 ± 24.23, p < 0.001), length of ICU stay (0.23 ± 2.07 vs. 0.65 ± 4.80,
p = 0.0063), and length of hospital stay (4.29 ± 4.74 vs. 9.85 ± 12.30 days, p < 0.001) were
all significantly different.

Most underlying diseases were significantly different for the survival and death groups, in-
cluding hypertension (4.38% vs. 6.35%, p = 0.0338), hyperlipidemia (71.55% vs. 40.91%, p < 0.001),
hyperuricemia (4.38% vs. 2.61%, p = 0.0204), diabetes (42% vs. 56.05%, p < 0.001), liver
cirrhosis (0.51% vs. 2.35%, p < 0.001), COPD (9.09% vs. 19.84%, p < 0.001), skin and
bone diseases (10.77% vs. 13.75%, p = 0.0282), stroke (8.84% vs. 19.84%, p < 0.001), and
HBV (3.28% vs. 1.83%, p = 0.0262). The baseline heart-related characteristics were sig-
nificantly different for the two groups, including AF (2.69% vs. 9.14%, p < 0.001), CHF
(14.73% vs. 46.74%, p < 0.001), PVD (4.12% vs. 8.88%, p < 0.001), ACS (40.99% vs. 56.92%,
p < 0.001), malignant dysrhythmia (1.77% vs. 6.96%, p < 0.001), and cardiogenic shock
(0.93% vs. 7.57%, p < 0.001). The following renal-related characteristics were significantly
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different between the survival and death groups: kidney disease (6.65% vs. 33.86%, p < 0.001),
CRF (2.95% vs. 25.76%, p < 0.001), and AKF (1.01% vs. 9.75%, p < 0.001). Significantly
different infection-related characteristics between the two groups included lower RTI
(6.48% vs. 22.63%, p < 0.001) and GTI (10.35% vs. 21.5%, p < 0.001). Significantly different
bleeding-related characteristics between the survival and death groups included intracra-
nial bleeding (1.09% vs. 2.44%, p = 0.0135), TIA (9.09% vs. 20.28%, p < 0.001), and gastroin-
testinal bleeding (5.22% vs. 11.58%, p < 0.001). Hospital status and area were significantly
different for the two groups.

4.2. Feature Importance

Different algorithms have different calculations. Table 2 presents the ranking of the se-
lected variables by the six machine learning methods. LGR selected a total of 32 variables, 6 by
CART, 10 by MARS, 26 by RF, and 13 by XGboost. A larger value means higher importance.

Table 2. Ranking of the selected variable by the six machine learning methods.

Methods LGR
(N = 32)

CART
(N = 6)

MARS
(N = 10)

RF
(N = 26)

XGboost
(N = 13) Average

Baseline

X1 Sex 4 - - 15 - 3.8
X2 Age 32 31 32 32 32 31.8
X3 CCI scores - 30 29 29 29 24.2

One year before variables

X4 Previous CABG surgery 3 - - - - 0.6
X5 Length of ICU stay (Days) 8 - - 8 - 3.2
X6 Blood transfusion (Bags) 11 - - 23 - 6.8
X7 Mechanical ventilation (Days) - - - 16 - 3.2

Current surgical variables

X8 Blood transfusion (Bags) 12 28 24 29 28 24.2
X9 Mechanical ventilation (Days) 16 - - 25 24 13

Comorbidities

X12 Hypertension 14 - - - - 2.8
X13 Hyperlipidemia 28 - 27 26 26 21.4
X14 Hyperuricemia 23 - - - - 4.6
X15 Diabetes 29 - 26 17 25 19.4
X17 COPD 20 - - 21 - 8.2
X18 Skin bone 2 - - - - 0.4
X19 Stroke 10 - - 18 - 5.6
X20 Gout - - - 7 - 1.4
X22 HBV 19 - - - - 3.8
X23 HCV 18 - - - - 3.6

Heart-related characteristics

X24 AF 15 - - 10 - 5
X25 CHF 31 29 30 30 30 30
X26 PVD 6 - - - - 1.2
X27 ACS 22 - 25 22 23 18.4
X28 Malignant dysrhythmia 27 - 23 11 20 16.2
X29 Cardiogenic shock 25 - 28 12 22 17.6

Renal-related characteristics

X30 KD 7 32 - 28 27 18.8
X31 CRF 30 27 31 27 29 28.8
X32 AKF 26 - - 20 - 9.2



Appl. Sci. 2022, 12, 8135 10 of 16

Table 2. Cont.

Methods LGR
(N = 32)

CART
(N = 6)

MARS
(N = 10)

RF
(N = 26)

XGboost
(N = 13) Average

Infection-related characteristics

X33 Septicemia - - - 9 - 1.8
X34 Lower RTI 13 - - 24 - 7.4
X35 GTI - - - 14 - 2.8

Bleeding-related characteristics

X36 Intracranial bleeding 17 - - - - 3.4
X37 TIA 9 - - 19 - 5.6
X38 Gastrointestinal bleeding 21 - - 12 21 10.8
X39 Major bleeding 5 - - - - 1

ACS, acute coronary syndrome; AKF, acute kidney failure; AF, atrial fibrillation; CAD, coronary artery disease;
CABG, coronary artery bypass grafting; CART, classification and regression tree; CCI, Charlson Comorbidity
Index; CHF, congestive heart failure; KD, kidney disease; COPD, chronic obstructive pulmonary disease; CRF,
chronic renal failure; GTI, gastrointestinal infection; ICU, intensive care unit; LGR, logistic regression; LOS, length
of stay; Lower RTI, lower respiratory tract infections; MARS, multivariate adaptive regression splines; PVD,
peripheral vascular disease; RF, random forests; SD, standard deviation; TIA, transient ischemic attack. Xgboost,
extreme gradient boosting.

Figure 2 presents the top 15 important risk factors ranked corresponding to the six machine
learning models. The rankings of each selected variable in the six prediction models were
as follows: age (which contributed the most to this model), CHF, CRF, CCI scores, hyper-
lipidemia, diabetes, KD, ACS, cardiogenic shock, malignant dysrhythmia, average days
on a ventilator during recent surgery, gastrointestinal bleeding, AKF, and COPD. These
15 features can be considered the main variables for the prediction model. These rankings
can give physicians an overview of the patient before or after the surgery. Furthermore,
these variables were used to develop the ensemble learning prediction model.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 18 
 

 

Figure 2. Results of the top 15 risk factors ranked in order. 

Figure 3 shows the decision rules for predicting mortality among patients who un-

derwent 3-vessel PCI for the first time, based on the three important features of the CART 

model. Here, 86% of the patients aged <68 years and with a history of CRF died, whereas 

78% of those without CRF died. Further, 94% of the patients aged 68–75 years with CRF 

died, and 76% of those without CRF but with CHF died. Finally, 75% of the patients aged 

>75 years died. 

Figure 2. Results of the top 15 risk factors ranked in order.

Figure 3 shows the decision rules for predicting mortality among patients who un-
derwent 3-vessel PCI for the first time, based on the three important features of the CART



Appl. Sci. 2022, 12, 8135 11 of 16

model. Here, 86% of the patients aged <68 years and with a history of CRF died, whereas
78% of those without CRF died. Further, 94% of the patients aged 68–75 years with CRF
died, and 76% of those without CRF but with CHF died. Finally, 75% of the patients
aged >75 years died.
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Figure 3. The survival prediction results in decision tree model analysis for PPCI patients. CHF, congestive
heart failure; CRF, chronic renal failure.

4.3. Model Comparison

The ensemble learning method with majority voting was used to predict the survival
of patients who underwent 3-vessel PCI for the first time. Overall, 15 risk factors were
selected to develop single machine and ensemble learning models with an accuracy of
88.7% and an AUC of 90.0% in the ensemble learning model (Table 3).

Table 3. Accuracy of the single and ensemble learning prediction models after feature selection.

Single Machine Learning Models
Methods LGR CART RF MARS XGboost

Ensemble Learning Model

Accuracy 0.752 0.778 0.810 0.761 0.739 0.887
Kappa 0.105 0.552 0.620 0.517 0.479 0.241

Sensitivity 0.833 0.684 0.844 0.640 0.764 0.833
Specificity 0.750 0.864 0.778 0.872 0.716 0.888

AUC 0.839 0.777 0.887 0.821 0.805 0.900
F1 Score 0.855 0.824 0.779 0.823 0.714 0.939
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5. Discussion

Because of the tremendous advances in PCI instruments and technology, more patients
with multivessel CAD prefer to undergo PCI instead of CABG. Before deciding whether or
not to accept surgery, the doctor’s clinical experience and SYNTAX score are used to make a
preliminary judgment for the patient, and the SYNTAX is based on the severity of the blood
vessels. SYNTAX score, which is a score according to coronary artery morphology, was
used for the strategy of PCI or CABG for patients with triple vessel disease. For patients
with low SYNTAX scores, PCI is an acceptable revascularization strategy, although at a
price of significantly higher rates of repetitive revascularization [47]. The SYNTAX score
and both are useful determinants for predicting hard clinical events (HCE: death, nonfatal
myocardial infarction, and stroke). The incidence of HCE at three years significantly
differed according to Clinical SYNTAX score (High, 20.2%; Intermediate, 1.2%; and Low,
6.0%; log-rank p < 0.001), but not according to SYNTAX score (High, 14.0%; Intermediate,
5.8%; and Low, 7.3%; log-rank p = 0.13) [48].

It is dangerous if we cannot judge only by looking at a single indicator for major
decisions concerning life and death. Disease history and surgical factors are also useful
for predicting patient prognoses after an intervention. Based on the risk features, we
constructed an ensemble machine learning model using five well-known machine learning
models and used majority voting to develop the best prediction model.

Renal insufficiency is a risk factor for poor long-term survival in patients who under-
went coronary angiography [49], whereas age affects early and late survival independently
after PCI [50]. Moreover, a history of CHF, acute myocardial infarction, cardiogenic shock,
and renal disease is significantly associated with mortality [20,51,52]. Morbidity and mortal-
ity for PCI are high for patients with CAD and kidney disease [49,51,53–55]. The ISCHEMIA
CKD trial included 777 patients with advanced renal insufficiency (eGFR < 30 mL/min) in
the context of the larger ISCHEMIA trial population. An early routine invasive strategy
failed to reduce the incidence of death or myocardial infarction, and an excess of stroke,
death, or the initiation of dialysis was observed more than medical therapy alone [56]. CHF
is a strong predictor of adverse outcomes after PCI [57]. Bleeding events were also associ-
ated with early and late mortality [58]. Some models were developed using elderly patient
databases or fewer data to capture the important risk factors and prepare angiographic and
mortality prediction models [18,52,59].

Moreover, feature selection can help physicians understand the causes of a disease;
this method has been successfully applied in the medical industry [60]. The top 15 risk
factors were identified using five single different machine learning models, and the rank
of the scores for each variable was averaged. Figure 2 presents the ranking of important
variables for predicting the outcome of PCI; age, CHF, and CRF are the top predictors
of mortality, which is consistent with previous studies. Moreover, disease history and
surgical risk factors were also identified as risk factors in this study. Although the safety of
PCI has improved substantially, severely ill patients with different underlying diseases or
complications who underwent 3-vessel PCI may experience prolonged hospital stays [58].
Figure 3 demonstrates the rules of the decision tree: patients aged 68–75 years with CRF
will possibly have a 94% death rate. History of CRF should thus be confirmed before
undergoing 3-vessel PCI for the first time; CABG or staged PTCA may be the preferred
strategy for such patients.

This study demonstrated that feature selection, applying ensemble learning, and the
presence of fewer risk factors could help achieve higher accuracy and identify factors
affecting survival. This research provides a good basis and multiple-stage framework for
developing better survival prediction models for patients undergoing 3-vessel PCI for the
first time. An increasing number of patients are now opting for PCI as the treatment of
choice for multivessel CAD. Physicians must consider the risk of multivessel PCI for each
patient. The present study demonstrated that using feature selection and ensemble learning,
fewer risk factors could achieve a higher accuracy rate and identify the factors affecting
survival. This research provides useful suggestions and multiple-stage frameworks for
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constructing a better survival prediction model for patients undergoing 3-vessel PCI for
the first time, and physicians could make a more accurate choice.

6. Conclusions

Mortality prediction models are useful tools for physicians in clinical detection, and the
prediction model’s quality must be controlled and improved. This research provides a good
basis and multiple-stage framework for developing better survival prediction models for
patients undergoing 3-vessel PCI for the first time. In addition to identifying the 15 variables
that affect survival, we used decision trees for inferences to predict patient mortality. This
research compared different single and ensemble machine learning techniques. It can help
physicians provide effective decisions and early healthcare management for patients older
than 68 years with a history of kidney disease and improve the prediction model quality.
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