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Abstract: In recent decades, tool wear monitoring has played a crucial role in the improvement of
industrial production quality and efficiency. In the machining process, it is important to predict
both tool cost and life, and to reduce the equipment downtime. The conventional methods need
enormous quantities of human resources and expert skills to achieve precise tool wear information.
To automatically identify the tool wear types, deep learning models are extensively used in the
existing studies. In this manuscript, a new model is proposed for the effective classification of
both serviceable and worn cutting edges. Initially, a dataset is chosen for experimental analysis
that includes 254 images of edge profile cutting heads; then, circular Hough transform, canny
edge detector, and standard Hough transform are used to segment 577 cutting edge images, where
276 images are disposable and 301 are functional. Furthermore, feature extraction is carried out
on the segmented images utilizing Local Binary Pattern (LBPs) and Speeded up Robust Features
(SURF), Harris Corner Detection (HCD), Histogram of Oriented Gradients (HOG), and Grey-Level
Co-occurrence Matrix (GLCM) feature descriptors for extracting the texture feature vectors. Next, the
dimension of the extracted features is reduced by an Improved Dragonfly Optimization Algorithm
(IDOA) that lowers the computational complexity and running time of the Deep Belief Network
(DBN), while classifying the serviceable and worn cutting edges. The experimental evaluations
showed that the IDOA-DBN model attained 98.83% accuracy on the patch configuration of full edge
division, which is superior to the existing deep learning models.

Keywords: canny edge detector; deep belief network; dragonfly optimization algorithm; image
processing; local binary pattern; tool wear monitoring

1. Introduction

Tool wear is the result of cutting temperature, cutting force, and mechanical friction
in the milling process of Computer Numerical Control (CNC) machines [1,2]. Tool wear
reduces the workpiece quality and increases the workpiece surface roughness [3]; serious
tool wear causes chatter, fracturing, and chipping, which damages both the machine
tools and the workpiece, and can also lead to serious processing accidents [4]. Therefore,
appropriate monitoring and classification mechanisms could help to decrease the loss
caused by tool wear, and to obtain better surface quality [5]. By modifying the structure
of solid materials, the machining process is the most significant industrial method for
producing semi-finished and final outputs. Cutting parameters are typically utilized
to eliminate chips in the substance [6]. However, even though advanced technologies
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in cutting tool compositions and milling machine control technologies have resulted in
extended mechanical properties, the instruments eventually wear down with time [7]. Tool
wear invariably has a direct impact on the surface polish and predicted probability of the
completed workpiece, resulting in failures [8]. Tool removal and unplanned shutdowns
because of worn tools could even result in machine breakdown and product inconsistencies,
and eventually in financial loss. As a result, it is critical to avoid unscheduled downtime
throughout operation, which has a significant effect on organizational performance [9].
Tool condition monitoring methodologies have been adopted for nearly two decades to
minimize this, and they have proved themselves as a basic requirement of modern machine
tools [10].

Coated tools are more widely utilized in numerous machining operations than un-
coated tools because they have a higher tool performance and increased processability [11].
The remaining thickness of coated tools throughout manufacturing operations might be
beneficial for the technician to monitor when using worn tools [12]. To determine the depth
of a coating layer, aggressive tools such as microhardness monitoring and metallography
would be used, although they are costly, time-consuming, and difficult to utilize [13].
The tool wear monitoring is categorized into direct approaches and indirect approaches
based on the hardness of the machining process [14]. The direct approaches based on
the measurement of flank wear consists of electrical resistance, radioactivity, and vision
inspection [15]. The direct approaches are not conducive to the practical applications, due
to the limitation of accessing similar levels of illumination, cutting fluid, and the presence of
chips, and high requirements must be reached to measure the environment [16]. Therefore,
indirect approaches are effective in monitoring tool wear based on image analysis. The
computer vision approach directly measures tool wear, which helps in achieving high levels
of reliability and precision [17,18]. Nonetheless, the bulk of tool condition measurement
techniques reported in currently published studies have utilized complex, non-production-
ready sensing technologies, including force dynamometers [19]. Due to the diversity of
signals that must be acquired from the operating equipment, even with sophisticated data-
gathering hardware, collecting high-quality datasets to train the machine is challenging
and time-consuming [20]. Cutting tools are typically used to decrease cutting temperature
and friction during machining processes to increase tool life and surface quality. Water-oil
emulsions, with emulsifiers and additives to stop corrosion and bacterial development,
make up the majority of cutting fluids. Poisonous compounds are present in the emulsions,
machine oils, and the heavy metals that are combined with the fluids during the machining
process. In order to lessen the impact on the environment, cutting fluid application must
be reduced and hazardous components must be eliminated. In this manuscript, a new
Improved Dragonfly Optimization Algorithm – Deep Belief Network (IDOA-DBN) model
is proposed for effective tool wear monitoring; the major contributions of this study are
listed below:

• After image collection, cutting edge detection is accomplished using the circular
Hough transform technique, canny edge detector, and standard Hough transform.

• Subsequently, feature extraction is performed utilizing Speeded up Robust Features
(SURF) and Local Binary Pattern (LBP) feature descriptors to extract the texture feature
vectors; then, IDOA is proposed to reduce the dimensions of the extracted texture
feature vectors, which helps in improving the system complexity and running time of
the classifier.

• Lastly, the selected discriminative feature vectors are fed into the DBN to classify
serviceable and worn cutting edges. The IDOA-DBN model’s effectiveness is evaluated
by means of F-score, recall, precision, and accuracy.

This manuscript is structured as follows: recent papers on the topic of tool wear moni-
toring are reviewed in Section 2. Theoretical descriptions and results of the experimental
analysis of the IDOA-DBN model are provided in Sections 3 and 4, respectively. The
conclusion of the manuscript is presented in Section 5.
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2. Related Works

H. Oo [21] combined Multiple Linear Regression (MLR) and Random Forest Classifier
(RFC) techniques to evaluate grinding capacity and detect the wear conditions of robotic
belt grinding. Here, five distinct belts exhibiting varied tool wear conditions were used
in the proposed simulation process, and 300 observations of grinding belt surface wear
were used as training and testing parameters for the belt condition classifier. The fact
that the data were fixed was considered one of the limitations. G. Li [22] combined
time–frequency, frequency, and time domain feature extraction techniques to extract feature
vectors from the vibration and force signals of the CNC machines. Next, a Gradient Boosting
Decision Tree (GBDT) approach was applied for selecting the optimal feature vectors, and
then classification was carried out using a hybrid method. Here, Prognostics and Health
Management (PHM) challenge 2010 dataset was utilized to confirm the projected system.
In this case, not every trait was automatically linked to tool wear. In addition, M.T. García-
Ordás [23] segmented the cutting edges from the images of edge profile cutting heads,
and then a local binary pattern descriptor was used to extract feature values from the
segmented wear patch regions. Next, the Support Vector Machine (SVM) classifier was
used to classify the cutting edges as serviceable or worn, and it was discovered that the
overlapping between these patches began at the bottom of the main edge. G.D. Simon and
R. Deivanathan [24] conducted a descriptive statistical evaluation to extract feature vectors
from drilling-induced vibration signals, after which, the K-star classification method was
used for classifying the tool conditions: bad tool at high speed, bad tool at low speed, good
tool at high speed, and good tool at low speed. However, because of its wear resistance
properties, the tool proved challenging to cut.

In reference [25], M. Marani utilized a Long Short-Term Memory (LSTM) network
for tool flank wear prediction that helped in obtaining better machined surface with
low manufacturing cost. Using a validation set, the Root Mean Square Error (RMSE)
for the LSTM networks with hidden layers was determined. The findings revealed that
the most efficient LSTM contains two layers and eight hidden layers, as well as a lower
RMSE. Nonetheless, the prediction behavior of the two-layer LSTM network surpassed
the three-layer model. In reference [26], X. Liu utilized raw signals as network inputs for
monitoring the tool wear of a high-speed CNC machine. After acquiring the raw sensor
signals, feature extraction was accomplished using a parallel residual network for extracting
multiscale local feature vectors. Furthermore, a stacked bidirectional LSTM network was
utilized to obtain the time series feature vectors related to the tool wear properties. The
suggested LSTM had maximum convergence speed, but, at the same time, it exhibited
high training loss. In reference [27], Z. Huang developed a Deep Convolutional Neural
Network (DCNN) model for tool wear monitoring based on multidomain feature fusion.
However, when used as a predictor for machine vibration, the DCNN algorithm would
have been unable to detect tool wear in actual environments. X.C. Cao [28] combined a
CNN model and Derived Wavelet Frames (DWF) for tool wear state prediction utilizing
machine spindle vibration signals. The reconstituted subsignals were then layered into a
2-D signal vector to replicate the design of a 2-D CNN, while simultaneously maintaining
additional information. Unfortunately, this raised the network’s complex nature, making it
even harder to optimize and increase the likelihood of overfitting.

X. Liao [29] combined an SVM classifier and Genetic Algorithm (GA) to predict tool
wear state. Initially, wavelet packet decomposition techniques, frequency domain, and
time domain statistics were used to extract cutting force signal. Finally, the SVM classifier
with Grey Wolf Optimizer (GWO) was developed to obtain the state recognition results.
On the training dataset, the performance accuracy was indeed the lowest. To increase
tool wear prediction accuracy, X. Wu [30] used Bidirectional LSTM (BiLSTM) and Singular
Value Decomposition (SVD) methods. The measuring input was received from the cutting
force output. The raw cutting force data were then recreated using the Hankle matrix, and
then, the signal features were extracted using the SVD of the regenerated matrix. This
technique properly detects the tool’s wear phase; however, it is unable to estimate the tool’s
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wear rating. In [31], S. Laddada integrated an improved extreme learning machine and
complex continuous wavelet transform to investigate the condition of cutting tools, and to
predict their remaining lifetime. The suggested technique entails combining the Complex
Continuous Wavelet Transform (CCWT) and the Improved Extreme Learning Machine
(IELM). Moreover, since it was premised on the use of past data, its reliability is low.

By reviewing the abovementioned existing studies, it is clear that deep-learning-based
classification techniques perform substantial data reductions, which may cause information
loss. Additionally, with such techniques it is difficult to develop feature descriptors for
precise tool wear estimation, due to the variations in cutting force. Therefore, a novel
feature optimization method based DBN is proposed in this manuscript, which is free from
three major concerns: overfitting, training, and testing efficiency.

3. Methodology

Deep Belief Networks (DBN) are used to establish tool wear prediction models due
to their superior learning speeds and fast rates of convergence to the optimal outcomes,
regardless of whether the sample data are small or large. This improves the modeling
accuracy and efficiency of the tool wear monitoring system. DBN parameters are typically
manually adjusted, which results in low predictive accuracy and efficiency. The Improved
Dragonfly Optimization Algorithm (IDOA) is then designed to optimize the computational
complexity and running time of the DBN. Therefore, the combination of IDOA and DBN
provides better results when compared to other approaches, which lack efficiency and
accuracy, especially when the sample becomes very large, and exhibit prolonged computing
times. Thus, this research proposes that the combination of IDOA and DBN is suitable
for tool wear prediction. In terms of tool wear classification, the proposed IDOA-DBN
model includes five stages: image collection (dataset); cutting edge detection (circular
Hough transform, canny edge detection, and standard Hough transform); feature extraction
(SURF and LBP feature descriptors); feature optimization (IDOA); classification (DBN). The
workflow of the IDOA-DBN model is specified in Figure 1.
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3.1. Image Collection

In this manuscript, a dataset with 254 cutting edge images of an edge-profile-milling
machine is utilized for investigating the effectiveness of the proposed model. In this study,
the tool head is cylindrical in shape and comprises 30 inserts, which are arranged in six
groups of five inserts. In this dataset, a Dalsa Genie m1280 1/3 camera with Azure-2514 mm
lens is used for capturing the images, with a pixel resolution of 2592× 1944 and focal length
of 25 mm. Three Light-Emitting Diode (LED) bar lights are used to achieve independent
illumination conditions in the environment [23]. The sample-acquired images are presented
in Figure 2.
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3.2. Cutting Edge Detection

After image acquisition, the circular Hough transform technique is used for detecting
the screws located in the inserts, and the canny edge detector is employed for detecting
the edges of the inserts [32,33]. The definition of the image is expanded to include ellip-
soids, circles, and expressions with powers of three and higher. Irises are localized using
the circular Hough transform; we also suggest computing the initial derivatives of the
brightness of the image and thresholding the resulting values to generate the points of the
parametric form. Furthermore, the standard Hough transform technique is utilized for
detecting the vertical lines, and finally, the cutting edge of the insert is extracted from the
acquired images [34]. Among 577 cutting edge images, the 276 images are labeled as worn
edges, and 301 images are labeled as serviceable edges. The cutting edges of six cutting
tools are presented in Figure 3.

Appl. Sci. 2022, 12, 8130 5 of 18 
 

length of 25 mm. Three Light-Emitting Diode (LED) bar lights are used to achieve inde-
pendent illumination conditions in the environment [23]. The sample-acquired images are 
presented in Figure 2. 

 
Figure 2. Acquired sample images from cutting edge dataset. 

3.2. Cutting Edge Detection 
After image acquisition, the circular Hough transform technique is used for detecting 

the screws located in the inserts, and the canny edge detector is employed for detecting 
the edges of the inserts [32,33]. The definition of the image is expanded to include ellip-
soids, circles, and expressions with powers of three and higher. Irises are localized using 
the circular Hough transform; we also suggest computing the initial derivatives of the 
brightness of the image and thresholding the resulting values to generate the points of the 
parametric form. Furthermore, the standard Hough transform technique is utilized for 
detecting the vertical lines, and finally, the cutting edge of the insert is extracted from the 
acquired images [34]. Among 577 cutting edge images, the 276 images are labeled as worn 
edges, and 301 images are labeled as serviceable edges. The cutting edges of six cutting 
tools are presented in Figure 3. 

  
(a) (b) 

Figure 3. Detected portion of cutting edges: (a) serviceable edges and (b) edges with high wear. 

3.3. Feature Extraction 
After collecting the images, a patch-based technique is applied for validating the in-

sert wear level, which completely relies on dividing the cutting edge images into wear 
patches with dissimilar orientations, shapes, and sizes. Then, the wear patches are further 
categorized into serviceable wear or disposable wear. The different patch configurations 
for the cutting edges are full edge division, homogeneous grid division, small edge divi-
sion, half edge division, and two-band division. After dividing the cutting edge images, 
feature extraction is carried out utilizing SURF and LBP feature descriptors. 

3.3.1. Speeded up Robust Features (SURF) 
The SURF feature descriptor is a robust and fast algorithm for comparison, local, and 

similarity invariant representation of the images [35]. The SURF feature descriptor com-
pletely relies on its faster computation of operators utilizing box filters. While the Hessian 

Figure 3. Detected portion of cutting edges: (a) serviceable edges and (b) edges with high wear.

3.3. Feature Extraction

After collecting the images, a patch-based technique is applied for validating the
insert wear level, which completely relies on dividing the cutting edge images into wear
patches with dissimilar orientations, shapes, and sizes. Then, the wear patches are further
categorized into serviceable wear or disposable wear. The different patch configurations for
the cutting edges are full edge division, homogeneous grid division, small edge division,
half edge division, and two-band division. After dividing the cutting edge images, feature
extraction is carried out utilizing SURF and LBP feature descriptors.

3.3.1. Speeded Up Robust Features (SURF)

The SURF feature descriptor is a robust and fast algorithm for comparison, local,
and similarity invariant representation of the images [35]. The SURF feature descriptor
completely relies on its faster computation of operators utilizing box filters. While the
Hessian matrix determinant is maximum, the SURF feature descriptor detects the blob-like
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structure. Let us consider the point x = (x, y) in the acquired image I; the Hessian matrix
H(x, σ) with scale σ is determined at x using Equation (1):

H(x, σ) =

[
Lxx(x, σ) Lxy(x, σ)
Lxy(x, σ) Lyy(x, σ)

]
(1)

where ∂2

∂x2 indicates Gaussian second-order derivation, Lxx(x, σ), Lyy(x, σ), andLxy(x, σ)

states convolution of ∂2

∂x2 at point. In the SURF feature descriptor, the scale spaces are
categorized into octaves to recognize the interest points at different scales, where each
octave includes a series of intervals. The convolutional window scale with the parameters
octave (o) and interval (i), is specified in Equation (2), and the relationship between scale σ
and window size is mathematically stated in Equation (3):

L = 3× (i× 2o + 1) (2)

L = σ× 9/1.2 (3)

Furthermore, the SURF key points are calculated utilizing Equation (4):

DoH(x, L) = max
( i+1

∑
ki=i−1

x+2o

∑
kx=x−2o

y+2o

∑
ky=y−2o

DoH
(
kx, ky, o, ki

))
≥ λ (4)

where DoH indicates determinant of the Hessian matrix and λ denotes positive threshold
value. If the Hessian matrix trace value is higher than zero, a bright blob with scale
L = 3× (i× 2o + 1) is detected at (x, y). Around 1288 feature vectors are extracted from
the acquired images using the SURF feature descriptor.

3.3.2. Local Binary Pattern (LBP)

LBP is a texture feature descriptor that extracts pixel-wise information from the ac-
quired images. The LBP feature descriptor considers the number of neighbors (p) in each
pixel (c) within the radius (r). If the grey-level value of p is higher than or equal to c, the
value of one is assigned, or zero otherwise. By summing up the values to the power of two,
the LBP of every pixel is calculated using Equation (5) [36]:

LBPp.r =
p−1

∑
p=0

s
(

gp − gc
)
2p, s(x) = {1 i f x ≥ 0

0 i f x < 0
(5)

where p indicates the number of neighbors, gp represents the value of the pth neighbor, and
gc denotes the center pixel value; the LBP feature descriptor extracts 3470 texture feature
vectors. Using the feature-level fusion method, the SURF and LBP feature vectors are
integrated; thus, the model becomes multidimensional, increasing its complexity.

3.3.3. Histogram of Oriented Gradients (HOG)

HOG is a shape identifier that determines the layout and structure of a local charac-
ter [37]. This HOG describes how the intensity gradient spreads across the region, which is
used to determine the character. The HOG is often based on the gradient direction accumu-
lating via the pixels of a small spatial region, such as a single cell. The HOG descriptor in
each cell collects the gradient direction’s local 1-D histogram. This process is performed
by constructing the local histogram over a large spatial region, typically a block of cells,
and using the data to normalized all of the block’s cells. The detection window is placed
over the overlapping grid in this case. Equation (6) represents the pixel’s horizontal and
vertical gradient: {

Gp = I′(p + 1, q)− I′(p− 1, q)
Gq = I′(p, q + 1)− I′(p, q− 1)

(6)
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The magnitude and orientation of HOG gradients are expressed in Equations (7) and
(8), respectively:

G(p, q) =
√

G2
p + G2

q (7)

θ(p, q) = argtan
(

Gq

Gp

)
(8)

The weights of the gradient magnitudes that are in the direction of interest are com-
bined to generate the cell’s histogram vector. Furthermore, the HOG’s output vector is
made up of normalized cells from many detection window elements and frames.

3.3.4. Grey-Level Co-Occurrence Matrix (GLCM)

The GLCM is a powerful feature descriptor that evaluates the spatial link between
two pixels to assess the textural qualities of an image. Because the spacing and orientation
between pixels are altered, the simultaneous presence of pixel pairs can be determined.
There are 14 types of features presented in the GLCM. Here, some of the textural features
are derived [38]. Successful description is based on the textural information gained from
the GLCM.

The instantaneous occurrence probability of two pixels in the GLCM is stated as
P(i, j, δ, θ). It contains the pixel with, respectively, grey-level i and j as f (x, y) and
(x + ∆x, y + ∆y); θ is defined as declination, and δ is stated as distance. The statistical
formulation is stated in Equation (9):

P(i, j, δ, θ) =


|[(x, y), (x + ∆x, y + ∆y)]| f (x, y) = i,

(x, y), f (x + ∆x, y + ∆y) = j; x = 0, 1, . . . , Nx − 1;
y = 0, 1, . . . , Ny − 1

 (9)

where i, j = 0, 1, . . . L− 1; image pixel coordinates are represented as xandy; the grey-level
image is stated as L; numbers of columns and rows are stated as NxandNy. As a result,
the appropriate feature selection is performed with IDOA, which decreases the model’s
operating performance and computational efficiency.

3.3.5. Harris Corner Detection (HCD)

The Harris corner point’s features are utilized to separate the background and fore-
ground. Rotating the window in every orientation along a corner point should produce
a significant shift in luminance. The point intensity of Harris’s point in the fingerprint
foreground areas is much greater than in the background regions. The Harris method,
originally proposed by Harris et al., is a variation or extension of the Moravec corner
detection algorithm that extracts corner points using grey disparity between images [39].
Assuming that a greyscale image I and window w(x, y) are considered to be removed
(through movements of u in the x direction, and v in y direction), the intensity variation is
calculated as Equation (10):

E(u, v) = ∑
x,y

w(x, y)[I(x + u, y + v)− I(x− y)]2 (10)

where I(x, y)andI(x + u, y + v) are intensities at position (x, y) and at moving window
x + u, y + v, correspondingly. Because windows with corners have been explored with a
wide range of intensity, we decided to focus on them. As a result, the component from
Equation (10) is rewritten as Equation (11):

∑
x,y

[I(x + u, y + v)− I(x− y)]2 (11)
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Equation (12) is attained by Taylor extension:

E(u, v) ≈∑
x,y

[
I(x, y) + uIx + vIy − I(x, y)

]2 (12)

Escalating Equation (12) and eliminating the appropriate products leads to Equation (13):

E(u, v) ≈∑
x,y

u2 I2
x + 2uvIx Iy + v2 I2

y (13)

By evaluating Equation (13) in matrix form, we attain Equation (14):

E(u, v) ≈ [u v]

(
∑
x,y

w(x, y)
I2
x Ix Iy

Ix Iy I2
y

)[
u
v

]
(14)

Alternatively, consider M = ∑x,y w(x, y)
I2
x Ix Iy

Ix Iy I2
y

.

In this instance, Equation (14) is revised and presented as Equation (15):

E(u, v) ≈ [u v]M
[

u
v

]
(15)

The eigenvalues of matrix M are stated as λ1 and λ2, which creates a rotationally
invariant description. At this time, three points need to be considered:

• As soon as an eigenvalue (λ1 or λ2) is high and significantly superior, an edge occurs.
• Pixel point is stated to be in a flat area when λ1 ≈ λ2 and its values are low.
• Pixel point is stated to be in a corner when λ1 ≈ λ2 and its values are high.
• A score can be determined for every window to evaluate whether it is likely to

represent a corner, as shown in Equation (16):

R = det(M)− k(trace(M))2 (16)

where det(M) = λ1, λ2, trace(M) = λ1 + λ2, and constant k is fixed in the range of 0.04 to
0.06. A window is obtained through score R that is greater than a positive threshold rate,
i.e., considered to consume a corner.

3.4. Feature Optimization

After feature extraction, the IDOA is proposed for discriminative feature selection,
where IDOA is a metaheuristic optimization algorithm that mimics the dynamic and static
behaviors of dragonflies. The feature selection process is considered a problem of global
combinatorial optimization, which seeks to reduce the quantity of features and redundant,
noisy, and redundant data, while producing a uniform level of classification accuracy. As a
result, this research introduces the Improved Dragonfly Optimization Technique (IDOA),
an optimization algorithm that performs better. The discrete search space consists of all
feasible arrangements of attributes chosen from the dataset. It might be possible to list every
potential subset of characteristics, given the limited number of features. The improved
dragonfly employs more group knowledge to influence its own behavior, ensuring that the
group is diverse, and creating a balance between the stages of exploration and exploitation
to increase the algorithm’s search efficiency. This feature selection technique is typically
quicker and more efficient, and minimizes overfitting, which eliminates redundant and
noisy data to find a subset of relevant features using the strength of the IDOA to improve
classification outcomes. The two major phases in the IDOA are exploitation and exploration,
which are modeled statically or dynamically, either by avoiding the enemy or searching for
food [40]. Usually, the swarms have three behaviors: cohesion, alignment, and separation.
Furthermore, two additional behaviors are added to these three behaviors in the IDOA:
avoiding the enemy and moving towards food. The purpose of including these two
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behaviors in the IDOA is to increase the survival time of the swarm. In this algorithm, two
vectors are considered: the position and step for updating the position of dragonflies in a
search space. The step vector is also considered as the speed that determines the direction
of dragonflies. After the step vector calculation, the position vector is updated.

In the IDOA, the coefficients (cohesion, alignment, separation, food factor, inertia
coefficient, enemy factor, and iteration number) are enabled to perform exploitative and
exploratory behaviors. The cohesion coefficient is high and the alignment coefficient is low
in the exploitation process; conversely, the cohesion coefficient is low and the alignment
coefficient is high in the exploration process. In the conventional DOA, the Levy flight
mechanism is used to enhance the probabilistic behavior, randomness, and the discovery
of artificial dragonflies. Hence, the Levy flight mechanism improves the DOA efficacy
to a certain extent. However, the step size control is contrary to the nature of the Levy
flight mechanism. The agents have to move outside the search space, if a long step is
considered. To overcome these issues, the Brownian motion (Pg), is considered in the IDOA
for enhancing the probabilistic behavior, randomness, and the discovery of dragonflies.
The Brownian motion (Pg) is mathematically determined in Equations (17) and (18):

Pg =
1

s
√

2π
exp

(
− (dimension− agents)2

2s2

)
(17)

s =
√

mt

ms
, and ms = 100×mt (18)

where mt = 0.01 indicates the motion time of an agent, and ms specifies the number of
sudden motions. The parameter settings of the IDOA are as follows: the number of search
agents is five, the search domain is [0–1], the dimension is equal to the extracted feature
vectors, and the number of iteration is 20. The proposed IDOA selects 3476 feature vectors,
which are used as input values in the DBN for classification.

3.5. Classification

After the selection of discriminative feature vectors, tool wear batch classification is
carried out using DBN. The DBN is one of the effective deep learning models that consists of
a number of Restricted Boltzmann Machines (RBMs) for data classification [41]. The learned
activation unit of the first RBM is the input for succeeding RBMs in the stacks. In addition,
the DBN is an undirected graphical technique, where the visible variables are linked to
the hidden units using undirected weights. However, the DBNs are constrained; there is
no connection within the visible and hidden variables. The probability distribution, pd, of
visible variables (m), hidden units (n) and energy function (E(m, n; θ)) is mathematically
depicted in Equation (19):

− logpd(m, n)αE(m, n; θ) = −
|V|

∑
i=1

|Q|

∑
j=1

wijminj −
|V|

∑
i=1

bimi −
|Q|

∑
j=1

ajnj (19)

where θ = (w, b, a) indicates parameter set, bi and aj denote bias, wij represents the sym-
metric weight between the visible variables (m), and α represents learning rate. In the
DBN model, the numbers of hidden and visible layers are considered as |Q| and |V|. The
conditional probability distribution of visible variables (m) and hidden units (n) is defined
in the Equations (20) and (21):

pd
(
nj
∣∣m; θ

)
= sigm

|V|

∑
i=1

wijmi + aj (20)

pd(mi|n; θ) = sigm
|Q|

∑
j=1

wijni + bj (21)
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where sigm(M) =
(

1
1+e−m

)
represents sigmoid activation function, and the parameter θ

represents learned utilizing contrastive divergence. In the DBN classifier, the parameter θ
is obtained utilizing RBM, and it is defined by pd(n|θ) and pd(m|n, θ). The probability of
creating a visible variable is stated in Equation (22):

pd(m) = ∑
n

pd(n|θ)pd(m|n, θ) (22)

The term pd(m|n, θ) is maintained after determining θ from an RBM; then, pd(n|θ) is
exchanged using consecutive RBMs that treat the previous RBM hidden layer as a visible
value. The parameter settings of the DBN are as follows: the transfer function is sigmoid
function, the dropout rate is 0.1, the batch size is 0.5, the learning rate is 0.01, maximum
iteration is 100, and initial and final momentum are 0.5 and 0.9. Figure 4 shows the
architecture of the IDOA-DBN process.
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4. Experimental Results

In the present research, the cutting edges were divided into a number of subregions
by the proposed method (wear patches, or WP). Each WP was defined using textural
descriptors, and were categorized as worn or serviceable using a Deep Belief Network.
Lastly, the number of WPs designated as worn determines whether a cutting edge is
serviceable or worn. This study separated each training set image into patches that were
later identified as being in a worn or serviceable zone. The objective of this research
was to develop a classification model that evaluates individual patches and, based on its
predictions, renders judgement on the degree of tool wear. Therefore, manual division
prevents potentially flawed patch extractions that can result in the creation of suboptimal
classifiers. After manually extracting the patches, the images were left with 896 patches,
466 of which were serviceable and 430 of which were worn. The proposed IDOA-DBN
model’s effectiveness was validated using the MATLAB 2020a software tool on a system
configuration with 16 GB random access memory, Linux operating system, and a 4 TB hard
disk. The IDOA-DBN model’s efficacy was analyzed by implementing many classification
techniques and feature optimization algorithms, and tested using performance metrics
such as F-score, recall, precision, and accuracy. In this manuscript, the confusion matrix
was used to calculate the performance metrics. Here, the serviceable class was a negative
class and the worn class was a positive class. The confusion matrix is clearly depicted in
Table 1.

Table 1. Confusion matrix.

Classes
Prediction Class

Serviceable Worn

Serviceable TN FP
Worn FN TP
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Precision, recall, accuracy, and F-score were the metrics used in this research to evaluate
the methodology. The confusion matrix depicted in Figure 4 was created by allocating
the worn class as the positive class, and the serviceable class as the negative class. The
performance metric, the F-score, was determined as the harmonic mean of recall and
precision, and it was estimated using Equation (23). Similarly, the recall was defined as
the fraction of worn inserts, and it was computed utilizing Equation (24). In the tool wear
batch classification, the performance metric, recall, played a vital role, since the cost of
misclassifying a serviceable cutting edge was lower than the cost of misclassifying a worn
cutting edge:

F− score =
2TP

FP + 2TP + FN
× 100 (23)

Recall =
TP

TP + FN
× 100 (24)

Similarly, the performance metric, precision, was defined as the fraction of inserts
classified as worn that were actually worn. The accuracy was determined by the successful
prediction for the total number of samples, where TP, TN, FP, and FN were defined
as true positive, true negative, false positive, and false negative. Figure 5 shows the
confusion matrix. The mathematical expressions of precision and accuracy are defined in
Equations (25) and (26):

Precision =
TP

TP + FP
× 100 (25)

Accuracy =
TP + TN

TP + TN + FP + FN
× 100 (26)
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4.1. Quantitative Evaluation

The proposed IDOA-DBN model’s effectiveness was validated utilizing dissimilar
feature optimization techniques, such as Grasshopper Optimization Algorithm (GOA),
genetic algorithm, Particle Swarm Optimization (PSO) algorithm, DOA, and IDOA, by
means of precision, accuracy, F-score, and recall. In this study, the performance analysis
was conducted for different patch configurations, such as Full Edge Division (FED), Homo-
geneous Grid Division (HGD), Small Edge Division (SED), Half Edge Division (HED), and
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Two-Band Division (TBD), respectively. By viewing Table 2, the IDOA with DBN classi-
fier obtained efficient performance in tool wear classification compared to other existing
optimizers, such as GOA, genetic algorithm, PSO, and DOA.

Table 2. Experimental results of various feature optimization techniques with the IDOA.

Patch Configuration Optimizer F-Score (%) Recall (%) Precision (%) Accuracy (%)

FED

GOA 80.90 78.90 80.87 79.08
Genetic 82.34 86.30 85.60 83.49

PSO 87.90 88.56 88.70 88.60
DOA 90.80 92.30 93.94 94.59
IDOA 95.30 94.53 96.70 98.83

HGD

GOA 75.39 67.69 70.70 80.88
Genetic 77.78 72.30 74.50 81.20

PSO 85.49 75.60 78.90 85.60
DOA 86.06 83.20 83.50 88.88
IDOA 86.20 87.90 88.88 90.87

SED

GOA 77.50 70.90 68.90 87.30
Genetic 75.40 78.78 80.82 83.40

PSO 85.06 83.40 84.50 86.67
DOA 89.80 90.76 89.88 91.20
IDOA 93.20 92.03 94.50 96.78

HED

GOA 78.49 76.40 80 84.50
Genetic 77 78.90 83.42 85.55

PSO 87.74 88.36 82.20 89.28
DOA 89.76 87.30 89.87 92.20
IDOA 90.45 93.20 94.56 95.60

TBD

GOA 77.65 78.43 70.60 78.09
Genetic 78.70 82.49 74.05 80.93

PSO 84.50 85.60 85.60 86.70
DOA 90.10 89.40 92.30 91.29
IDOA 92.03 94.57 95.55 94.56

The IDOA with DBN classifier achieved an F-score of 95.30%, recall of 94.53%, preci-
sion of 96.70%, and accuracy of 98.83% for FED patch configuration. Regarding HGD patch
configuration, the IDOA with DBN classifier attained an F-score of 86.20%, recall of 87.90%,
precision of 88.88%, and accuracy of 90.87%. For the SED, HED, and TBD patch config-
urations, the proposed IDOA with DBN achieved 93.20%, 90.45%, and 92.03% F-scores;
92.03%, 93.20%, and 94.57% recall values; 94.50%, 94.56%, and 95.55% precision values; and
96.78%, 95.60%, and 94.56% classification accuracy.

AlexNet and ResNet models are capable of preserving the useful information in the
network without overtrain or loss the features, while some of the recent CNN architecture
pooling layers tend to lose useful features by overtraining the features. Furthermore,
AlexNet and ResNet are suitable to handle large-scale data analysis. Therefore, in this
study, these two models were preferred for the comparative analysis. In Table 3, it can be
seen that the performance evaluation was conducted using various classification techniques,
such as AlexNet, Autoencoder, ResNet-14, ResNet-18, and DBN, on five different patch
configurations, namely FED, HGD, SED, HED, and TBD, by means of F-score, recall,
precision, and accuracy. By viewing Table 3, the combination of DBN classifier with IDOA
obtained maximum performance in tool wear classification as compared to other classifiers,
such as AlexNet, Autoencoder, ResNet-14, and ResNet-18. Compared to other classification
techniques, the DBN has two major advantages: reductions in both the over-smoothing
problem and the training data fragmentation problem.
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Table 3. Experimental results of various classification techniques with DBN.

Patch Configuration Classifier F-Score (%) Recall (%) Precision (%) Accuracy (%)

FED

AlexNet 83.95 80.96 85.85 84.58
Autoencoder 86.77 87.60 87.67 87.40

ResNet-14 88.90 89.96 89.70 88.68
ResNet-18 93.86 90.80 94.96 95.58

DBN 95.30 94.53 96.70 98.83

HGD

AlexNet 78.50 77.60 76.70 83.90
Autoencoder 79.78 78.90 77.57 84.20

ResNet-14 84.40 79.93 79.98 85.50
ResNet-18 85.48 84.78 86.70 87.87

DBN 86.20 87.90 88.88 90.87

SED

AlexNet 76.70 74.90 76.98 88.30
Autoencoder 78.90 76.78 82.80 89.40

ResNet-14 86.06 85.40 88.50 89.69
ResNet-18 88.80 88.70 93.84 92.22

DBN 93.20 92.03 94.50 96.78

HED

AlexNet 79.40 77.78 80.90 85.50
Autoencoder 81.20 78.98 85.49 86.75

ResNet-14 88.78 84.86 86.26 89.29
ResNet-18 88.76 89.30 90.88 93.20

DBN 90.45 93.20 94.56 95.60

TBD

AlexNet 80.65 79.40 79.67 80.49
Autoencoder 82.70 84.40 84.75 80.99

ResNet-14 86.60 86.78 87.68 88.90
ResNet-18 91.70 88.89 92.34 94.11

DBN 92.03 94.57 95.55 94.56

4.2. Comparative Evaluation

The comparative investigation between the proposed IDOA-DBN model and the
existing image texture analysis model [23] is presented in Table 4. M.T. García-Ordás,
et al. [23] used circular Hough transform technique, canny edge detector, and standard
Hough transform technique for segmenting the cutting edges of acquired images. Further-
more, the texture feature extraction was accomplished using conventional, completed, and
adaptive LBP descriptors. The extracted feature vectors were fed into the SVM classifier for
classifying the cutting edges as serviceable or worn. The experimental evaluation showed
that the proposed IDOA-DBN model attained efficient performance in tool wear batch
classification related to the existing image texture analysis model [23] on five different
patch configurations. The feature optimization utilizing IDOA is an integral part of this
manuscript that significantly reduces the computational complexity and running time
of the DBN by selecting the discriminative feature vectors. The IDOA-DBN model took
43 s to process the whole dataset, which is better than other deep learning models, and
the complexity of the proposed model is linear when selecting the discriminative feature
vectors. Table 4 shows the comparison results of various patch configurations. Figure 6
shows the graphical presentation of the various patch configurations.

The researchers tuned the network model’s design and hyperparameters for the signal
matrix data, leading to a high recognition accuracy. Furthermore, the suggested tool wear
state technique’s optimized neural network with double neurons is incompatible with all
of these datasets. Based on the design structure provided in the literature, calculations
were performed to discover a suitable system model, and the obtained accuracy results are
presented in Table 5. The suggested IDOA-DBN approach delivers superior identification
accuracy (98.83%) and a more compact network structure than existing DWF-CNN [28]
techniques, which achieved 98.7%. Figure 7 shows the graphical illustration of accuracy
with existing DWF-CNN [28] methods.
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Table 4. Results of various patch configurations.

Patch Configurations Model F-Score (%) Precision (%) Accuracy (%)

FED
Texture analysis [23] 85.50 93.40 86.40

IDOA-DBN 95.30 96.70 98.83

HGD
Texture analysis [23] 81.50 80 81.20

IDOA-DBN 86.20 88.88 90.87

SED
Texture analysis [23] 90.30 89.70 90.30

IDOA-DBN 93.20 94.50 96.78

HED
Texture analysis [23] 87.20 91 87

IDOA-DBN 90.45 94.56 95.60

TBD
Texture analysis [23] 90.90 93.40 90.90

IDOA-DBN 92.03 95.55 94.56
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Table 5. Comparative analysis of accuracy with existing method.

Method Accuracy (%)

Existing DWF-CNN [28] 98.7
Proposed IDOA-DBN 98.83

The prediction impacts of BiLSTM methods based on SVD features and time domain
features were evaluated to demonstrate the effectiveness of IDOA-DBN features in tool
wear detection. SVD-BiLSTM [30] was utilized for experimental studies to further validate
the functionality of the IDOA-DBN tool wear prediction system. Because all learning
methods have the same architecture, only the type of network layers needed to be changed;
the performance parameters were maintained, and all design variables were SVD features.
Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Mean Square
Error (MSE) values were computed to generate time domain features of the same scale
before the SVD features. Table 6 lists the outcomes of the prediction results in terms of
the training and testing sets. The proposed IDOA-DBN model was more suitable in the
error assessment of the training set, and computation was easier. Therefore, IDOA-DBN
produced better training outcomes in the training set in the same time frame. Despite this,
existing SVD-BiLSTM [30] lacks cell state and has inadequate long-term memory capacity,
which is evident in the test set error values produced by SVD-BiLSTM [30].

Table 6. Comparative analysis of prediction results in training and testing set.

Method
Training Set Testing Set

MAE MAPE MSE MAE MAPE MSE

SVD-BiLSTM [30] 2.4948 2.4112 3.6782 4.3044 1.8896 5.0873
Proposed IDOA-DBN 2.4625 2.3729 3.5988 4.2553 1.8309 4.1032

In this study, IDOA-DBN was proposed and considered to be the appropriate design in
all data and test sets, because the IDOA-DBN can memorize all data features. Consequently,
in both the training set and the test set, IDOA-DBN is superior to SVD-BiLSTM [30]. The
model’s input data were constructed using a time step of five, which means that the cutting
edge signals for each of the previous five sampling periods were matched with the tool
wear value for the 5th sampling period. The first 265 sets of samples were used as the
model training sample out of 315 total measured data, which were divided into 311 sets
of sample data. The remaining 46 groupings of samples were employed as a model test
sample. Figure 8 shows the graphical illustration of the prediction results.
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5. Conclusions

In this manuscript, an IDOA-DBN model is implemented as an effective tool wear
monitoring technique. Since Deep Belief Network (DBN) performs better than other models
in terms of learning speed, and quickly converges to the best results, regardless of the size
of the sample data, it was utilized to create tool wear prediction models. This increased
the tool wear monitoring system’s modeling efficiency and accuracy. Due to the manual
adjustment of DBN parameters, prediction accuracy and efficiency were generally low. In
order to reduce the computational complexity and operating time of the DBN at this point,
the Improved Dragonfly Optimization Algorithm (IDOA) was proposed. The inclusion of
the IDOA in the proposed model significantly diminished the computational complexity
and running time of the classifier. As indicated in the resulting phase, the proposed IDOA-
DBN model obtained superior performance values for tool wear monitoring compared
to the existing deep learning models, such as AlexNet, Autoencoder, ResNet-14, and
ResNet-18, on different patch configurations. The IDOA-DBN model attained a maximum
classification accuracy of 98.83% on the patch configuration of full edge division. As a
future extension, a hybrid feature selection algorithm should be included in the proposed
model to further enhance the tool wear monitoring technique.
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