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Abstract: Two-dimensional (2D) material-based devices are expected to operate under high tem-
peratures induced by Joule heating and environmental conditions when integrated into compact
integrated circuits for practical applications. However, the behavior of these materials at high operat-
ing temperatures is obscure as most studies emphasize only room temperature or low-temperature
operation. Here, the high-temperature electrical response of the tungsten diselenide (WSe2) field-
effect transistor was studied. It is revealed that 350 K is the optimal annealing temperature for the
WSe2 transistor, and annealing at this temperature improves on-current, field-effect mobility and
on/off ratio around three times. Annealing beyond this temperature (360 K to 670 K) adversely
affects the device performance attributed to the partial oxidation of WSe2 at higher temperatures.
An increase in hysteresis also confirms the formation of new traps as the device is annealed beyond
350 K. These findings explicate the thermal stability of WSe2 and can help design 2D materials-based
durable devices for high-temperature practical applications.
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1. Introduction

Since the invention of the transistor in 1947, silicon has become the material of choice
for electronics [1–4] and photonics applications [5–8]. For the last few decades, enormous
efforts have been made by the scientific community to find an alternative to silicon as a
material of choice for future electronics [9–11]. It has been long appreciated that carbon
nanotubes (CNTs) possess the required potential to be an ideal electronics material [12–16].
However, the challenges that arise from the non-uniform and imperfect growth of CNTs
could not be resolved [12]. Since the discovery of graphene in 2004, 2D materials have
emerged as a strong candidate for future high-speed and low-power electronics [17–20].
Two-dimensional materials possess several intrinsic properties like quantum confinement,
a reasonable large bandgap, ease of fabrication, strong light–matter interaction, ability
to form heterostructures and strong gate modulation, making them a suitable material
for future electronics as well as photonics applications [21–24]. Among the 2D materials
family, transition metal dichalcogenides (TMDs) are particularly of interest. WSe2 is a
prominent member of TMDs because of its ambipolar behavior, large spin–orbit coupling
and optical properties [25]. Studies showed the application of WSe2 not only in electronic
applications such as inverters and Schottky diodes [26] but also in photonic applications
such as photodetectors, single-photon emitters and light-emitting diodes [27].

Until now, most of the studies have investigated the properties of WSe2 at either
room temperature or cryogenic temperatures [28]. While these studies were successful in
understanding the intrinsic properties of the materials, there have been very few studies
investigating the behavior of the material at high temperatures. For practical applications,
2D materials are expected to operate under high thermal stress caused by Joule heating in
integrated circuits or local heating due to incident light in photonic applications [29–31].
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Further, due to low thermal conductivity and heat capacity as well as high surface area,
these materials are expected to endure temperatures higher than bulk materials such as
Si and GaAs [32–36]. Therefore, it is essential to test the WSe2 devices at high operating
temperatures and monitor their performance under these conditions.

In this work, we designed an experimental setup to investigate the changes in the
electrical behavior of the WSe2 device after being exposed to high annealing temperatures.
The investigation was carried out using a homemade probe station that can also anneal
the devices in a nitrogen environment so that there is no need to take out the device after
annealing. The device was annealed to temperatures ranging from 300 K to 670 K (step
size: 10 K), and the electrical characterization of the device was performed at 300 K after
each cycle of annealing. It was found that 350 K is the optimal annealing temperature for
WSe2, which improves the device performance by eliminating the adsorbed species and
chemical residue. Annealing at temperatures higher than 350 K adversely affects the device
performance. The effects of annealing on the transfer characteristic curve, on/off ratio,
field-effect mobility and hysteresis were investigated.

2. Materials and Methods

Figure 1a,c shows the schematic drawing and optical microscope image of the WSe2
device. In order to fabricate this device, thin WSe2 flakes were produced from the bulk
WSe2 crystal by the standard exfoliation method using scotch tape. The flakes were then
transferred on a silicon substrate capped with 300 nm SiO2. An optical microscope was
used to scan the substrate and identify suitable flakes, followed by Raman spectroscopy
and atomic force microscopy (AFM). The back gated devices were prepared by electron
beam lithography followed by metal deposition in an electron beam evaporation chamber.
Electron beam lithography was used to make contact patterns on the selected WSe2 flake.
Titanium/gold (Ti/Au) with a thickness of 10/40 nm were chosen as contact materials as Ti
forms Ohmic-like contacts with WSe2. The metal deposition was carried out in an electron
beam evaporation chamber, followed by the lift-off in acetone.
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Figure 1. (a) Schematic of the WSe2 device. (b) Raman spectrum of the WSe2 before and after
annealing. (c) Optical microscope image of the device. (d) AFM image and height profile of the
WSe2 layer.



Appl. Sci. 2022, 12, 8119 3 of 8

3. Results and Discussion

Figure 1b illustrates the Raman spectrum of the device taken by a 532 nm laser.
The signature WSe2 Raman peaks, E1

2g and A1g, can be seen at 252 cm−1 and 261cm−1,
respectively [37,38]. The presence of these two peaks not only confirms the material to
be WSe2 but also indicates that the flake thickness is more than four layers [22,23]. The
Rama n spectroscopy was performed after annealing at 673 K as well. The comparison of
the Raman spectrum before and after annealing is discussed in the later part. In order to
accurately determine the WSe2 thickness, atomic force microscopy (AFM) was carried out.
Figure 1d presents the AFM image of the WSe2 flake as well as the line profile between
the two points shown in Figure 1d. It can be seen that the flake thickness is 5 nm, which
corresponds to eight layers of WSe2.

The transfer characteristics curves of the device at a constant source-drain voltage
of 1 V measured at 300 K after annealing at different temperatures is shown in Figure 2.
The influence of annealing on the device properties was systematically investigated by
annealing the device at a target temperature for 30 min in a Nitrogen environment and
then measuring its transfer characteristics curve at 300 K. The process was repeated for
temperatures ranging from 310 K to 670 K with a step size of 10 K. In Figure 2, however,
for better visibility, transfer curves are shown for selected annealing temperatures only. It
can be seen that the device exhibits ambipolar behavior with hole-dominated transport
for negative gate voltages and electron-dominated transport for positive gate voltages.
After annealing at 310 K, the electron current is almost an order of magnitude higher than
the hole current. In most studies, WSe2 exhibit p-dominant transport; however, in the
present study, n-dominant transport can be attributed to the Ti contacts. As shown in the
schematic band diagram in Figure 2d, Ti has a work function of 4.3 eV, which is closer to
the conduction band of WSe2 [39,40]. Therefore, Ti can facilitate the injection of electrons
in the conduction band of WSe2 by forming good Ohmic-like contacts. At the same time,
Ti forms a large Schottky barrier with the valence band of WSe2. This Schottky barrier
results in electron transport being more prominent than the hole current. The inset of
Figure 2a represents the output curve (Id–Vd) of the WSe2 device, and Ohmic-like linear
characteristics can be seen there.

For the positive gate region (electron transport), as the annealing temperature is
increased up to 350 K, an increase in the drain current as well as on/off ratio (ratio of on
current to the off current of the device) is observed. As annealing temperature increases
from 300 K to 350 K, the on/off ratio increases from 8000 to 22,000, whereas maximum on
current increases from 14 µA to 37 µA. This observation of enhanced device performance
after annealing is consistent with the previous studies in the literature [41]. The annealing
improves the device’s performance by removing the contaminants, adsorbed moisture and
chemical residues from the surface of WSe2 [41]. Two-dimensional materials possess a high
surface-to-volume ratio and are extremely sensitive to the changes at the interface; therefore,
annealing can drastically improve the device’s performance. However, as the annealing
temperature is increased beyond 350 K, the device performance gradually deteriorates.
Overall, a decrease in device current as well as on/off ratio can be seen when the annealing
temperature exceeds 350 K. The maximum current reduces from 37 µA to 1.5 µA, and
the on/off ratio reduces from 22,000 to 1000 as the annealing temperature is gradually
increased from 350 K to 590 K. Previous studies reported that WSe2 oxidizes to WOx at
high temperatures [42,43]. The oxidation of 2D materials differs from bulk materials as
these materials show higher reactivity at the edges and defect sites only. The effects of
oxidation on the electrical characteristics of the WSe2 device can be seen in this temperature
range (350 K to 590 K), where not only the on/off ratio and total current reduced but a
decrease in the subthreshold swing can also be observed. It is safe to say that higher thermal
and electrical stress has induced structural and chemical changes in the WSe2, which is
further explained in the latter part. From 590 K to 670 K, the device behavior changes from
semiconducting to fully conducting with very little gate control. The on/off ratio in the
region is less than 10, and the off current has increased several orders of magnitude. In
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order to obtain further insight into the device behavior, we extracted field-effect mobility
and hysteresis of the device.
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Figure 2. (a) Transfer characteristics curve of the WSe2 device measured at 300 K after annealing
at different temperatures on a linear scale (legend shows the annealing temperature in Kelvin, and
inset represents the Id–Vd curve of the device). (b) Transfer characteristics curve of the WSe2 device
measured at 300 K after annealing at different temperatures on a semi-logarithmic scale (legend
shows the annealing temperature in Kelvin). (c) The ratio of on current to the off current of the device
as a function of annealing temperatures. (d) Schematic band diagram showing Ti and WSe2 before
and after contact.

Figure 3 illustrates the field effect mobility as well as hysteresis as a function of
annealing temperature. The field-effect mobility was extracted for electrons as well as holes
using the following equation:

µ =
L
W

gm

CoxVd

In this equation, L and W are the total channel length and width, respectively, and
Cox is the back gate silicon dioxide capacitance per unit area, calculated by Cox = ε0·εr/d.
Here, ε0 = 8.85 × 10−12 Fm−1 is the permittivity of free space, and εr = 3.9 is the relative
permittivity of SiO2 and d is SiO2 thickness (300 nm). gm is the trans-conductance obtained
from the slope of each transfer curve, Vd is the applied drain voltage and µ is the field effect
mobility. A similar trend for electron mobility can also be seen in Figure 3, where initially,
electron mobility increases from 4 cm2/V.s to 9 cm2/V·s as the annealing temperature is
increased from 300 to 350 K. The mobility in 2D materials is limited by the scattering, and
an improvement in mobility indicates a reduction in scattering. All the measurements
were performed at 300 K, so it was safe to rule out any change in phonon scattering.
Therefore, the increase in electron mobility can be attributed to a cleaner WSe2 surface
enabled by thermal annealing. As observed previously, in the temperature range of 360 K
to 590 K, a consistent drop in electron mobility can be seen. One can also observe three
distinct regions in the mobility curve: the mobility increases from 300 K to 350 K and from
350 K to 590 K, mobility gradually reduces from 9 cm2/V.s to 2.5 cm2/V.s and it reaches
0.1 cm2/V·s at 670 K. This trend of mobility and device current reflects that 350 K is the
optimal annealing temperature for WSe2. Until this temperature, annealing improves the
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device’s performance by removing the contaminants, adsorbed moisture and chemical
residues from the surface of WSe2 [41]. Beyond 350 K, the high temperature starts to oxidize
WSe2 and alter its chemical composition. As WSe2 becomes oxidized to WOx, new traps are
created at the WSe2-WOx interface, which results in a reduction in electron mobility [42,43].
The presence of hysteresis in the transfer curve is an indicator of charge traps in a device,
so we investigated the hysteresis behavior of our device, as shown in Figure 3b. It is
defined as the threshold voltage difference between the forward and reverse gate voltage
sweep. Three distinct regions are also visible here; from 300 K to 350 K, hysteresis reduces,
indicating the removal of traps and surface contaminants from WSe2. It gradually increases
from 350 K to 590 K and increases exponentially from there onwards. Since hysteresis is an
indicator of traps, it can be said that as WSe2 becomes oxidized beyond 350 K, new traps
are created, which degrade device performance by causing a reduction in electron mobility
and on/off ratio. Figure 3c presents the off current as a function of annealing, which
remains almost constant except at temperatures beyond 630 K, where chemical changes
in WSe2 result in complete loss of gate control. The comparison of Raman (Figure 1d)
and AFM measurements (Figure 3d) before and after the annealing give insight into the
chemical changes induced by the thermal stress. In the Raman spectrum, the quenching
of Raman peaks after annealing points to partial oxidation of WSe2 and the formation of
new traps [44]. The average surface roughness before annealing was 320 pm, which was
increased to 450 pm after annealing. The increased surface roughness in AFM measurement
also corresponds to the formation of new traps. The observations such as quenching in the
Raman spectrum, increased overall conductivity of WSe2, an increase in p-type behavior
and an increase in surface roughness can be attributed to partial oxidation of WSe2 to WOx
as reported in previous studies [43–48]. Based on these observations, it can be assumed
that in our WSe2 device, the WSe2 became oxidized during high-temperature annealing.
However, this could be one of the reasons, and the exact nature of chemical changes still
needs to be established.
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Thus far, we have discussed the positive gate region of Figures 2 and 3 mostly. For the
negative region, the mobility and on/off ratio do not vary substantially with the annealing
indicating that the hole transport is not limited by the channel imperfections. As shown in
Figure 2, the bottleneck in hole transport is the Schottky contacts. Ti is used as a contact
metal that can form a relatively large Schottky barrier with the valence band of WSe2, thus
limiting the hole transport. This Schottky barrier results in low mobility and low current
in the negative gate region and cannot be improved with annealing. Therefore, annealing
does not affect the hole transport other than at temperatures beyond 590 K, where chemical
changes in WSe2 result in the channel becoming accumulated with the carriers completely
and also results in a reduction in the effective Schottky barrier. This reduction results in
enhanced hole current and hole mobility, as seen in Figure 3.

4. Conclusions

In conclusion, we systematically investigated the thermal stability of the WSe2 tran-
sistor by annealing it in a nitrogen environment at different temperatures. The effects
of annealing on transfer curve, field-effect mobility and hysteresis were investigated. It
was found that 350 K is the optimal annealing temperature that significantly improves the
electrical characteristics of the WSe2 transistor. Annealing beyond this temperature ad-
versely affects the device’s performance by oxidizing WSe2 and permanently changing its
electrical properties. Our findings elucidate the thermal stability of WSe2 and can be useful
to design 2D materials-based practical and durable devices to be operated at moderate or
high temperatures.
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