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Abstract: This paper follows up on a reference paper that inspired MDPI’s topic “Stochastic Geome-
chanics: From Experimentation to Forward Modeling”, in which global and local deformation effects
on sand specimens were fully described from high-resolution boundary displacement fields. This
paper is supported by that study’s experimental database, which is open to the scientific community
for further study. This paper focuses on the analysis of this experimental study to investigate strain
localization effects on a subset of tests included in this database. Strain localization is defined here
as associated with the non-homogeneous deformation process occurring in elastoplastic materials,
including sands. Many experimental and numerical studies have been conducted during the last
two decades to explore the characteristics of localization effects on sand, and to determine how these
contribute to the failure mechanisms of specific sands. Under a triaxial compression condition, local-
ization effects have been studied mainly with regard to particle kinematics and translational strain of
the specimen’s displacement fields. However, to the best of the authors’ knowledge, there has been
no 3D experimental kinematic analysis performed on sands to study the localization phenomena that
can directly relate the impact of a specimen’s initial and boundary conditions to a failure mechanism
during a triaxial test. In this paper, we introduce a full set of 3D kinematic operators under cylindrical
coordinates to assess the boundary localization effects of deforming sand specimens under triaxial
loading conditions. Furthermore, a set of experiments were carried out under varying experimental
conditions to study the impact of variability in these localization effects. Results show that patterns
of kinematic effects are quantifiable and can be used to assess likely failure-influencing factors, such
as confining pressure, initial density, sample geometry, and sample heterogeneity, in the development
of specific failure mechanisms. Spatio-temporal interdependencies between localization effects, such
as the interactions between shear, expansion, and compaction bands observed during the specimen’s
shearing process, were also studied. We therefore hypothesize that the proposed framework will
serve as the basis for quantifying the uncertainty associated with the development of localization
effects over the boundary of sand-deforming specimens.

Keywords: sand specimens; kinematic analysis; triaxial compression test; localization effects; shear
band; compaction band; expansion band

1. Introduction

Two reference papers precede this work: one introducing the supporting experimental
database used to produce the analyses on localization effects discussed in this paper [1], and
its companion paper, which presents the statistical analyses of the experimental database [2].
This paper introduces a study of strain localization in sand specimens, which is assumed to
be associated with non-homogeneous deformation occurring in materials when they are
subjected to compressive or tensile stress [3]. The accumulation of strain localization is
frequently presented as a thin zone of intense deformation [4], such as shear, expansion, or
compaction band, which encompass the main material responses once it is fully formed [5].
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Since the onset and evolution of localization effects underlie soil mechanical failure pro-
cesses, its study plays a key role in advancing the understanding of geomechanics, from its
phenomenological behavior (global stress-strain responses) to fundamental physics (partic-
ulate interactions), to provide the best interpretation of the micro-deformation mechanisms
associated with macro-deformation mechanisms observed in geo-structure behavior (e.g.,
foundations, dams, excavations, etc.).

The analysis of localization based on laboratory experimentation requires access to full
displacement fields and to standard global (axial) measurements. The latter typically yield
at best the averaged material response (global/axial stress-strain behavior), disregarding
the occurrence of any localization effects. On the other hand, modeling of full displacement
fields, including the use of the discrete element method (DEM) [6,7], has played an important
role, owing to its ability to account for particle–particle interactions and granular morphology,
thus enabling the strain localization to be revealed on the grain scale [8–12]. For example, Oda
and Iwashita [12] used DEM to reveal the formation and collapse of column-like structures,
parallel to the principal stress direction during the hardening and softening phases of a
sample compressed under the plane strain condition. Further, the ability of DEM to directly
measure particle contact maps and kinematics allows for inspection of nonaffine deformation
features, including microbands [13], vortex structures [8,14], and translational/rotational
behaviors of soil clusters [15,16], among other strain localization phenomena.

Some experimental efforts to measure full-field displacement fields, and to study
grain-scale kinematics in particular, include the study by Hall et al. [17], who combined
X-ray imaging and digital image correlation to study the three-dimensional translation and
rotation of sand grains in a sand specimen. Based on this work, Andò et al. [18] further
developed the 1D-Track technique, which labeled particle volume as the feature to identify
the trajectory of each particle during the triaxial compression tests. Alshibli et al. [19,20]
focused on more sand particle properties, including volume, surface area, and dimension,
which are incorporated into the particle-tracking method. Results showed that the particle
kinematics and micro shear bands developed prior to the formation of persistent shear
bands. More recent works have considered the local deformation gradient to examine the
local shear component of displacement fields by using micro-strain [21] and translation
gradient [22,23].

The digital image correlation (DIC) method has emerged as a promising method
to elucidate full-field displacement fields that can provide a spatio-temporal continual
description of sand deformation. This is based on pixel analysis of images taken during a
specimen compression test, from which local displacements are evaluated by comparison
of overlapping subsets of images captured at different deformation stages of the test.
The effectiveness of DIC in the study of geomechanics has been demonstrated by many
previous studies [17,24,25]. In particular, in shear band analysis, Rechenmacher and co-
workers [26,27] used DIC to quantify the persistent shear bands and kinematic properties
comprised of rotational and volumetric behaviors, as well as vortex structures of sand
specimen undergoing plane strain deformation [28]. However, these works were carried out
under two-dimensional stress conditions, which disregard the out-of-plane translational or
rotational behaviors of the sand.

To elicit the 3D displacement field, a stereovision-based system of DIC analysis, namely, 3D-
DIC, has been proposed and used in the characterization of material response [29,30]. However,
no three-dimensional local strain or kinematics (translation, rotation, expansion/compaction,
etc.) were revealed under triaxial compression conditions. This was due to the basic characteris-
tic of DIC as an approach that performs non-intrusive sampling (i.e., boundary measurements
only), thus, the specimen’s internal deformation gradient, which is necessary for quantifying
the motions of a 3D object, is consequently challenging to assess. Moreover, the selection of
an appropriate coordinate system is another challenge. Ideally, the chosen coordinate system
should align with the geometry of the studied object, so that deformation can faithfully rep-
resent how strain changed the object’s geometry. Since the triaxial sand specimen is usually
constituted in a cylindrical shape, the 3D cylindrical coordinate system is assumed suitable
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for the characterization of micro- and meso-scale kinematics observed on the boundary of a
deforming sand specimen under triaxial loading conditions.

In this paper, we provide the complete set of first-order 3D kinematic operators un-
der cylindrical coordinates that are consistent with specimen geometry, and suitable to
characterize micro- and meso-scale kinematics comprised of compressional, extensional,
rotational, and shearing behaviors, for a series of sand triaxial compression tests. In Sec-
tion 2, we give a brief introduction regarding the laboratory tests completed and coupled
with the 3D DIC technique. In Section 3, we introduce 3D kinematic operators under
cylindrical coordinates, as well as the use of these to characterize the local deformations. In
Section 4, we provide the experimental design of kinematic analyses and the corresponding
results. Section 5 presents the paper’s findings and analyses of local kinematic phenomena
observed and quantified on a series of sand specimens subjected to triaxial loading con-
ditions. All supporting data and models needed to reproduce this paper are available at
https://dataverse.tdl.org/dataverse/SGL, accessed on 1 August 2022.

2. Experimental Method
2.1. Triaxial Compression Test

Specimens constituted by dry sand, classified as SP, were tested under three-dimensional
stress conditions [1]. The coefficients of uniformity and curvature were 2.34 and 1.11, re-
spectively, providing the specimens an adequate range when viewed in grayscale; thus,
the varying color patterns manifested on the specimen membrane can be distinguished
through imaging correlation analysis. A subset from the experimental database of five tests
was selected to for kinematic analysis. Basic physical properties and sample preparation
methods of these tests are summarized in Table 1. All specimens from this subset were
constituted approximately 160 mm in height and 70 mm in diameter. Three specimens had a
relative density of more than 90.00% (092903b, 121304d, 121304c), one loose specimen had a
relative density of 46.39% (121304b), and one two-layer specimen was constituted as bottom
half “dense” (relative density of 98.97%) and top half “loose” (relative density of 30.54%)
(120704c) [1]. The distinct density distribution produced by the two-layer specimen was
intended for investigation of the effect of induced heterogeneity on the constitutive behavior
of specimens (Table 1).

Table 1. Summary of sample characteristics.

Test Name Height
(mm)

Diameter
(mm)

Relative
Density

(%)

Friction Angle
(deg)

Peak
(σ’

1/σ’
3)

Sample
Preparation

Method
Notes

092903b 155.50 71.33 91.09 49.51 7.35 Vibratory
compaction 40 kPa confinement

121304d 159.50 71.38 99.71 50.95 7.95 Dry pluviation 20 kPa confinement
121304c 160.00 70.48 93.72 48.59 7.00 Dry pluviation 60 kPa confinement
121304b 158.17 70.86 46.39 40.88 4.79 Dry pluviation Loose specimen (40 kPa)

120704c
157.67 70.88 68.90 43.71 5.43

Dry pluviation
Two-layer specimen (40 kPa)

79.50 71.27 98.87 - - Lower part of two-layer
specimen: dense sand

78.17 70.68 30.54 - - Upper part of two-layer
specimen: loose sand

A conventional triaxial apparatus performed the compression tests, except that the
Plexiglass cell was removed to better capture the specimen’s boundary displacement
fields; thus, all specimens were vacuum consolidated. Three tests were consolidated to
40 kPa isotropic confining pressure (092903b, 121304c, and 120704c), and two tests were
consolidated at confining pressures of 20 kPa (121304d) and 60 kPa (121304c), respectively.
Axial loading compression was applied at a controlled axial strain rate of 0.2%/min until
the specimen was fully sheared. Global axial stress–strain and strain–volumetric strain
responses are shown in Figure 1. Note that due to the removal of the confining cell, the
direct measurement of volumetric strain was not possible using the triaxial device; an
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alternative methodology was therefore implemented to estimate the sample volume at
every deformation stage through the reconstruction of the sample geometry using the stereo-
digital images and the DIC to produce the material displacement field, and from there to
estimate the volumetric strain. A detailed description of the methodology developed to
assess the volumetric strain can be found in [25,31].

Figure 1. Global material responses: (a) triaxial stress-strain curves; (b) axial strain-volumetric strain curves.

Figure 1a shows peak stress occurred for dense specimens (tests 092903b, 121304d and
121304c), but not for loose and two-layer specimens (121304b and 120704c respectively).
Comparison of constitutive behaviors of three dense specimens showed the peak stress
increase with higher confinement. Figure 1b shows the volumetric strain behaviors of all
tests, in which the dilation was seen among dense specimens, but was less significant for
loose and two-layer specimens. Notice that the loose and two-layer specimens had similar
volumetric behavior from the initial state up to 5% of axial strain, indicating that volumetric
strain in the two-layer specimen was initially concentrated on its loose segment, which
made it behave similarly to that of the loose specimen.

2.2. 3D Digital Image Correlation

The digital image correlation (DIC) method is a non-destructive, optical method for
measuring displacement fields over the surface of a deforming body. The object tracked by
DIC analysis is a cluster of image pixels forming a subset. When studying material evolved
from initial state to deformed state, DIC measures the affine behaviors (i.e., translation,
rotation, and/or straining) of overlapping subsets between the reference and target images.
Due to the innate heterogeneity of sand colors, the distinct greyscale patterns of each subset
can be directly recognized through a matching algorithm without any manual intervention.
In this work, two digital cameras were obliquely set up in front of the specimen to construct
a 3D scene, which is similar to the way human eyes acquire the object position [1]. The
calibration of lenses involves capture-synchronous images of a standard grid oriented at
different angles. From the resulting stereo images, key camera parameters (e.g., position,
orientations, focal length, lenses distortions, etc.) are calibrated. After confirming the object’s
3D spatial information, 3D displacements can be computed by comparing overlapping pixel
subsets between reference and target images as described above.

The software VIC-3D, by Correlated Solutions, Inc. (Correlated Solutions: Irmo, SC,
USA), was used to extract 3D displacement fields from the stereo images. The search
for best-match subsets was implemented following normalized cross-correlation algo-
rithm [32]. Once matching subsets and corresponding displacement vectors were identified,
a continuous displacement field was linearly interpolated to evaluate subset translation,
rotational, and straining properties on a continuum domain. Details of the piece-wise
integration of cumulative displacement fields can be found in [25]. The stereo images were
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taken every 15 s, corresponding to 0.05% of axial strain through the course of compression.
An increment of 0.2% of axial strain, however, was considered sufficient to represent the
evolution of localization effects [25,27]; thus, incremental displacements were updated
every 4 images. The measurement accuracy was assessed by comparing averaged vertical
displacement through DIC data with global readings by linear variable differential trans-
former (LVDT) transducers, and the difference was found approximately along the vertical
direction. Similar accuracy has been observed in the horizontal direction [1,33].

To illustrate the components of a typical displacement field over the specimen’s sur-
face, Figure 2 presents displacement fields of test 092903b between axial strain 3.2% and
7.0% using the Lagrangian description resulting from 3D DIC analysis. The first row
shows displacement vectors decomposed into horizontal (u), vertical (v), and out-of-plane
(w) directions, respectively, based on a Euclidean coordinate system. The horizontal dis-
placement, as anticipated, related to the development of an expansion band, which was
concentrated in the middle of the specimen and made the sand move towards opposite
directions (left negative, right positive) if viewed on the horizontal plane. The vertical
displacement field (middle sub-plot in the same row) showed approximately zero dis-
placement at the top (since loading was provided from the bottom) suggesting that the
specimen was compressed approximately as three separate “moving blocks” that possessed
different deforming rates [29]. The bulging effect of the specimen is depicted in the plot
of the out-of-plane displacement field (third sub-plot), in which the maximum value was
shown at the center of specimen. The second row in Figure 2 is the same displacement
vector, but decomposed under cylindrical coordinates, yielding radial (r), tangential (t), and
vertical (v) displacement fields, respectively (left to right). Amidst the three, the tangential
displacement (middle sub-plot in the same row) shows an intensified region along the
diagonal direction, suggesting local areas tended to rotate clockwise along the specimen
circumference. This agrees well with previous findings on the intense rolling of particles
within the shear band [12,34].

Figure 2. First row is displacement fields of test 092903b between axial strain 3.2% and 7.0%; left to
right are displacements along horizontal (u), vertical (v), and out-of-plane (w) directions based on a
spatial coordinate system. Second row is the same displacement field, but decomposed into radial (r),
tangential (t), and vertical (v) directions on cylindrical coordinates.
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3. 3D Kinematic Operators under Cylindrical Coordinates

This paper focuses on linking the localization effects with kinematic effects as observed
on the boundary of the specimen, such as compression, rotation, and/or straining, which
may lead to specific mechanistic failure mechanisms. A cylindrical coordinate system was
considered as the basis to maintain consistency with specimen geometry, and thought to be
suitable for presenting the state of three-dimensional stresses. The observed displacement
fields across the specimen boundary were decomposed in radial, tangential, and vertical
directions. One challenge in calculating kinematics under current setting lies in the dif-
ficulty of computing directional derivatives along radial directions, since no contiguous
measurements of internal deformations are retrieved by the DIC sampling method (i.e.,
DIC only measures boundary displacement fields). To overcome this issue, we introduced
a series of auxiliary assumptions; namely, a set of reference origins along the axis of the
specimen where the radial and tangential displacements were assumed to be zero; and the
displacements along the axis were estimated to be equal to the average of all vertical dis-
placements captured on the specimen boundary at each specimen height. This assumption
was supported by experimental evidence revealed by Desrues et al. [35]—a rigid cone de-
limited by a circular shear surface and multiple sets of planes extending outwards from the
cone towards the specimen boundary imply that the radial and tangential displacements
along the axis are negligible compared to vertical displacement. Figure 3 illustrates this
assumption, in which the sampling area from a spatial surface is transformed into a series
of 3D wedges by incorporating this set of auxiliary reference origins; thus, the localization
effects can be properly evaluated from the kinematics of these 3D shapes.

Figure 3. Schematic illustration of 3D study objects: (a) the initial geometry of the specimen; (b) the
assumed auxiliary origins along the axis of the specimen; (c) connecting boundary coordinates with
added auxiliary origins to form the 3D study objects.

After discretizing the continuum media as described above, it follows to identify
the kinematic operators under the current configuration. The conventional first-order
kinematics include gradient, divergence, and curl operators acting on the vector field U [36].
These quantities are defined through an operator called del, or nabla, and its tensor, dot, and
cross product with the vector field U. Equations (1)–(3) provide the expressions of gradient,
divergence, and curl under cylindrical coordinates. The gradient of a 3D vector field U would
generate a deformation tensor F, composed of nine components representing translational or
rotational changing rates of the neighboring local area affected by the vector field U. The
sum of diagonal terms presented in F is the divergence indicating the total magnitude of sink
(positive quantities) or source (negative quantities) of a local area. Moreover, the difference
between every two off-diagonal terms in F gives each component of curl representing



Appl. Sci. 2022, 12, 8091 7 of 28

local rotational behavior with respect to every axis. Full derivation of first-order kinematic
operators under the cylindrical coordinates can be found in Appendix A.

grad U = ∇⊗U =

F11 F12 F13
F21 F22 F23
F31 F32 F33

 =


∂Uρ

∂ρ
1
ρ

(
∂Uρ

∂φ −Uφ

)
∂Uρ

∂y
∂Uφ

∂ρ
1
ρ

(
∂Uφ

∂φ + Uρ

)
∂Uφ

∂y
∂Uy
∂ρ

1
ρ

∂Uy
∂φ

∂Uz
∂y

 (1)

div U = ∇·U =
1
ρ

∂

∂ρ

(
Uρ·ρ

)
+

1
ρ

∂Uφ

∂φ
+

∂Uy

∂y
(2)

curl U = ∇×U= (curl U)ρ + (curl U)φ + (curl U)y

=

(
1
ρ

∂Uy

∂φ
−

∂Uφ

∂y

)
ρ̂ +

(
∂Uρ

∂y
−

∂Uy

∂ρ

)
φ̂

+

(
1
ρ

∂

∂ρ

(
Uφ · ρ

)
− 1

ρ

∂Uρ

∂φ

)
ŷ

(3)

Figure 4 provides an example of nine components of the gradient field (Equation (1))
based on the state of a specimen’s boundary displacements (092903b), from undeformed
stage to critical state (axial strain 0.0% to 9.6%). The x-y coordinates are normalized accord-
ing to specimen diameter to enable comparison of the results with other tests. Expansional
behavior presented in radial and tangential directions, as shown by positive values in
F11 and F22. Along the vertical direction, however, compression was observed inside the
shearing zone, especially located at the top-left portion, as shown in F33. The overall
volumetric behavior in terms of these two competing phenomena can be found in the plot
of the divergence field, as shown in Figure 5. A general volumetric dilation was seen in the
middle of the specimen; in particular, a local concentrating zone was found to coincide with
areas of shear band. Nevertheless, inside the compression band, which was characterized
as negative divergence, intense volumetric contraction was found matching with areas of
large axial compression, as shown in F33. This revealed that the shear band can introduce
highly volumetric expansion or compaction, depending on its overlap with the expansion
band or compression band. This observation complements those from previous studies
about volumetric change influenced by shear band, which focused on the large voids
(volumetric dilation) generated by intense rolling of soil particles under the plane strain
conditions [34,37].

Figure 6 presents the curl fields with respect to three orthogonal axes. Sub-plots (d),
(e), and (f) illustrate the positive rotational directions for each axis. In Figure 6a, a shear
band is explicitly depicted by highlighted clockwise rotational areas. This corroborates,
again, intense rolling of soil particles occurring inside the shear band [34,37]. For rotation
with respect to φ̂ axis (as shown in Figure 6b), two bands are seen rotating in opposite
directions and separated by a neutral zone in the middle, suggesting the “barrel” shape of
expansion band. As for curl along ŷ axis, an approximate zero rotation is seen across the
whole domain, except for some deviations found along the shear banding areas, suggesting
that the variations in axisymmetric deformation of the specimen were introduced by the
development of the shear band.
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Figure 4. Nine components of gradient deformation tensor F based on test 092903b from undeformed
stage to loading level of εa = 9.6%: (a) tenor component F11; (b) tenor component F12; (c) tenor
component F13; (d) tenor component F21; (e) tenor component F22; (f) tenor component F23; (g) tenor
component F31; (h) tenor component F32; (i) tenor component F33.
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Figure 5. (a) Divergence field based on test 092903b at loading level of εa = 9.6%; (b) illustration of
deformation associated with positive divergence field.

Figure 6. Curl components calculated based on test 092903b at loading level of εa = 9.6%: (a) curl
field with respect to ρ̂ axis; (b) curl field with respect to φ̂ axis; (c) curl field with respect to ŷ axis;
(d) illustration of positive rotation for curl along ρ̂ axis; (e) illustration of positive rotation for curl
along φ̂ axis; (f) illustration of positive rotation for curl along ŷ axis.

4. Spatio-Temporal Evolution of 3D Kinematics
4.1. Experimental Design

To investigate the evolution of localization effects in space and time, an experimental
design was formulated to account for tests showing distinct experimental conditions.
Figure 7 shows the accumulated strain windows for the analysis; specifically, axial strains
from 0.0% to 1.0%, 1.0% to 3.0%, 3.0% to 5.0%, 5.0% to 7.0%, and 7.0% to 9.0%, respectively.
The first two windows, 0.0%–1.0% and 1.0%–3.0%, correspond to the elastic and hardening
phases for most of the tests. After peak stress around 3.0% axial strain, dense specimens
entered the softening stage, while no clear softening was presented in the loose and
layered specimens. Figure 8 illustrates the experimental design of the proposed kinematic
analysis. Four kinematic features, gradient along ρ̂ axis (F11), gradient along ŷ axis (F33),
divergence (div U), and curl along ρ̂ axis ((curl U)ρ), were investigated across all tests. The
associated deformation characteristics were: F11 indicates radial deformation gradient; F33
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indicates vertical deformation gradient; div U indicates volumetric deformation gradient;
and (curl U)ρ indicates rotational deformation gradient. The criteria for choosing these
kinematic signatures lay in the significant rotational or volumetric behavior associated
with the development of compaction, expansion, and shear bands. For each strain window,
the kinematic quantities were tracked on the reference to the initial image of that window;
thus, the results were computed on the Lagrangian description.

Figure 7. Strain windows for kinematic analyses: 0.0–1.0%, 1.0–3.0%, 3.0–5.0%, 5.0–7.0%, and 7.0–9.0%
of axial strain.

Figure 8. Experimental design of analyzing kinematic properties divergence; gradient along ρ̂ axis
(F11), gradient along ŷ axis (F33), divergence (div U), and curl along ρ̂ axis ((curl U)ρ).
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4.2. Dense specimen at Confinement of 40 kPa (Test 092903b)

Figure 9 presents the five increments of the divergence field of test 092903b. Results
reveal that local dilation started as early as the hardening phase (axial strain 1.0%–3.0%),
and its further development introduced compression bands appearing in the adjacent areas
of the expansion band. The plot of the curl along ρ̂ axis in Figure 10 shows that surface
rotation localized after the peak stress (i.e., after second frame). When the persistent shear
band was fully formed, the surrounding areas tended to rotate along opposite directions,
in contrast to that of the inside the shear band. The gradient along the radial direction
F11 (Figure 11) indicates the expansion band, which started from the hardening stage. It
distributed uniformly around the middle portion of the specimen until the occurrence of
the dominant shear band, which broke the symmetry with respect to the middle of the
specimen. Additionally, the magnitude of expansion decreased in the last frame, suggesting
that dilation declined when loading approached the critical state. Figure 12 presents the
evolution of local vertical deformation F33. The shear band is highlighted by this property,
indicating the local compression was evident inside the shear band, which may have been
caused by the forms and collapses of force chains within the banding area [12].

Figure 9. Evolution of divergence fields div U of test 092903b: (a) axial strain 0.0%–1.0%; (b) axial
strain 1.0%–3.0%; (c) axial strain 3.0%–5.0%; (d) axial strain 5.0%–7.0%; (e) axial strain 7.0%–9.0%.
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Figure 10. Evolution of curl along ρ̂ axis (curl U)ρ of test 092903b: (a) axial strain 0.0%–1.0%; (b) axial
strain 1.0%–3.0%; (c) axial strain 3.0%–5.0%; (d) axial strain 5.0%–7.0%; (e) axial strain 7.0%–9.0%.

Figure 11. Evolution of gradient along ρ̂ axis F11 of test 092903b: (a) axial strain 0.0%–1.0%; (b) axial
strain 1.0%–3.0%; (c) axial strain 3.0%–5.0%; (d) axial strain 5.0%–7.0%; (e) axial strain 7.0%–9.0%.
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Figure 12. Evolution of gradient along ŷ axis F33 of test 092903b: (a) axial strain 0.0%–1.0%; (b) axial
strain 1.0%–3.0%; (c) axial strain 3.0%–5.0%; (d) axial strain 5.0%–7.0%; (e) axial strain 7.0%–9.0%.

4.3. Dense Specimen at Confinement of 20 kPa (Test 121304d)

Figures 13 and 14 describe the progression of divergence and curl along ρ̂ axis of a dense
specimen under relatively low confinement 20 kPa. Both figures indicate that the shear
band only developed at a very late stage (axial strain 7.0%–9.0%). This agrees well with the
findings in Liu et al. [38] that localization increases with higher confining pressures under
the plane strain condition. The plot of gradient along ρ̂ axis F11 (Figure 15) shows that the
middle expansion started from an axial strain of 1.0%–3.0%. Later, with the development
of shear band, the expanding zone was bounded, and leading the radial deformation was
only active within the shear band. The plot of gradient along ŷ axis F33 (Figure 16) suggests
the shear band was not fully formed until the last frame. After a persistent shear band
dominated the shear process, the intense local axial deformation was only apparent within
the banding area.

4.4. Dense Specimen at Confining Pressure 60 kPa (Test 121304c)

This dense specimen was performed under a higher confinement compared to the
other tests. Figure 17 shows the progress of divergence field based on the dense specimen
under confining pressure of 60 kPa. The local volumetric expansion was seen to occur
immediately after the peak stress (axial strain 3.0%). The compacting region later emerged
in the upper and lower area of expansion band (strain window 3.0%–5.0%), but only one at
the top persisted to the end of the softening stage. Figure 18 shows under this experimental
condition at least three shear bands progressing simultaneously with different shapes and
orientations. The radial deformation gradient for this specimen, as presented in Figure 19,
developed uniformly along the horizontal direction until the achievement of 7.0% axial strain.
When the shearing reached the critical state (strain window 3.0%–5.0%), the intense radial
deformation was seen encompassed within a “butterfly” zone (Figure 19e), which was due
to two shear bands that developed along cross-diagonal directions at this stage of loading
(Figure 18e). Figure 20 shows that deformation along the vertical direction were localized
in all three persistent shear bands once they were fully formed. In sum, the findings in the
dense specimen under high confinement suggests a stronger localization pattern compared
to that of the lower-density confined specimen in the triaxial compression test.
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Figure 13. Evolution of divergence field div U of test 121304d: (a) axial strain 0.0%–1.0%; (b) axial
strain 1.0%–3.0%; (c) axial strain 3.0%–5.0%; (d) axial strain 5.0%–7.0%; (e) axial strain 7.0%–9.0%.

Figure 14. Evolution of curl along ρ̂ axis (curl U)ρ of test 121304d: (a) axial strain 0.0%–1.0%; (b) axial
strain 1.0%–3.0%; (c) axial strain 3.0%–5.0%; (d) axial strain 5.0%–7.0%; (e) axial strain 7.0%–9.0%.
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Figure 15. Evolution of gradient along ρ̂ axis F11 of test 121304d: (a) axial strain 0.0%–1.0%; (b) axial
strain 1.0%–3.0%; (c) axial strain 3.0%–5.0%; (d) axial strain 5.0%–7.0%; (e) axial strain 7.0%–9.0%.

Figure 16. Evolution of gradient along ŷ axis F33 of test 121304d: (a) axial strain 0.0%–1.0%; (b) axial
strain 1.0%–3.0%; (c) axial strain 3.0%–5.0%; (d) axial strain 5.0%–7.0%; (e) axial strain 7.0%–9.0%.
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Figure 17. Evolution of divergence field div U of test 121304c: (a) axial strain 0.0%–1.0%; (b) axial
strain 1.0%–3.0%; (c) axial strain 3.0%–5.0%; (d) axial strain 5.0%–7.0%; (e) axial strain 7.0%–9.0%.

Figure 18. Evolution of curl along ρ̂ axis (curl U)ρ of test 121304c: (a) axial strain 0.0%–1.0%; (b) axial
strain 1.0%–3.0%; (c) axial strain 3.0%–5.0%; (d) axial strain 5.0%–7.0%; (e) axial strain 7.0%–9.0%.
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Figure 19. Evolution of gradient along ρ̂ axis F11 of test 121304c: (a) axial strain 0.0%–1.0%; (b) axial
strain 1.0%–3.0%; (c) axial strain 3.0%–5.0%; (d) axial strain 5.0%–7.0%; (e) axial strain 7.0%–9.0%.

Figure 20. Evolution of grad along ŷ axis F33 of test 121304c: (a) axial strain 0.0%–1.0%; (b) axial strain
1.0%–3.0%; (c) axial strain 3.0%–5.0%; (d) axial strain 5.0%–7.0%; (e) axial strain 7.0%–9.0%.
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4.5. Loose Specimen at Confining Pressure 40 kPa (Test 121304b)

Figure 21 shows the local divergence development of the loose specimen during com-
pression. Only a slight expansion appeared at the lower part of the specimen, suggesting
volumetric dilation was much less evident for the loose specimen compared to the dense
ones. This moderate change pattern was also found in shear band evolution. As presented
in Figure 22, even though two seemingly shear bands were gradually formed along op-
posite directions, the pattern was not significant when loading approached axial strain of
9.0%. The slow development of localization effects is also implied by the plot of gradient
along ρ̂, as in Figure 23, which shows that the radius change followed a constant pattern
after axial strain of 3.0%, and the interactions between expansion and shear bands are not
apparent. Figure 24 shows the similar localization patterns as that of Figure 22.

Figure 21. Evolution of divergence field div U of test 121304b: (a) axial strain 0.0%–1.0%; (b) axial
strain 1.0%–3.0%; (c) axial strain 3.0%–5.0%; (d) axial strain 5.0%–7.0%; (e) axial strain 7.0%–9.0%.
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Figure 22. Evolution of curl along ρ̂ axis (curl U)ρ of test 121304b: (a) axial strain 0.0%–1.0%; (b) axial
strain 1.0%–3.0%; (c) axial strain 3.0%–5.0%; (d) axial strain 5.0%–7.0%; (e) axial strain 7.0%–9.0%.

Figure 23. Evolution of gradient along ρ̂ axis F11 of test 121304b: (a) axial strain 0.0%–1.0%; (b) axial
strain 1.0%–3.0%;(c) axial strain 3.0%–5.0%;(d) axial strain 5.0%–7.0%;(e) axial strain 7.0%–9.0%.
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Figure 24. Evolution of gradient along ŷ axis F33 of test 121304b: (a) axial strain 0.0%–1.0%; (b) axial
strain 1.0%–3.0%; (c) axial strain 3.0%–5.0%; (d) axial strain 5.0%–7.0%; (e) axial strain 7.0%–9.0%.

4.6. Layered Specimen at Confining Pressure of 40 kPa (Test 120704c)

The image acquisition of the layered specimen (test 120704c) captured some ‘extreme
values’ of kinematic properties occurring at the boundary of the imaging area. This can be
interpreted in the stereo images, as shown in Figure 25, where the bumpy, complex, and
heterogeneous deforming patterns are seen in the upper budging part of the specimen.
One hypothesis is that it could be attributed to the distinctive material density constituting
the upper and lower parts of the specimen (relative densities are 30.54% vs. 98.87%, as
presented in Table 1). When the specimen was undergoing triaxial shearing, the local
density changed significantly for both the upper and lower parts of the specimen, which
encoded more heterogeneous deformation patterns in the local displacements. Figure 26
presents the evolution of divergence field of the specimen. Figure 27 shows no clear shear
banding was developed over the image-capturing area, which was similar to that of the
loose specimen. Figure 28 shows that the expansion mainly happened to the upper loose
part, indicating the failure was governed by the weak part of the specimen. The results of
the test on the layered specimen showed an overall similar behavior to that of the loose
specimen, including localizations of expansion and shearing phenomena. Figure 29 shows
the evolution of gradient along ŷ axis F33 of test 120704c, in which the non-significant
vertical strain localization observed among the majority of surface areas.
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Figure 25. Digital images of test 120704c at axial strain 9.0%: (a) left image; (b) right image.

Figure 26. Evolution of divergence field div U of test 120704c: (a) axial strain 0.0%–1.0%; (b) axial
strain 1.0%–3.0%; (c) axial strain 3.0%–5.0%; (d) axial strain 5.0%–7.0%; (e) axial strain 7.0%–9.0%.
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Figure 27. Evolution of curl along ρ̂ axis (curl U)ρ of test 120704c: (a) axial strain 0.0%–1.0%; (b) axial
strain 1.0%–3.0%; (c) axial strain 3.0%–5.0%; (d) axial strain 5.0%–7.0%; (e) axial strain 7.0%–9.0%.

Figure 28. Evolution of gradient along ρ̂ axis F11 of test 120704c: (a) axial strain 0.0%–1.0%; (b) axial
strain 1.0%–3.0%; (c) axial strain 3.0%–5.0%; (d) axial strain 5.0%–7.0%; (e) axial strain 7.0%–9.0%.
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Figure 29. Evolution of gradient along ŷ axis F33 of test 120704c: (a) axial strain 0.0%–1.0%; (b) axial
strain 1.0%–3.0%; (c) axial strain 3.0%–5.0%; (d) axial strain 5.0%–7.0%; (e) axial strain 7.0%–9.0%.

5. Conclusions

A 3D spatio-temporal kinematic analysis was conducted on a series of triaxial sand
specimens sheared under different experimental conditions. This was achieved by introducing
3D kinematic operators under the cylindrical coordinates, which can appropriately account
for the specimen geometry. Kinematic results showed 3D micro- to meso-scale localization
effects during shearing of the triaxial specimens, leading to the following conclusions:

(1) The development of expansion bands and compaction bands occurred at different
temporal stages. Expansion bands were seen initiating as early as in the hardening
stage. With strain, softening began to occur and the expanding rate gradually declined,
whereas the compaction band began to emerge in the adjacent areas of the expansion
band.

(2) When a shear band was fully formed, it could alter the radial deformation of the
specimen according to the shape and orientation of the shear band(s). Furthermore,
local axial strain become concentrated exclusively within the shear band.

(3) The localization effects were less evident when confinement was low, or when tests
were conducted on the loose specimen. On the other hand, high confining pressure
could lead to multiple shear bands progressing simultaneously.

(4) The kinematic characterization of the layered specimen showed a similar behavior
to that of the loose specimen. Additionally, the failure mode was governed by the
material response within the loose part of the specimen.

It is worth noting that stochastic behavior was present in the sand localization effects,
driven by the heterogeneous nature of the material. A statistical characterization of localiza-
tion effects, which can account for the main deformation mode and uncertainty associated
with the kinematics of the sand, is thus significant for further evaluation of sand’s local-
ization phenomena, and of interest for calibration and simulation, among other numerical
studies on sand failure mechanisms. A follow up paper will introduce a spatio-temporal
statistical analysis of the same kinematic operators discussed in this paper.
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Appendix A. Gradient: Divergence, and Curl in Cylindrical Coordinates

Appendix A.1. The Nabla Operator ∇
The gradient, the divergence, and the curl are first-order kinematic operators acting on

fields. The conventional way to express them is via a vector called nabla, whose components
are partial derivatives with respect to certain coordinates system. For instance, in Cartesian
coordinates, the nabla operator ∇ is defined as:

∇ = î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z
(A1)

Given that the nabla operator is a vector, we can conduct some vector operations, such
as dot product and cross product, which leads to the concept of divergence and curl in
Cartesian coordinates, as shown in Equations (A2) and (A3):

∇ ·U =
∂Ux

∂x
+

∂Uy

∂y
+

∂Uz

∂z
(A2)

∇×U = î(
∂Uz

∂y
−

∂Uy

∂z
) + ĵ(

∂Ux

∂z
− ∂Uz

∂x
) + k̂(

∂Uy

∂x
− ∂Ux

∂y
) (A3)

Appendix A.2. Coordinate Transformation

The transformations between cylindrical and Cartesian coordinates are:

Cartesian→ Cylindrical :


ρ =

√
x2 + y2

φ = arctan(y, x)
z = z

 (A4)

Cylindrical → Cartesian :


x = ρ cos φ
y = ρ sin φ

z = z

 (A5)

The unit vector in the cylindrical coordinates are the functions of position. They
point to radius, tangential, and vertical directions, respectively. The forward and inverse
transformations of unit vectors between Cartesian and cylindrical coordinates are:

Cartesian→ Cylindrical :


ρ̂ = î cos φ + ĵ sin φ

φ̂ = −î sin φ + ĵ cos φ

ẑ = k̂

 (A6)

https://dataverse.tdl.org/dataverse/SGL-MDPI-Topic-StochasticGeomechancis-ForwardModeling
https://dataverse.tdl.org/dataverse/SGL-MDPI-Topic-StochasticGeomechancis-ForwardModeling
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Cylindrical → Cartesian :


î = r̂ cos φ− φ̂ sin φ

ĵ = r̂ sin φ + φ̂ cos φ

k̂ = ẑ

 (A7)

If we calculate the derivatives of ρ̂, φ̂, and ẑ with respect to ρ, φ, and z, the only
non-zeros terms are:

∂ρ̂

∂φ
= −î sin φ + ĵ cos φ = φ̂ (A8)

∂φ̂

∂φ
= −î cos φ− ĵ sin φ = −ρ̂ (A9)

These useful terms can simplify the derivation of Divergence and Curl under cylindri-
cal coordinates.

Appendix A.3. The Nabla Operator in Cylindrical Coordinates

To express nabla operator ∇ in cylindrical coordinates, we must map the terms î ∂
∂x ,

ĵ ∂
∂y , and k̂ ∂

∂z onto the terms r̂ ∂
∂r , φ̂ ∂

∂φ , and ẑ ∂
∂z that are defined in cylindrical coordinates

U(r, φ, z). A direct approach is to use the chain rule and transformation relationships
introduced above, namely,

ρ̂
∂

∂ρ
= (î cos φ + ĵ sin φ)(

∂x
∂ρ

∂

∂x
+

∂y
∂ρ

∂

∂y
)

= (î cos φ + ĵ sin φ)(cos φ
∂

∂x
+ sin φ

∂

∂y
)

= cos2 φî
∂

∂x
+ sin φ cos φî

∂

∂y
+ sin φ cos φ ĵ

∂

∂x
+ sin2 φ ĵ

∂

∂y

(A10)

φ̂
∂

∂φ
= (−î sin φ + ĵ cos φ)(

∂x
∂φ

∂

∂x
+

∂y
∂φ

∂

∂y
)

= (−î sin φ + ĵ cos φ)(−ρ sin φ
∂

∂x
+ ρ cos φ

∂

∂y
)

= ρ sin2 φî
∂

∂x
− ρ sin φ cos φî

∂

∂y
− ρ sin φ cos φ ĵ

∂

∂x
+ ρ cos2 φ ĵ

∂

∂y

(A11)

and
ẑ

∂

∂z
= k̂

∂

∂z
(A12)

Compare to Equation (A1), an intuitive attempt is to divide Equation (A11) by ρ, and
add it to Equations (A10) and (A12), then,

ρ̂
∂

∂ρ
+

φ̂

ρ

∂

∂φ
+ ẑ

∂

∂z
= (sin2 φ + cos2 φ)î

∂

∂x
+ (sin2 φ + cos2 φ) ĵ

∂

∂y
+ k̂

∂

∂z

= î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z

(A13)

Therefore, we have

∇ = ρ̂
∂

∂ρ
+

φ̂

ρ

∂

∂φ
+ ẑ

∂

∂z
(A14)
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Appendix A.4. Divergence in Cylindrical Coordinates

It is similar to analyzing divergence in Cartesian coordinates; the divergence in Cartesian
coordinates is carried out by computing the dot product of nabla operator ∇ and vector
field U(ρ, φ, z) That is,

∇·U=

(
ρ̂

∂

∂ρ
+

φ̂

ρ

∂

∂φ
+ ẑ

∂

∂z

)(
Uρρ̂ + Uφφ̂ + Uz ẑ

)
= ρ̂

(
ρ̂

∂Uρ

∂ρ
+ Uρ

∂ρ̂

∂ρ
+ φ̂

∂Uφ

∂ρ
+ Uφ

∂φ̂

∂ρ
+ ẑ

∂Uz

∂ρ
+ Uz

∂ẑ
∂ρ

)
+

φ̂

ρ

(
ρ̂

∂Uρ

∂φ
+ Uρ

∂ρ̂

∂φ
+ φ̂

∂Uφ

∂φ
+ Uφ

∂φ̂

∂φ
+ ẑ

∂Uz

∂φ
+ Uz

∂ẑ
∂φ

)
+ẑ
(

ρ̂
∂Uρ

∂z
+ Uρ

∂ρ̂

∂z
+ φ̂

∂Uφ

∂z
+ Uφ

∂φ̂

∂z
+ ẑ

∂Uz

∂z
+ Uz

∂ẑ
∂z

)
(A15)

Since ρ̂, φ̂, and ẑ are orthogonal unit vectors, the inner product between each two is 0
(self-inner product equals to 1). Together with Equations (A8) and (A9), we have

∇ ·U= ρ̂

(
ρ̂

∂Uρ

∂ρ
+ 0 + φ̂

∂Uφ

∂ρ
+ 0 + ẑ

∂Uz

∂ρ
+ 0
)

+
φ̂

ρ

(
ρ̂

∂Uρ

∂φ
+ Uρφ̂ + φ̂

∂Uφ

∂φ
−Uφρ̂ + ẑ

∂Uz

∂φ
+ 0
)

+ẑ
(

ρ̂
∂Uρ

∂z
+ 0 + φ̂

∂Uφ

∂z
+ 0 + ẑ

∂Uz

∂z
+ 0
)

=

(
∂Uρ

∂ρ
+

Uρ

ρ

)
+

1
ρ

∂Uφ

∂φ
+

∂Uz

∂z

=
1
ρ

∂

∂ρ

(
Uρ · ρ

)
+

1
ρ

∂Uφ

∂φ
+

∂Uz

∂z

(A16)

Appendix A.5. Curl in Cylindrical Coordinates

The calculation of curl follows the same method, as divergence calculated in cylindrical
coordinates. The cross product is calculated between nabla operator ∇ and vector field
U(ρ, φ, z).

∇×U=

(
ρ̂

∂

∂ρ
+

φ̂

ρ

∂

∂φ
+ ẑ

∂

∂z

)
×
(
Uρ ρ̂ + Uφφ̂ + Uz ẑ

)
= ρ̂×

(
ρ̂

∂Uρ

∂ρ
+ Uρ

∂ρ̂

∂ρ
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∂Uφ

∂ρ
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+ ẑ

∂Uz
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∂ẑ
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)
+
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ρ
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∂ẑ
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∂ẑ
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(A17)
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Appendix A.6. Gradient in Cylindrical Coordinates

The gradient of a smooth vector field U(ρ, φ, z) in cylindrical coordinates is defined to
be a second order tensor field,

∇⊗U=
∂

∂ρ

(
Uρρ̂ + Uφφ̂ + Uz ẑ

)
⊗ ρ̂

+
∂

∂φ

(
Uρρ̂ + Uφφ̂ + Uz ẑ

)
⊗ φ̂

ρ

+
∂

∂z
(
Uρρ̂ + Uφφ̂ + Uz ẑ

)
⊗ ẑ

=

(
∂Uρ

∂ρ
ρ̂ +

∂Uφ

∂ρ
φ̂ +

∂Uz

∂ρ
ẑ
)
⊗ ρ̂

+

(
∂Uρ

∂φ
ρ̂ + Uρφ̂ +

∂Uφ

∂φ
φ̂−Uφρ̂ +

∂Uz

∂φ
ẑ
)
⊗ φ̂

ρ

+

(
∂Uρ

∂z
ρ̂ +

∂Uφ

∂z
φ̂ +

∂Uz

∂z
ẑ
)
⊗ ẑ

=
∂Uρ

∂ρ
ρ̂⊗ ρ̂ +

∂Uφ

∂ρ
φ̂⊗ ρ̂ +

∂Uz

∂ρ
ẑ⊗ ρ̂

+
1
ρ

(
∂Uρ

∂φ
−Uφ

)
ρ̂⊗ φ̂ +

1
ρ

(
∂Uφ

∂φ
+ Uρ

)
φ̂⊗ φ̂ +

1
ρ

∂Uz

∂φ
ẑ⊗ φ̂

+
∂Uρ
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ρ̂⊗ ẑ +

∂Uφ

∂z
φ̂⊗ ẑ +

∂Uz

∂z
ẑ⊗ ẑ

(A18)

or, in matrix form,

gradU = [∇⊗U] =


∂Uρ

∂ρ
1
ρ

(
∂Uρ

∂φ −Uφ

)
∂Uρ

∂z
∂Uφ

∂ρ
1
ρ

(
∂Uφ

∂φ + Uρ

)
∂Uφ

∂z
∂Uz
∂ρ

1
ρ

∂Uz
∂φ

∂Uz
∂z

 (A19)

References
1. Medina-Cetina, Z.; Song, A.; Zhu, Y.; Pineda-Contreras, A.R.; Rechenmacher, A. Global and Local Deformation Effects of Dry

Vacuum-Consolidated Triaxial Compression Tests on Sand Specimens: Making a Database Available for the Calibration and
Development of Forward Models. Materials 2022, 15, 1528. [CrossRef]

2. Zhu, Y.; Medina-Cetina, Z.; Pineda-Contreras, A.R. Spatio-Temporal Statistical Characterization of Boundary Kinematic Phenom-
ena of Triaxial Sand Specimens. Materials 2022, 15, 2189. [CrossRef]

3. Borja, R.I. A Finite Element Model for Strain Localization Analysis of Strongly Discontinuous Fields Based on Standard Galerkin
Approximation. Comput. Methods Appl. Mech. Eng. 2000, 190, 1529–1549. [CrossRef]

4. Andrade, J.E.; Borja, R.I. Capturing Strain Localization in Dense Sands with Random Density. Int. J. Numer. Methods Eng. 2006, 67,
1531–1564. [CrossRef]

5. Rechenmacher, A.L.; Finno, R.J. Digital Image Correlation to Evaluate ShearBanding in Dilative Sands. Geotech. Test. J. 2004, 27,
13–22. [CrossRef]

6. Cundall, P.A.; Strack, O.D.L. A Discrete Numerical Model for Granular Assemblies. Geotechnique 1979, 29, 47–65. [CrossRef]
7. Bardet, J.-P.; Proubet, J. Adaptative Dynamic Relaxation for Statics of Granular Materials. Comput. Struct. 1991, 39, 221–229.

[CrossRef]
8. Alonso-Marroquin, F.; Vardoulakis, I.; Herrmann, H.J.; Weatherley, D.; Mora, P. Effect of Rolling on Dissipation in Fault Gouges.

Phys. Rev. E 2006, 74, 31306. [CrossRef]
9. Jiang, M.J.; Yan, H.B.; Zhu, H.H.; Utili, S. Modeling Shear Behavior and Strain Localization in Cemented Sands by Two-

Dimensional Distinct Element Method Analyses. Comput. Geotech. 2011, 38, 14–29. [CrossRef]
10. Mohamed, A.; Gutierrez, M. Comprehensive Study of the Effects of Rolling Resistance on the Stress—Strain and Strain Localization

Behavior of Granular Materials. Granul. Matter 2010, 12, 527–541. [CrossRef]
11. Ng, T.-T. Numerical Simulations of Granular Soil Using Elliptical Particles. Comput. Geotech. 1994, 16, 153–169. [CrossRef]
12. Oda, M.; Iwashita, K. Study on Couple Stress and Shear Band Development in Granular Media Based on Numerical Simulation

Analyses. Int. J. Eng. Sci. 2000, 38, 1713–1740. [CrossRef]

http://doi.org/10.3390/ma15041528
http://doi.org/10.3390/ma15062189
http://doi.org/10.1016/S0045-7825(00)00176-6
http://doi.org/10.1002/nme.1673
http://doi.org/10.1520/GTJ10864
http://doi.org/10.1680/geot.1979.29.1.47
http://doi.org/10.1016/0045-7949(91)90020-M
http://doi.org/10.1103/PhysRevE.74.031306
http://doi.org/10.1016/j.compgeo.2010.09.001
http://doi.org/10.1007/s10035-010-0211-x
http://doi.org/10.1016/0266-352X(94)90019-1
http://doi.org/10.1016/S0020-7225(99)00132-9


Appl. Sci. 2022, 12, 8091 28 of 28

13. Koenders, M.A.; Gaspar, N.; Tüzün, U. The Physical Effects of Structures Formation in Granular Materials. Phys. Chem. Earth Part
A Solid Earth Geod. 2001, 26, 75–82. [CrossRef]

14. Williams, J.R.; Rege, N. Coherent Vortex Structures in Deforming Granular Materials. Mech. Cohesive-Frict. Mater. 1997, 2, 223–236.
[CrossRef]

15. Cil, M.B.; Alshibli, K.A. 3D Analysis of Kinematic Behavior of Granular Materials in Triaxial Testing Using DEM with Flexible
Membrane Boundary. Acta Geotech. 2014, 9, 287–298. [CrossRef]

16. Kawamoto, R.; Andò, E.; Viggiani, G.; Andrade, J.E. All You Need Is Shape: Predicting Shear Banding in Sand with LS-DEM. J.
Mech. Phys. Solids 2018, 111, 375–392. [CrossRef]

17. Hall, S.A.; Bornert, M.; Desrues, J.; Pannier, Y.; Lenoir, N.; Viggiani, G.; Bésuelle, P. Discrete and Continuum Analysis of Localised
Deformation in Sand Using X-Ray MCT and Volumetric Digital Image Correlation. Géotechnique 2010, 60, 315–322. [CrossRef]

18. Andò, E.; Hall, S.A.; Viggiani, G.; Desrues, J.; Bésuelle, P. Grain-Scale Experimental Investigation of Localised Deformation in
Sand: A Discrete Particle Tracking Approach. Acta Geotech. 2012, 7, 1–13. [CrossRef]

19. Amirrahmat, S.; Druckrey, A.M.; Alshibli, K.A.; Al-Raoush, R.I. Micro Shear Bands: Precursor for Strain Localization in Sheared
Granular Materials. J. Geotech. Geoenviron, Eng. 2019, 145, 1–18. [CrossRef]

20. Alshibli, K.A.; Jarrar, M.F.; Druckrey, A.M.; Al-Raoush, R.I. Influence of Particle Morphology on 3D Kinematic Behavior and
Strain Localization of Sheared Sand. J. Geotech. Geoenviron. Eng. 2016, 143, 04016097. [CrossRef]

21. Desrues, J.; Andò, E. Strain Localisation in Granular Media. C. R. Phys. 2015, 16, 26–36. [CrossRef]
22. Druckrey, A.M.; Alshibli, K.A.; Al-Raoush, R.I. Discrete Particle Translation Gradient Concept to Expose Strain Localisation in

Sheared Granular Materials Using 3D Experimental Kinematic Measurements. Geotechnique 2018, 68, 162–170. [CrossRef]
23. Amirrahmat, S.; Alshibli, K.A.; Jarrar, M.F.; Zhang, B.; Regueiro, R.A. Equivalent Continuum Strain Calculations Based on 3D

Particle Kinematic Measurements of Sand. Int. J. Numer. Anal. Methods Geomech. 2018, 42, 999–1015. [CrossRef]
24. Liu, J.; Iskander, M. Adaptive Cross Correlation for Imaging Displacements in Soils. J. Comput. Civ. Eng. 2004, 18, 46–57.

[CrossRef]
25. Song, A. Deformation Analysis of Sand Specimens Using 3D Digital Image Correlation for the Calibration of an Elasto-Plastic

Model. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 2012.
26. Rechenmacher, A.; Abedi, S.; Chupin, O. Evolution of Force Chains in Shear Bands in Sands. Géotechnique 2010, 60, 343–351.

[CrossRef]
27. Rechenmacher, A.L.; Abedi, S.; Chupin, O.; Orlando, A.D. Characterization of Mesoscale Instabilities in Localized Granular Shear

Using Digital Image Correlation. Acta Geotech. 2011, 6, 205–217. [CrossRef]
28. Abedi, S.; Rechenmacher, A.L.; Orlando, A.D. Vortex Formation and Dissolution in Sheared Sands. Granul. Matter 2012, 14,

695–705. [CrossRef]
29. Medina-Cetina, Z.; Rechenmacher, A. Influence of Boundary Conditions, Specimen Geometry and Material Heterogeneity on

Model Calibration from Triaxial Tests. Int. J. Numer. Anal. Methods Geomech. 2010, 34, 627–643. [CrossRef]
30. Sutton, M.A.; Yan, J.H.; Tiwari, V.; Schreier, H.W.; Orteu, J.-J. The Effect of Out-of-Plane Motion on 2D and 3D Digital Image

Correlation Measurements. Opt. Lasers Eng. 2008, 46, 746–757. [CrossRef]
31. Correlated Solution. Available online: https://www.correlatedsolutions.com/ (accessed on 1 August 2022).
32. Sutton, M.A.; McNeill, S.R.; Helm, J.D.; Chao, Y.J. Advances in Two-Dimensional and Three-Dimensional Computer Vision. In

Photomechanics; Springer: Berlin/Heidelberg, Germany, 2000; pp. 323–372.
33. Medina-Cetina, Z. Probabilistic Calibration of a Soil Model. Ph.D. Thesis, The John Hopkins University, Baltimore, MD, USA,

2006.
34. Rechenmacher, A.L. Grain-Scale Processes Governing Shear Band Initiation and Evolution in Sands. J. Mech. Phys. Solids 2006, 54,

22–45. [CrossRef]
35. Desrues, J.; Chambon, R.; Mokni, M.; Mazerolle, F. Void Ratio Evolution inside Shear Bands in Triaxial Sand Specimens Studied

by Computed Tomography. Géotechnique 1996, 46, 529–546. [CrossRef]
36. Gurtin, M.E. An Introduction to Continuum Mechanics; Academic Press: New York, NY, USA, 1982.
37. Oda, M.; Kazama, H. Microstructure of Shear Bands and Its Relation to the Mechanisms of Dilatancy and Failure of Dense

Granular Soils. Géotechnique 1998, 48, 465–481. [CrossRef]
38. Liu, B.; Kong, L.; Li, C.; Wang, J. Evolution of Shear Band in Plane Strain Compression of Naturally Structured Clay with a High

Sensitivity. Appl. Sci. 2022, 12, 1180. [CrossRef]

http://doi.org/10.1016/S1464-1895(01)00026-6
http://doi.org/10.1002/(SICI)1099-1484(199707)2:3&lt;223::AID-CFM30&gt;3.0.CO;2-F
http://doi.org/10.1007/s11440-013-0273-0
http://doi.org/10.1016/j.jmps.2017.10.003
http://doi.org/10.1680/geot.2010.60.5.315
http://doi.org/10.1007/s11440-011-0151-6
http://doi.org/10.1061/(ASCE)GT.1943-5606.0001989
http://doi.org/10.1061/(ASCE)GT.1943-5606.0001601
http://doi.org/10.1016/j.crhy.2015.01.001
http://doi.org/10.1680/jgeot.16.P.148
http://doi.org/10.1002/nag.2779
http://doi.org/10.1061/(ASCE)0887-3801(2004)18:1(46)
http://doi.org/10.1680/geot.2010.60.5.343
http://doi.org/10.1007/s11440-011-0147-2
http://doi.org/10.1007/s10035-012-0369-5
http://doi.org/10.1002/nag.833
http://doi.org/10.1016/j.optlaseng.2008.05.005
https://www.correlatedsolutions.com/
http://doi.org/10.1016/j.jmps.2005.08.009
http://doi.org/10.1680/geot.1996.46.3.529
http://doi.org/10.1680/geot.1998.48.4.465
http://doi.org/10.3390/app12031180

	Introduction 
	Experimental Method 
	Triaxial Compression Test 
	3D Digital Image Correlation 

	3D Kinematic Operators under Cylindrical Coordinates 
	Spatio-Temporal Evolution of 3D Kinematics 
	Experimental Design 
	Dense specimen at Confinement of 40 kPa (Test 092903b) 
	Dense Specimen at Confinement of 20 kPa (Test 121304d) 
	Dense Specimen at Confining Pressure 60 kPa (Test 121304c) 
	Loose Specimen at Confining Pressure 40 kPa (Test 121304b) 
	Layered Specimen at Confining Pressure of 40 kPa (Test 120704c) 

	Conclusions 
	Appendix A
	The Nabla Operator  
	Coordinate Transformation 
	The Nabla Operator in Cylindrical Coordinates 
	Divergence in Cylindrical Coordinates 
	Curl in Cylindrical Coordinates 
	Gradient in Cylindrical Coordinates 

	References

