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Abstract: Differential evolution (DE) is a very effective stochastic optimization algorithm based on
population for solving various real-world problems. The quality of solutions to these problems is
mainly determined by the combination of mutation strategies and their parameters in DE. However, in
the process of solving these problems, the population diversity and local search ability will gradually
deteriorate. Therefore, we propose a multi-population differential evolution (MUDE) algorithm
with a uniform local search to balance exploitation and exploration. With MUDE, the population
is divided into multiple subpopulations with different population sizes, which perform different
mutation strategies according to the evolution ratio, i.e., DE/rand/1, DE/current-to-rand/1, and
DE/current-to-pbest/1. To improve the diversity of the population, the information is migrated
between subpopulations by the soft-island model. Furthermore, the local search ability is improved
by way of the uniform local search. As a result, the proposed MUDE maintains exploitation and
exploration capabilities throughout the process. MUDE is extensively evaluated on 25 functions of
the CEC 2005 benchmark. The comparison results show that the MUDE algorithm is very competitive
with other DE variants and optimization algorithms in generating efficient solutions.

Keywords: differential evolution; multiple strategies; multiple population; soft island model; uniform
local search

1. Introduction

Differential evolution (DE), proposed by Price and Storn, is an uncomplicated and
powerful heuristics optimization algorithm [1]. Recently, DE has been successfully applied
to various areas of optimization problems, such as text classification [2], vehicle path
planning [3], energy conservation [4], and linear ordering problems [5].

DE performs three operations of mutation, crossover, and selection to search for the
global solution for the population. Furthermore, DE has three parameters: population size
NP, scaling factor F, and crossover control parameter CR. It is helpful to choose appropriate
operations and parameters to improve the quality of the solution and search efficiency [6].
However, it is time-consuming to select these simply by trial and error [7], so an adaptive
method is proposed to improve the performance of DE, which uses a feedback mechanism
to adjust the operations and parameters of the algorithm from generation to generation [8].
However, poor performance is also possible when applying the appropriate operations
and parameters for one problem to other problems. As a result, researchers have proposed
the adaptive method of operations and parameters to improve DE performance [9]. When
dealing with large-scale and high-dimensional problems, the improved DE will suffer from
dimensional disaster [10]. To solve this problem, many studies have proposed a range of
methods to improve DE performance, for example, cooperative coevolution [11], and multi-
population strategies [12]. Meanwhile, researchers have revealed that the whole population
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is randomly assigned to different domains of space in the process of evolution. According
to the domain characteristics, appropriate operations and parameters are allocated to the
corresponding domain in order to facilitate search efficiency.

Motivated by these investigations, a novel multi-population DE algorithm, the multi-
population differential evolution algorithm with uniform local search (MUDE), was pro-
posed. With MUDE, the whole population is separated into multiple subpopulations
with the stochastic method. The best mutation operator is assigned to the subpopulation
according to the evolution ratio of each subpopulation. Information migration between
subpopulations is performed according to the soft island model to improve population
diversity. After the subpopulation has evolved, the best solution for each subpopulation
is performed with a uniform local search (UL) to improve solution precision. To analyze
the efficiency of MUDE, 25 functions of CEC 2005 with 30 dimensions were extensively
conducted. Extensive statistical results revealed that MUDE is an effective and competitive
DE revision.

The main objectives of the proposed MUDE include the following:

1. A novel multi-population DE with multi-strategies is proposed to solve multi-
modal problems.

2. The soft-island model is applied to exchange information between subpopulations for
improving population diversity.

3. The uniform local search is used to improve the local search capability of the population.

The remainder of this paper is organized as follows. Section 2 introduces DE. Section 3
reviews the related work. Our proposed DE algorithm, MUDE, is presented in detail
in Section 4. Section 5 gives the experimental results. Section 6 is the conclusions and
future work.

2. Differential Evolution

In this chapter, as shown in [13], the contents of the expression of the objective function
and the random propagation and the contents of the three stages of promotion of mutation,
crossover, and selection are presented. In this paper, there are very important formulas in
the contents shown in [13], so it is rewritten to understand the overall contents.

Research manuscripts reporting large datasets that are deposited in a publicly available
database should specify where the data have been deposited and provide the relevant
accession numbers. If the accession numbers have not yet been obtained at the time of
submission, please state that they will be provided during review. They must be provided
prior to publication.

Differential evolution performed is to solve the global optimization problem based on
real coding. The objective function can be expressed as below:

Minimize f (x)st
= (x1, x2, . . . , xD), xi ∈ [min, max]

D indicates the dimension, and min and max are the range of the solution space.
The population x is randomly propagated as follows

xi,j = min + rnd(max−min) (1)

where rnd ∈ [0, 1] is a random number.
After the population is initialed by Formula (1), the population promotes generations

with the three steps below.

2.1. Mutation

At the G generation, the mutant vector vi can be produced by the following method.

1. DE/rand/1:
vi = xr1 + Fi(xr2 − xr3) (2)
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2. DE/best/1:
vi = xbest + Fi(xr2 − xr3) (3)

3. DE/current-to-rand/1:

vi = xi + Fi(xr1 − xi) + Fi(xr2 − xr3) (4)

4. DE/current-to-best/1

vi = xi + Fi(xbest − xi) + Fi(xr3 − xr4) (5)

5. DE/current-to-pbest/1

vi = xi + Fi

(
xpbest − xi + xr4 − x̃r5

)
(6)

where i = 1, 2, . . . , NP, random different integer r1, r2, r3, r4, and r5 ∈ [1, NP]. The
control parameter Fi ∈ [0, 1]. The xbest is the best vector at generation G. xpbest is one of
the best top 100 p% of individuals.

2.2. Crossover

After mutation, DE performs crossover on xi and vi to generate ui. The binomial
crossover is defined as follows:

ui,j =

{
vi,j, i f (rnd ≤ CRi or j = jrnd)

xi,j, otherwise
(7)

where j = 1, 2, · · ·, D, rnd ∈ [0, 1], jrnd ∈ [1, D], the condition j = jrnd ensures that the vector
u gets at least one variable from v. CR ∈ [0, 1].

2.3. Selection

Finally, the best vector survives to the next generation by comparing the value of the
function. A greedy selection scheme is described as

xi =

{
ui, i f ( f (ui) ≤ f (xi)

xi, otherwise
(8)

where f (.) is a function.
DE repeatedly generates the three steps above until the termination condition is reached.

3. Previous Work

Evolutionary algorithms (EAs) [14] are meta-heuristic search algorithms inspired
by biological evolution mechanisms, i.e., genetic algorithms (GA) [15], particle swarm
optimization (PSO) [16], and evolution strategies (ES) [17], and so on. GA is a general
iterative algorithm for exploring optimal solutions to problems. These meta-heuristic
iterative algorithms, which also include simulated annealing (SA) [18] and tabu search
(TS) [19], are very efficient and robust in solving various real-world problems [20].

DE is an efficient population-based optimization algorithm over continuous spaces.
DE performance is mainly determined by mutation operators and crossover operators and
three parameters [21]. Generally, the appropriate configuration of strategies and parameters
may result in fast convergence and computational resources [22]. It is obvious that DE is
more effective than the above meta-heuristic iterative algorithms in solving continuous
optimization [23]. Therefore, many investigators have put forward various advanced DE
variants to improve DE performance recently.

Comprehensive studies on the control parameters have been carried out. To avoid local
optimum with maximum probability, scaling factor F should be as large as possible [24].
It is a good choice for values of F to have a value between 0.4 and 0.95 in extensive
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experiments [25]. The crossover rate CR mainly controls the component number from the
mutation individual. A large CR value is helpful in improving the convergence speed of
the algorithm. It is said that a CR between 0.3 and 0.9 is a good choice [26]. This good value
is achieved by tuning with trial and error. Therefore, it is very time-consuming to find a
suitable parameter. To avoid this problem, various parameter adaptation methods were
developed. A self-adaptation method (SDE) [27] is presented, which employs N (0.5, 0.15)
to randomly generate CR for different individuals, whereas F adopts a similar method
in [28]. jDE [29] is proposed by Brest et al., as a variant of DE that individually encodes
parameters F and CR for self-adjustment during the DE process. These improvements are
mainly tuning parameters to improve DE without considering operations.

Furthermore, numerous studies have engaged in improving mutation operations to
improve DE. The standard DE adopts the DE/rand/1 to enhance global search capability.
To improve the local search capability, the best individual is taken as the baseline vector in
the mutation, such as DE/best/1. However, it is difficult for these mutations to achieve a
balance between exploration and exploitation. Therefore, an adaptive DE with an optional
external archive (JADE) [30] uses the DE/current-to-pbest/1 strategy to balance exploration
and exploitation capabilities.

Currently, an ensemble of strategies and parameters is being explored in attempt
to reduce trial and error. A variety of strategies and parameters are combined into a
pool, and a suitable scheme is selected for next-generation evolution according to prior
experience. SaDE [31] has been proposed, in which the strategies and the control parameters
are adaptively adjusted based on historical experience in generating valuable solutions.
Composite differential evolution (CoDE) [32] has been shown to improve DE performance
by combining several effective trial vector generation strategies with some suitable control
parameter settings. With cultivated differential evolution (CUDE) [33], an optimal strategy
is chosen as the current population to optimize from the pool, with various mutation
strategies and parameters determined according to commensal learning.

In the above mentioned improved algorithm, the diversity of the population becomes
worse in the process of evolution. Therefore, the island model was introduced into the
evolutionary algorithm to improve its performance. MPCCA [34] is a cooperative algo-
rithm with many populations, in which the population is split into many subpopulations
according to individuals with different directions. MPEDE [35] is proposed by Wu et al. to
generate a collection of multiple strategies, which concurrently consists of three differen-
tial strategies: “current-to-pbest/1”, “current-to-rand/1”, and “rand/1”. Tong et al. [36]
proposed an improved multi-population ensemble differential evolution (IMPEDE). With
IMPEDE, a novel efficient mutation strategy “DE/pbad-to-pbest” is proposed, reserving the
best individuals and the worst to balance the exploitation and the exploration. Moreover,
IMPEDE utilizes the weighted Lehmer mean method to promote parameter adaptation.
Li et al. [37] proposed a differential evolution algorithm with multi-population coopera-
tion and multi-strategy integration (MPMSDE), which uses strategy rankings to allocate
computational capacities to different strategies. The new strategy “DE/pbad-to-pbest-to-
gbest” can not only accelerate the convergence of DE but also balance the exploration and
exploitation. As a result, the use of multiple populations and strategies contributes to an
improved DE performance. However, the migration mechanism and local search ability of
the population need to be further improved.

4. The Proposed Algorithm

In this section, a new multiple population DE algorithm (namely MUDE) is proposed,
which employs appropriate strategies for each subpopulation according to evolutionary
ratios and adopts SIM to transfer individuals between subpopulations. After several
generations of evolution, a uniform local search is performed among subpopulations to
enhance exploitation.
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4.1. Soft-Island Model

The soft-island model (SIM) is primarily used to improve population diversity [38].
The core concept of SIM is the probabilistic migration between different islands.

The initial population is almost divided into various differential islands. When an
individual is migrated between islands, they are selected from the current island or other
islands by probabilistic P. A SIM flow chart is shown in Figure 1. The population is divided
into n islands using a random method. When migrating with individual information of
the kth island, the individual information is obtained from other islands according to the
probability P.

Figure 1. The soft-island model.

4.2. Uniform Local Search

Uniform design is a scientific experimental design tool [39]. The number of uniform
design experiments is much less than another design tool, i.e., orthogonal design. If there
are k factors including q levels (q > 1) in an experiment, the number of orthogonal designs
in the experiment is q2, which is too large when q is comparatively large. But the number
of uniform design experiments is q under the same set of factors and levels and it provides
the same functionality as orthogonal design. More details about the uniform design can be
found in Ref. [40].

In the uniform design, a uniform design table is used to build an experimental plan. A
uniform design table is often denoted by Un(ns), in which the uniform design table includes
n rows and s columns, and the value of each cell is obtained by the formula (n*s mod n).
Table 1 presents U7(76) as one example.

Table 1. Uniform design table U7(76).

No 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 4 6 1 3 5
3 3 6 2 5 1 4
4 4 1 5 2 6 3
5 5 3 1 6 4 2
6 6 5 4 3 2 1
7 7 7 7 7 7 7

Uniform local search (ULS) uses the uniform design table to achieve the local opti-
mization of the population. An example of ULS is shown in Figure 2.
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Figure 2. Example of ULS.

In this example, the uniform design table is U6(66). Points A(1, 1) and B(6, 6) were two
randomly selected individuals from the population. The space with A and B is divided into
six parts along each dimension, i.e., [1 2 3 4 5 6; 1 2 3 4 5 6].

The six points are combined by the first column and second column from the uniform
design table, i.e., (1 2), (2 4), (3 6), (4 1), (5 3), and (6 5). Finally, the best point is selected by
the fitness value, i.e., C.

4.3. MUDE (Multi-Population Differential Evolution)

In this subsection, we put forward a novel multi-island based DE algorithm, MUDE,
which implements a differential mutation strategy to the island by evolutionary ratio. The
information between islands is exchanged according to SIM, and the local exploration is
carried out by ULS. The MUDE procedure is shown in Figure 3.

Figure 3. MUDE procedure.
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In Figure 3, the soft island model is used to migrate individuals between subpopula-
tions, and the optimal individual between subpopulations is to perform a local search by
uniform local search. Meanwhile, the MUDE pseudocode is provided in Algorithm 1.

There are four input parameters in MUDE, i.e., population size (NP), individual
dimension (D), migration probability (P), and benchmark function (f ). The global optimal
is the output value of the algorithm. On lines 1 and 2, the population p are randomly
initialized and fed into the benchmark function to obtain fitness values. On line 3, we
choose three strategies to build a strategy pool, Equations (2), (4), and (5).

On lines 4 and 5, the stopping condition of MUDE is controlled by the function
evaluation times FES, and the MUDE will stop evolving when FES is larger than MaxFes.
The population is randomly split into k subpopulations on line 6. On line 7, parameters Fi
and CRi are calculated from the Cauchy distribution and normal distribution respectively,
i.e., N(uFi, 0.1) and randn(uCRi, 0.1). uFi and uCRi are updated as follows.

uFi = (1− c)·uFi + c·meanL(SF,i) (9)

uCRi = (1− c)·uCRi + c·meanA(SCR,i) (10)

where, meanL and meanA are the Lehmer mean.
On lines 8 and 9, first, the fitness value of each island between generations is computed.

Then the subpopulation chooses the appropriate strategy according to the ratio. On line 10,
the individual of the subpopulation is migrated according to SIM. Finally, the global best
fitbest is returned.

In MUDE, the multi-strategy mechanism is beneficial to enhance the exploitation
ability of the population, the SIM improves population diversity, and ULS improves the
exploration of the population.

Algorithm 1: MUDE algorithm

Input: NP, D, P, f
Output: The population’s best solution: fitbest
1. Generate the population p by the Equation (1);
2. Calculate the individual function values fit;
3. Strategy pool Sp = {Sp1, Sp2, . . . , Spn}, set uCRi = 0.5, uFi = 0.5 fi = 0, Fesi = 0 for each strategy;
4. FES = NP;
5. while FES ≤MaxFes
6. The population p is the randomly divided k subpopulation, p = {p1, p2, . . . , pk};
7. Calculate Fi and Cri for each subpopulation;
8. Pick a Spi for each subpopulation according to evolutionary ratio;
9. Perform strategy Spi for pi;
10. Migrate individual between subpopulation by probability P of SIM;
11. Perform the local exploration from each p by ULS;
12. end while
13. Return fitbest.

5. Experimental Results
5.1. Benchmark Functions and Experimental Setting

To evaluate MUDE more efficiently, we selected a series of 25 testing functions from
the CEC 2005 benchmark to implement the experiment. Among the 25 functions, F1~F5 are
unimodal functions, and F6~F25 are multimodal functions. In multimodal functions, F6~F12
are basic functions, F13~F14 are expanded functions, and F15~F25 are hybrid composition
functions. More descriptions of F1~F25 can be found in [41].

In all experiments, the MUDE parameters are allocated as follows:

1. Dimension: D = 30;
2. Population size: NP = 100;
3. Scaling factor: Fi = N(uFi, 0.1);
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4. Crossover: CRi = N(uCRi, 0.1);
5. Three different mutation strategies: Equations (1), (5), and (6);
6. Termination criterion of function evaluations

(MaxFES): MaxFES = D × 10 × 10+4.

Furthermore, each function is run independently 25 times in each algorithm. All the
experiments were executed on a computer with a 3.2 GHz quad-core processor and Win-
dows 10 with 8 GB RAM. For the results, the optimal values and the evolutionary process
of the function at each stage were recorded separately. Moreover, Wilcoxon’s statistical
tests and Friedman’s statistical tests were conducted to further verify the results [42].

5.2. Experimental Results and Comparisons with Other DE Variants

In this subsection, the advantage of MUDE is obtained by extensively comparing
MUDE with four other up-to-date DE versions, CoDE, jDE, JADE, and SaDE, whose control
parameters F and CR are consistent with the original literature. The maximum number
of fitness evaluations (MaxFES) is fixed at 3 × 105 in all algorithms. Table 1 shows the
experimental comparison results of 25 runs on 25 functions. The Wilcoxon test results
are shown at the bottom of Table 1, where the symbol “−/+/≈” represents whether the
average value of the algorithm is worse, better, or similar to that of MUDE.

Table 2 shows the mean and standard deviation of the optimal fitness for 25 indepen-
dent runs, and the best mean values are shown in bold. It is seen that MUDE is better than
CoDE, JADE, jDE, and SaDE on 12, 11, 14, and 14 functions, respectively, but worse than
these challengers on 8, 6, 3, and 5 functions, respectively. For the unimodal functions F1~F5,
the MUDE performance is superior to the other four algorithms for this type of benchmark
function. As for the multimodal function F6~F25, MUDE outperforms CoDE, JADE, jDE,
and SaDE on 8, 9, 10, and 10 functions, respectively. CoDE beats MUDE on F6, F8, F11, F14,
and F22. JADE exceeds MUDE on F5, F13, and F14. jDE and SaDE excel MUDE in only one
function. Accordingly, MUDE’s performance is the best one in 20 multimodal functions. It
is clear that information migration of MUDE can improve population diversity.

Along with the prior analysis, Wilcoxon’s test and Friedman’s signed-rank test were
performed on all function experimental results. The average ranking of five algorithms
is provided in Table 3. Friedman’s statistic result shows that the smaller the value, the
better the performance. Therefore, MUDE is the most competitive one in the five DE
variants algorithms.

The statistical results indicate that MUDE is the most challenging algorithm for
25 benchmark functions. There are two aspects reasons why MUDE can perform well. First,
the ULS of MUDE leads to efficient exploitation and high convergence precision under
such circumstances. Second, the information migrating mechanism among different islands
improves population diversity.

To illustrate the convergence of algorithm, fitness variation graphs of the 25 functions
were made for the convergence course, which includes the mean fitness values over 25 runs
with dimension D = 30. Figure 4 shows the convergence graphs of the 25 functions. In
Figure 4, MUDE can continuously converge to better solutions for the unimodal function,
but for the multimodal function, the algorithm may get stuck in a local solution. For
function F18–F24, convergence curves are almost the same. In general, MUDE improves the
convergence of the DE algorithm.
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Table 2. Comparison with other DE algorithms for dimension = 30.

CoDE JADE jDE SaDE MUDE

F Mean Std Mean Std Mean Std Mean Std Mean Std

F1 0.00 × 10+0 0.00 × 10+0 0.00 × 10+0 0.00 × 10+0 0.00 × 10+0 0.00 × 10+0 0.00 × 10+0 0.00 × 10+0 0.00 × 10+0 0.00 × 10+0

F2 6.76 × 10−16 1.40 × 10−15 8.20 × 10−29 5.60 × 10−29 1.07 × 10−6 2.09 × 10−6 2.00 × 10−5 3.31 × 10−5 2.44 × 10−26 6.20 × 10−26

F3 1.08 × 10+5 5.93 × 10+4 7.47 × 10+3 6.40 × 10+3 1.78 × 10+5 1.00 × 10+5 4.37 × 10+5 2.66 × 10+5 2.98 × 10+2 1.19 × 10+3

F4 6.56 × 10−3 1.17 × 10−2 1.23 × 10−13 5.69 × 10−13 3.52 × 10−2 9.40 × 10−2 4.63 × 10+0 5.65 × 10+0 5.93 × 10−17 2.56 × 10−16

F5 4.00 × 10+2 3.13 × 10+2 2.60 × 10−7 1.16 × 10−6 3.99 × 10+2 2.96 × 10+2 2.24 × 10+3 6.13 × 10+2 1.67 × 10−4 6.30 × 10−4

F6 8.05 × 10−9 3.98 × 10−8 1.09 × 10+1 2.76 × 10+1 2.68 × 10+1 2.74 × 10+1 5.37 × 10+1 2.85 × 10+1 3.70 × 10+0 1.46 × 10+1

F7 4.70 × 10+3 2.83 × 10−12 4.70 × 10+3 2.73 × 10−12 4.70 × 10+3 2.95 × 10−12 4.70 × 10+3 9.47 × 10−13 5.91 × 10−3 5.55 × 10−3

F8 2.02 × 10+1 1.18 × 10−1 2.09 × 10+1 2.02 × 10−1 2.09 × 10+1 5.03 × 10−2 2.09 × 10+1 5.09 × 10−2 2.09 × 10+1 4.56 × 10−2

F9 0.00 × 10+0 0.00 × 10+0 0.00 × 10+0 0.00 × 10+0 0.00 × 10+0 0.00 × 10+0 0.00 × 10+0 0.00 × 10+0 3.55 × 10−14 6.55 × 10−14

F10 4.14 × 10+1 1.23 × 10+1 2.47 × 10+1 5.17 × 10+0 5.57 × 10+1 8.76 × 10+0 3.94 × 10+1 9.75 × 10+0 2.40 × 10+1 1.03 × 10+1

F11 1.35 × 10+1 3.62 × 10+0 2.58 × 10+1 1.66 × 10+0 2.77 × 10+1 1.66 × 10+0 2.18 × 10+1 8.20 × 10+0 1.74 × 10+1 7.14 × 10+0

F12 2.82 × 10+3 2.67 × 10+3 6.65 × 10+3 4.79 × 10+3 9.14 × 10+3 8.39 × 10+3 3.78 × 10+3 3.16 × 10+3 1.61 × 10+3 1.97 × 10+3

F13 1.51 × 10+0 2.52 × 10−1 1.44 × 10+0 1.23 × 10−1 1.67 × 10+0 1.35 × 10−1 4.49 × 10+0 3.48 × 10−1 2.04 × 10+0 2.38 × 10−1

F14 1.22 × 10+1 4.50 × 10−1 1.22 × 10+1 3.08 × 10−1 1.30 × 10+1 1.64 × 10−1 1.29 × 10+1 1.67 × 10−1 1.23 × 10+1 2.85 × 10−1

F15 4.24 × 10+2 6.63 × 10+1 3.84 × 10+2 9.43 × 10+1 3.68 × 10+2 7.48 × 10+1 3.92 × 10+2 5.72 × 10+1 4.00 × 10+2 6.45 × 10+1

F16 8.83 × 10+1 7.10 × 10+1 1.06 × 10+2 1.32 × 10+2 7.99 × 10+1 2.01 × 10+1 6.53 × 10+1 2.46 × 10+1 6.37 × 10+1 3.66 × 10+1

F17 8.28 × 10+1 7.18 × 10+1 1.43 × 10+2 1.42 × 10+2 1.30 × 10+2 1.91 × 10+1 6.22 × 10+1 3.52 × 10+1 6.22 × 10+1 7.99 × 10+1

F18 9.00 × 10+2 2.09 × 10+1 9.04 × 10+2 9.97 × 10−1 9.04 × 10+2 7.96 × 10−1 8.46 × 10+2 5.72 × 10+1 9.04 × 10+2 2.34 × 10−1

F19 9.04 × 10+2 8.48 × 10−1 9.04 × 10+2 1.13 × 10+0 9.04 × 10+2 8.23 × 10−1 8.51 × 10+2 5.91 × 10+1 9.04 × 10+2 2.55 × 10−1

F20 9.05 × 10+2 1.18 × 10+0 9.04 × 10+2 9.83 × 10−1 9.04 × 10+2 9.64 × 10−1 8.51 × 10+2 5.82 × 10+1 9.04 × 10+2 2.22 × 10−1

F21 5.00 × 10+2 9.91 × 10−14 5.00 × 10+2 6.46 × 10−14 5.00 × 10+2 8.61 × 10−14 5.00 × 10+2 5.80 × 10−14 5.00 × 10+2 6.14 × 10−14

F22 8.58 × 10+2 2.68 × 10+1 8.69 × 10+2 2.08 × 10+1 8.74 × 10+2 1.83 × 10+1 9.21 × 10+2 1.51 × 10+1 8.64 × 10+2 1.77 × 10+1

F23 5.34 × 10+2 4.00 × 10−4 5.34 × 10+2 2.48 × 10−13 5.34 × 10+2 1.39 × 10−4 5.34 × 10+2 2.92 × 10−4 5.34 × 10+2 2.58 × 10−13

F24 2.00 × 10+2 2.90 × 10−14 2.00 × 10+2 2.90 × 10−14 2.00 × 10+2 2.90 × 10−14 2.00 × 10+2 2.90 × 10−14 2.00 × 10+2 2.90 × 10−14

F25 1.64 × 10+3 4.95 × 10+0 1.63 × 10+3 3.52 × 10+0 1.63 × 10+3 4.41 × 10+0 1.65 × 10+3 3.42 × 10+0 2.09 × 10+2 5.27 × 10−1

−/+/≈ 8/12/5 6/11/8 3/14/8 5/14/6
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Table 3. Average ranking based on Friedman’s test.

Algorithm CoDE JADE jDE SaDE MUDE

Ranking 2.84 2.84 3.54 3.36 2.24

Furthermore, the total running time of the 25 functions is compared in five different
DE algorithms, as shown in Figure 5.

In Figure 5, the abscissa and ordinate represent the running time (h) and different DE
algorithms, respectively. The results show that JADE has the shortest running time and jDE
has the longest running time. The proposed MUDE leads to a longer running time because
of population migration and local search.

5.3. Result with Different Probabilistics among Islands

In MUDE, an individual of one island is migrated to another island by random
probabilistic P. To verify the effect of P on DE performance, we select five different values
of 0, 0.2, 0.4, 0.6, 0.8, 0.9, and 1 on D = 30 for experiments of 25 independent runs. Table 4
shows the average ranking of different probabilistic based on Friedman’s test. In Table 4, it
is obvious that MUDE produces better performance when P = 0.8 and 0.9. The individual
comes from another island in the process of migration when P = 0. In addition, migration
never occurs when P = 1. Therefore, MUDE shows poor effectiveness in those two cases,
but consequently, MUDE shows good diversity through migration of the soft-island model.

Table 4. Average ranking different of probabilistic P based on Friedman’s test.

P 0 0.2 0.4 0.6 0.8 0.9 1.0

Ranking 4.22 3.98 4.28 3.86 3.72 3.82 4.12

Figure 4. Cont.
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To further indicate the choice of P, Figure 6 shows the average value of 25 functions
for different P values. In Figure 6, we see that MUDE performance gradually improves as P
goes from 0 to 0.6. MUDE performs best when P = 0.9. Therefore, in this paper, we choose
P = 0.9 for experiments.

Figure 6. The average values of 25 function in different P.

5.4. Experimental on D = 10, 30, 50

To analyze the extensibility of MUDE, populations with three dimensions are selected
for experiments. During the experiment, the number of function evaluations remains
consistent. Table 5 shows the mean, standard deviation, and run time (second) of the
optimal fitness on three dimensions for 25 independent runs. In Table 5, the best mean
values are shown in bold. It is clearly seen that the unimodal function of D = 10 is superior
to the other dimensions. In multimodal functions, except for F16, F17, F23, and F25, which
have the best performers on D = 30, the other functions perform best on D = 10. As a result,
in MUDE, the optimal value of a function deteriorates with increasing dimensions, while
the running time increases exponentially. In addition, the results show that MUDE can
converge to the optimal solution with sufficient iterations.

5.5. Comparison with other EAs

To further validate MUDE, other optimization algorithms are used to compare it, such
as PSO, Tabu, GA, and so on. To evaluate each algorithm fairly, the termination condition
of each algorithm is that the number of fitness evaluations is set to 3 × 105. The comparison
results of D = 30 with other algorithms are shown in Table 6. In Table 6, the best mean
values are shown in bold. The results show that the performance of PSO is relatively weak
except for the 15th function, and the Tabu and GA algorithms are relatively weak. However,
during the whole algorithm running process, the total running time of MUDE is relatively
long. In general, MUDE is a challenging and efficient optimization algorithm for solving
real-world problems.
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Table 5. Comparison with the reference algorithm for dimensions D = 10, 30, 50.

D = 10 D = 30 D = 50

F Mean Std Time Mean Std Time Mean Std Time

F1 0.00 × 10+0 0.00 × 10+0 3.54 × 10+1 0.00 × 10+0 0.00 × 10+0 4.84 × 10+1 0.00 × 10+0 0.00 × 10+0 5.18 × 10+1

F2 0.00 × 10+0 0.00 × 10+0 3.66 × 10+1 2.44 × 10−26 6.20 × 10−26 5.93 × 10+1 3.43 × 10−6 1.17 × 10−5 6.91 × 10+1

F3 5.82 × 10−26 1.68 × 10−26 5.10 × 10+1 2.98 × 10+2 1.19 × 10+3 5.88 × 10+1 1.88 × 10+5 8.69 × 10+4 6.17 × 10+1

F4 0.00 × 10+0 0.00 × 10+0 4.43 × 10+1 5.93 × 10−17 2.56 × 10−16 6.15 × 10+1 4.79 × 10+0 4.08 × 10+0 8.45 × 10+1

F5 0.00 × 10+0 0.00 × 10+0 6.57 × 10+1 1.67 × 10−4 6.30 × 10−4 6.31 × 10+1 1.61 × 10+3 5.74 × 10+2 7.15 × 10+1

F6 6.98 × 10−21 2.34 × 10−20 3.77 × 10+1 3.70 × 10+0 1.46 × 10+1 4.90 × 10+1 3.11 × 10+1 1.93 × 10+1 5.22 × 10+1

F7 6.91 × 10−4 2.41 × 10−3 3.75 × 10+1 5.91 × 10−3 5.55 × 10−3 5.97 × 10+1 4.04 × 10−3 8.45 × 10−3 9.15 × 10+1

F8 2.03 × 10+1 5.80 × 10−2 4.21 × 10+1 2.09 × 10+1 4.56 × 10−2 7.04 × 10+1 2.12 × 10+1 3.09 × 10−2 8.92 × 10+1

F9 0.00 × 10+0 0.00 × 10+0 3.88 × 10+1 3.55 × 10−14 6.55 × 10−14 5.35 × 10+1 1.17 × 10−2 1.94 × 10−2 5.71 × 10+1

F10 2.01 × 10+0 1.00 × 10+0 3.97 × 10+1 2.40 × 10+1 1.03 × 10+1 6.53 × 10+1 4.90 × 10+1 1.44 × 10+1 6.73 × 10+1

F11 1.65 × 10+0 1.16 × 10+0 2.43 × 10+2 1.74 × 10+1 7.14 × 10+0 5.00 × 10+2 3.97 × 10+1 1.13 × 10+1 9.88 × 10+2

F12 1.55 × 10+0 4.54 × 10+0 9.85 × 10+1 1.61 × 10+3 1.97 × 10+3 1.65 × 10+2 1.17 × 10+4 8.93 × 10+3 3.52 × 10+2

F13 3.09 × 10−1 5.65 × 10−2 4.46 × 10+1 2.04 × 10+0 2.38 × 10−1 6.26 × 10+1 4.60 × 10+0 5.31 × 10−1 7.16 × 10+1

F14 2.10 × 10+0 3.01 × 10−1 4.83 × 10+1 1.23 × 10+1 2.85 × 10−1 8.73 × 10+1 2.21 × 10+1 4.02 × 10−1 1.00 × 10+2

F15 9.40 × 10+0 1.93 × 10+1 8.87 × 10+2 4.00 × 10+2 6.45 × 10+1 1.34 × 10+3 3.48 × 10+2 9.63 × 10+1 2.42 × 10+3

F16 8.78 × 10+1 7.76 × 10+0 8.11 × 10+2 6.37 × 10+1 3.66 × 10+1 1.31 × 10+3 5.50 × 10+1 3.01 × 10+1 2.39 × 10+3

F17 9.06 × 10+1 1.98 × 10+1 8.17 × 10+2 6.22 × 10+1 7.99 × 10+1 1.32 × 10+3 6.09 × 10+1 7.65 × 10+1 2.39 × 10+3

F18 6.00 × 10+2 2.50 × 10+2 8.20 × 10+2 9.04 × 10+2 2.34 × 10−1 1.41 × 10+3 9.18 × 10+2 3.78 × 10+0 2.66 × 10+3

F19 6.40 × 10+2 2.38 × 10+2 8.22 × 10+2 9.04 × 10+2 2.55 × 10−1 1.41 × 10+3 9.17 × 10+2 6.32 × 10+0 2.53 × 10+3

F20 6.00 × 10+2 2.50 × 10+2 8.26 × 10+2 9.04 × 10+2 2.22 × 10−1 1.42 × 10+3 9.16 × 10+2 8.88 × 10+0 2.52 × 10+3
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Table 5. Cont.

D = 10 D = 30 D = 50

F Mean Std Time Mean Std Time Mean Std Time

F21 4.68 × 10+2 7.48 × 10+1 8.26 × 10+2 5.00 × 10+2 6.14 × 10−14 1.36 × 10+3 5.93 × 10+2 1.93 × 10+2 2.53 × 10+3

F22 7.44 × 10+2 5.13 × 10+0 9.61 × 10+2 8.64 × 10+2 1.77 × 10+1 1.81 × 10+3 9.12 × 10+2 1.86 × 10+1 3.26 × 10+3

F23 6.15 × 10+2 1.02 × 10+2 8.25 × 10+2 5.34 × 10+2 2.58 × 10−13 1.41 × 10+3 7.29 × 10+2 2.37 × 10+2 2.62 × 10+3

F24 2.00 × 10+2 0.00 × 10+0 6.63 × 10+2 2.00 × 10+2 2.90 × 10−14 1.10 × 10+3 2.64 × 10+2 2.23 × 10+2 1.84 × 10+3

F25 3.69 × 10+2 2.07 × 10+0 6.89 × 10+2 2.09 × 10+2 5.27 × 10−1 1.19 × 10+3 2.15 × 10+2 1.05 × 10+0 1.98 × 10+3

Table 6. Comparison with other algorithms for dimensions D = 30.

PSO Tabu GA MUDE

F Mean Std Mean Std Mean Std Mean Std

F1 1.98 × 10−25 2.80 × 10−25 3.61 × 10+5 8.26 × 10+3 2.35 × 10+3 1.51 × 10+3 0.00 × 10+0 0.00 × 10+0

F2 3.20 × 10+2 3.68 × 10+2 1.01 × 10+8 2.14 × 10+7 3.31 × 10+4 1.02 × 10+4 2.44 × 10−26 6.20 × 10−26

F3 1.03 × 10+7 1.03 × 10+7 2.51 × 10+10 1.84 × 10+9 1.21 × 10+8 7.10 × 10+7 2.98 × 10+2 1.19 × 10+3

F4 1.26 × 10+3 1.42 × 10+3 1.16 × 10+8 1.75 × 10+7 5.89 × 10+4 1.61 × 10+4 5.93 × 10−17 2.56 × 10−16

F5 1.03 × 10+4 2.63 × 10+3 7.90 × 10+4 2.88 × 10+3 1.69 × 10+4 3.93 × 10+3 1.67 × 10−4 6.30 × 10−4

F6 5.14 × 10+1 3.58 × 10+1 7.21 × 10+11 1.38 × 10+11 7.49 × 10+7 1.01 × 10+8 3.70 × 10+0 1.46 × 10+1

F7 6.67 × 10+3 1.48 × 10+2 1.76 × 10+4 4.73 × 10+2 5.43 × 10+3 2.43 × 10+2 5.91 × 10−3 5.55 × 10−3

F8 2.10 × 10+1 3.47 × 10−2 2.19 × 10+1 8.56 × 10−2 2.09 × 10+1 1.04 × 10−1 2.09 × 10+1 4.56 × 10−2

F9 5.87 × 10+1 3.80 × 10+1 1.13 × 10+3 2.08 × 10+1 1.18 × 10+2 2.89 × 10+1 3.55 × 10−14 6.55 × 10−14

F10 1.08 × 10+2 4.43 × 10+1 2.22 × 10+3 3.25 × 10+0 3.64 × 10+2 4.28 × 10+1 2.40 × 10+1 1.03 × 10+1
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Table 6. Cont.

PSO Tabu GA MUDE

F Mean Std Mean Std Mean Std Mean Std

F11 2.10 × 10+1 4.62 × 10+0 6.41 × 10+1 4.24 × 10+0 3.53 × 10+1 2.20 × 10+0 1.74 × 10+1 7.14 × 10+0

F12 1.90 × 10+4 1.28 × 10+4 4.78 × 10+6 3.86 × 10+5 2.24 × 10+5 8.42 × 10+4 1.61 × 10+3 1.97 × 10+3

F13 2.36 × 10+0 8.95 × 10−3 1.06 × 10+5 1.20 × 10+5 1.86 × 10+1 5.20 × 10+0 2.04 × 10+0 2.38 × 10−1

F14 1.26 × 10+1 1.50 × 10−1 1.51 × 10+1 1.62 × 10−2 1.33 × 10+1 2.68 × 10−1 1.23 × 10+1 2.85 × 10−1

F15 3.88 × 10+2 1.58 × 10+2 2.22 × 10+3 0.00 × 10+0 5.41 × 10+2 9.78 × 10+1 4.00 × 10+2 6.45 × 10+1

F16 2.15 × 10+2 1.12 × 10+2 2.09 × 10+3 2.95 × 10+1 4.40 × 10+2 9.27 × 10+1 6.37 × 10+1 3.66 × 10+1

F17 2.65 × 10+2 1.21 × 10+2 1.91 × 10+3 3.54 × 10+1 5.13 × 10+2 8.02 × 10+1 6.22 × 10+1 7.99 × 10+1

F18 9.78 × 10+2 7.22 × 10+1 2.39 × 10+3 0.00 × 10+0 1.01 × 10+3 4.49 × 10+1 9.04 × 10+2 2.34 × 10−1

F19 9.81 × 10+2 5.71 × 10+1 2.72 × 10+3 4.66 × 10+2 1.00 × 10+3 3.87 × 10+1 9.04 × 10+2 2.55 × 10−1

F20 9.71 × 10+2 6.81 × 10+1 3.06 × 10+3 5.40 × 10+2 1.01 × 10+3 4.11 × 10+1 9.04 × 10+2 2.22 × 10−1

F21 8.11 × 10+2 3.38 × 10+2 3.72 × 10+3 1.56 × 10+2 1.06 × 10+3 1.59 × 10+2 5.00 × 10+2 6.14 × 10−14

F22 1.04 × 10+3 3.76 × 10+1 3.82 × 10+3 5.44 × 10+0 1.20 × 10+3 6.72 × 10+1 8.64 × 10+2 1.77 × 10+1

F23 7.27 × 10+2 2.82 × 10+2 3.53 × 10+3 4.19 × 10+2 1.08 × 10+3 1.77 × 10+2 5.34 × 10+2 2.58 × 10−13

F24 2.83 × 10+2 2.87 × 10+2 2.81 × 10+3 3.06 × 10+0 1.22 × 10+3 1.91 × 10+2 2.00 × 10+2 2.90 × 10−14

F25 1.74 × 10+3 1.65 × 10+1 2.15 × 10+3 1.35 × 10+2 1.76 × 10+3 3.33 × 10+1 2.09 × 10+2 5.27 × 10−1

−/+/≈ 24/1/0 25/0/0 25/0/0
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6. Conclusions

In this paper, we propose a novel multiple island differential evolution algorithm,
a multi-population differential evolution algorithm with uniform local search (MUDE),
which improves population diversity through migration with the island. In the course
of evolution, the whole population is randomly split into many sub-islands, and each
sub-island carries out different strategies according to the evolution ratio. To advance DE
diversity, individuals of the island are migrated through the soft-island model. Uniform
local search is used to improve population exploitation. The experimental results show
that MUDE is effective and efficient by comparing it with four DE variants on a set of
25 functions of CEC 2005 with three dimensions D = 10, 30, and 50. In addition, other
optimization algorithms are also used to compare with the MUDE algorithm. Statistical
results show that MUDE completely outperforms other algorithms, i.e., PSO, Tabu, and GA.
However, MUDE has high time complexity due to population migration and local search.
Overall, MUDE is a challenging algorithm because of improving population diversity and
local search capabilities.

In the future, we will focus on extensive practical optimization problems, and reduce
time complexity in other ways. Furthermore, another tendency is to combine DE with
machine learning to improve its performance.
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