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Abstract: Nowadays, during the diagnosis process, the doctor is able to obtain access to much
information describing the patient’s condition using appropriate tools. However, there are always
two sides to the coin. The doctor has certain limitations regarding the amount of data they can process
at once. Information technology comes to the rescue, which with the help of computers is able to
quickly and effectively separate important information from redundant information and support
the doctor in making a diagnosis. In this work, a decision-making system was created to diagnose
common lung pathologies in digital radiography images. Here, we consider four basic pulmonary
diseases: pneumothorax, pneumonia, pulmonary consolidation, and lung lesions. Our objective
is to develop a new automatic detection method of lung pathologies on chest X-ray radiographs
using python programming language and its libraries. The approach uses solutions in the field of
artificial intelligence, such as deep learning, convolutional neural network and segmentation to make
a diagnosis that aims to help the radiologist at work. In the first sections, this work describes the
fundamentals of the present form of diagnosis, a proposal to improve this process, the method of
operation of the algorithms used, data acquisition, segmentation and processing methods. Then, the
results of the operation of four different models and their implementation in a practical window
program were presented. The best model, which detects pulmonary consolidation, achieves accuracy
higher than 91%, which is a satisfactory result because they are not intended to replace radiologists
but to improve their work. In the future, this type of program can be further developed by adding
models that recognize other conditions.

Keywords: image analysis; automatic detection; deep learning; computer vision; artificial intelligence;
lung segmentation

1. Introduction

In the last decades, the fields of different applications of artificial intelligence (AI)
in human activity have grown exponentially [1-5]. These advances also have facilitated
the development of processes for high-throughput extraction of features from medical
X-ray images.

Compared to other medical imaging equipment, X-ray generators are relatively easy
to use, cheap to manufacture, and relatively safe for the patient, making digital radiogra-
phy one of the fastest and most popular forms of medical imaging. Well-described and
anonymized medical photos of diagnosed pathologies can be used to create large databases
that can be used to train automatic diagnosis models. The computer can analyze all images
of the patient faster than the doctor. It is able to “see” something that is not visible to the
human eye, so although the program will not make a diagnosis with 100% certainty, it will
speed up the process and draw the doctor’s attention to essential aspects of the diagnosis
that he/she did not previously consider [6-11].

This work aims to create a novel approach and a program for the automatic diagno-
sis of four pathologies (pneumothorax, pneumonia, pulmonary consolidation, and lung
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lesions) in digital radiography images based on chest X-ray radiography. The program
uses a previously trained deep neural network model and a lung segmentation algorithm.
Based on the uploaded photo, the algorithm will provide the probability of predicting the
presence of each of the four mentioned pathologies. The application has a graphical user
interface that allows radiologists to operate it intuitively [12-14].

Beneath, we shortly describe four basic pulmonary diseases considered in our ap-
proach. Pneumothorax is one of the most critical pathologies that a radiologist must
correctly and effectively recognize on X-ray images of the chest. Classic features of pneu-
mothorax visible on X-ray are the presence of the parietal pleura (noticeable as a white line
in the pulmonary field), which is always invisible in standard images because it is covered
by the ribs at the chest wall. Laterally to this line, there is no trace of lung tissue—just clear,
black space. Additionally, as part of the differentiation of pathology, the radiologist must
assess whether the entire mediastinum has moved. In the case of large pneumothoraxes,
the picture is quite characteristic. However, the clinical problem may be caused by small
pneumothoraxes, which cause symptoms in patients, and in chest X-ray pictures, they may
be barely noticeable, or the pleural line may be imitated by other pathologies or, the most
common error, by the medial side of the spatula, which is why the correct diagnosis is
so important.

The second disease is pneumonia whose radiological picture is highly variable and
depends on the etiology of the infection. The diagnosis can be made when the radiologist
recognizes homogeneous densities in typical locations, e.g., the entire lobe or a segment of
one of the lungs, sharply ending at the interlobar fissures. In other cases, densities may
have the so-called patchy pattern, which also suggests inflammation. In atypical infections,
the densities are located peripherally.

Next, we consider pulmonary consolidation. Diagnostics of the consolidations differ
from the diagnostics of pneumonia. In cases of inflammation, they are arranged in charac-
teristic features and locations, and the consolidations may also indicate other pathologies,
e.g., airflow disorders or the presence of effusion in the lungs. Consolidation is not a disease
itself, but it can be a symptom of many diseases of the lung tissue. They are diagnosed by
recognizing opacification in the image which, in fact, is a brighter area in the image, with a
higher value of pixels.

In the fourth case, we consider lung lesions. They are pathological areas that must be
noticed and diagnosed by a radiologist because they may indicate potentially fatal diseases,
such as lung cancer, tuberculosis, or abscesses. They can be seen as limited, planar, or coin
shapes. They can be localized at any place in the lungs. Due to the fact that the blood
vessels in the lungs can have the same brightness, it is essential that such lesions do not
escape the attention of the radiologist; hence, there is a great need for artificial intelligence
to assist in the detection of such pathologies.

Those four pathologies were chosen to be analyzed because they are usually diagnosed
through the analysis of X-ray images by radiologists. This means that those diseases are
considerably common in image databases, which can provide data for machine learning.
Additionally, its popularity makes this program really useful because it can speed up many
diagnoses.

The diagnosis of each of the above-mentioned pathologies is time-consuming, and the
verdict is often ambiguous. Many factors are not visible to the human eye in the photo.
Some pathology features are discrete and can only be seen through deep image analysis
taking into account differences in the shade of pixels in grayscale. In the case of computed
tomography images, the diagnosis is even more difficult because the radiologist has to
analyze several dozen or sometimes several hundred sections for one patient. The fact that
there is a shortage of radiologists does not help the hospital’s efficiency in the form of the
number of diagnoses per day. All these problems can be solved with the help of innovative
artificial intelligence technologies.

Modern computers can process and analyze images much faster than humans. Inno-
vative algorithms, including neural networks, are able to analyze several hundred images
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and make a diagnosis in several seconds. Such programs often see more information than a
human. They are able to quickly calculate the histogram of the photo, the average shade of
the grayscale, and other advanced statistical parameters in the image. They can instantly
apply a filter to an image, transforming it into another form that apparently has little to do
with the original but has essential information for a computer.

This approach will never replace the radiologist who always makes the final diagnosis
decision. However, it can improve their work, allow faster data flow, and draw attention to
pathologies that they may not have suspected before. In this paper, the program will only
analyze images for the four lung pathologies, but such programs can be developed in the
future to allow them to diagnose more pathologies [15-21].

2. Methodology

The algorithms used in this study were trained on data obtained from the CheXpert
database containing 224,316 accurately described chest radiographs from 65,240 patients.
This dataset is remarkably large, and it provides labels made by experienced doctors. All
images have good resolution and satisfying quality, and each one has 14 labels that describe
common pulmonary pathologies. The label can contain ‘1’ for presence, ‘0’ for absence, and
‘" for no information provided [22].

A considerably important part of the whole algorithm is lung segmentation. Because of
the planar type of imaging, it is much harder to perform this process on X-ray images than
on computed tomography images. There were attempts to make this process by image pro-
cessing, but they failed. This is why the primary tool that performs lung segmentation here,
is a previously trained neural network. It was downloaded from the GitHub repository [23].
It consists of 32 layers divided into convolutional blocks and has 7,759,521 trained weights.
It was trained on a set of lung photos and corresponding masks created by radiologists.
It accepts photos of 512 x 512 px as input, and each photo was previously scaled and
presented as a NumPy array. This network returns a binary matrix of ones and zeros that
make up a mask that only lets the pixels that contain the lungs through when placed over
the original image. Masks were improved algorithmically and by applying morphological
operations, such as binary opening, closing, and erosion. Sample improved segmentation
was presented in Figure 1. The number of images after segmentation is presented in Table 1.

Mask from Neural Network Improved mask

Figure 1. Sample lung segmentation on X-ray image.
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Table 1. Number of patients after segmentation.

Number of Cases

Pathology . .
Positive Negative
Pneumothorax 17,322 63,776
Pneumonia 4586 18,704
Lung Lesion 6904 17,618
Lung Consolidation 12,796 36,345

The neural network was built using transfer learning, i.e., adding a few more neural
layers to ResNet-50 architecture, as explained in Figure 2. The weight optimization gradient
is propagated back from the last layer to the initial layer in neural networks. Unfortunately,
the more layers there are, the more this gradient disappears, which affects the weights in
the first layers less and less. This phenomenon is known as the vanishing gradient effect
and is dealt well with ResNet networks that use shortcuts to propagate the gradient. As
a result, this network architecture uses hundreds of layers simultaneously, achieving out-
standing performance. This network consists of the first block, which has a convolutional,
batch normalization, activation (ReLU) and MaxPooling layer, and then in later stages has
convolutional blocks and identity blocks, which have the shortcuts as mentioned earlier.
All of them add up to 178 layers. The output indicates the probability of the presence of
pathology in the image. This network has 31,956,481 weights that will process the input
image after training [24].

ResNet-50
Network detecting pathology

Process of Transfer Learning

Figure 2. An explanation how new network was build using Transfer Learning.

The data were divided into training sets, validation sets, and test sets in a ratio of
8:1:1. Since it is impossible to upload all the photos to the computer’s RAM simultaneously,
special data generators were used, which, in addition to delivering them to the network,
appropriately formatted them. The network was built to accept images with dimensions of
224 x 224 px at the entrance, so each photo was scaled to this format. Data augmentation
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algorithms were used to prevent the network from overfitting: each image from the training
set before entering the network was rotated by a random, slight angle. Thus, the network
never received the same data twice. After building the network, the model was compiled
with a Stochastic Gradient Descent optimizer with a momentum value of 0.9 and a learning
step of 0.0001, and a binary cross-entropy loss function. Early stopping switched off the
training process when validation loss did not improve in five consequential epochs, and the
Model Checkpoint function restored weights, providing the highest validation accuracy.

During training, the network was subjected to a validation process every single epoch,
which consisted of testing the model on a validation set to monitor how much the model
was overfitted with the training data. Figure 3 describes the graphs of a sample training
process. It shows that the validation accuracy is increasing, and validation loss is still
decreasing which means that the model has not been overfitted.

Training and validation loss

0.62 =P
—— Training loss

0.60 A —— Validation loss

0.58
0.56 A
«w 0.54
0.52 A
0.50

0.48 A

0.46

z
0 20 40 60 80 100
Epochs

(@)

Training and validation accuracy

0.80 4 —— Training accuracy
—— Validation accuracy

0.78 A

0.76

Accuracy

0.74 A

0.72 A

0.70 A

0 20 40 60 80 100
Epochs

(b)

Figure 3. (a) Model Loss function values during training of model which detects pulmonary consoli-
dation. (b) Accuracy plots during training of model which detects pulmonary consolidation.
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3. Considerations on Quality of the Models

The previous section described the process of training models which support the
diagnosis. However, they were firstly trained on original images and then on segmented
images. The purpose was to check whether model accuracy would improve after the
segmentation process. The results that the networks achieved are briefly presented in
Table 2; this section will describe them more precisely and will show how the quality of
models was determined.

Table 2. Difference in accuracies depending on training model on segmented or original images.

Model . Lun Lun
Accuracy Pneumothorax Pneumonia Consolidgation Lesiois
Trained on 57% 69% 80% 67%
original images
Trained on
segmented 78% 78% 91% 77%
images
Improvement +21% +9% +11% +10%

All models were tested with test sets that accounted for 10% of the total data. For each
tested case, the models returned a number ranging from 0 to 1, which can be interpreted
as the probability of the appearance of a given disease. In order to determine the quality
of the prediction, it has been decided that a certain threshold will be set that will separate
the predictions into positive and negative ones, creating a binary prediction vector. By
comparing this vector with the label vector (Grand Truth), the number of true positives,
true negatives, false positives, and false negatives was calculated. These numbers also
allowed the sensitivity and specificity of each model to be calculated and the ROC curve to
be drawn. The area under this curve (ROC-AUC) defines the quality of the model.

In order to counteract the phenomenon of network overfitting during training, a
function for creating checkpoints was used in the form of model saves every epoch. Then,
using the training graphs and validation, the model quality was analyzed depending on the
training duration (number of epochs). The analysis was performed for different threshold
values separating positive and negative cases. Results had shown that the model was not
overfitted, and with training lasting 40 epochs, it achieved the best result. This analysis
method was performed for all models, and the best one was selected.

Figures 4-7 show the confusion matrices and the corresponding ROC curves. All those
plots describe the quality of the models. Each of them, during testing, had a tendency to
return small values, which means that output could not be interpreted as a probability of
the presence of pathology. It resulted in the necessity of using a threshold that could divide
predictions into positive and negative ones. Models were tested, and the best threshold
was chosen. Results are presented in Table 3.

Table 3. Best thresholds for each model.

Model Pneumothorax Pneumonia Lu.ng . Lu.ng
Consolidation Lesions
Optimal 0.3 0.2 0.2 03

threshold
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Figure 7. Model quality—Lung Lesions. (a) Confusion matrix. (b) ROC curve.

Additionally, it was decided to count one more measure. For each model, three
independent testing sets were created; it was checked how the quality of the model would
differ between them. Thanks to this, it is possible to determine the level of precision of a
given model, which allows defining the boundary that helps to compare models with each

other. The results are shown in Table 4.

1.0
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Table 4. Partial considerations for precision levels for each model.

Model Lung Lesions Pneumothorax Pneumonia CPulmf)naI:y
onsolidation
Volume of each image set 815 2701 774 1634

Accuracy on 1st set 0.69079 0.71566 0.78811 0.86474
Accuracy on 2nd set 0.68957 0.69825 0.74806 0.83414
Accuracy on 3rd set 0.72392 0.72343 0.77390 0.87637
Variance 0.00038 0.00017 0.00041 0.00048
Precision level 0.03435 0.02518 0.04005 0.04223

All charts and matrices were generated with Python libraries—matplotlib and scikit-learn.

4. Application with Graphical User Interface

In order to present the operation of the models, a window application with basic
functionalities was created in accordance with the MVC pattern architecture. It allows the
user to load an image and analyze it with all four algorithms. It also performs an image
segmentation and presents it on screen. All four diagnoses are performed separately in
series and are independent, which means that the bad performance of one of them does
not affect the performance of the other one.

After every model was tested separately, an attempt was made to check how all mod-
els combined into one program would diagnose all four pathologies. On the graphical
user interface, it can be seen that there are two possible analyses, but as it was mentioned
before, analysis with segmentation has considerably better results, so analysis without seg-
mentation should be used when radiologists estimate that there is significant information
outside the segmentation. There are also buttons that allow the user to switch between
diagnoses presented in the form of probability and the boolean diagnosis. The application
also provides buttons that can switch the view from segmented lungs to the original image.

The program works smoothly and diagnoses pathologies correctly on the testing set.
Sample diagnoses were presented in Figures 8-10. The radiologist can use this application
to analyze one or many images very quickly and obtain one specific diagnosis. If they
accept this diagnosis, they can go on and check the next patient and if they have doubts,
they should check their diagnosis again and maybe change their verdict. As it is presented,
the segmentation process also works without problems and shows the image that can
help the radiologist to focus attention on what is essential and not become distracted with
worthless information.

Figure 8. Diagnosis of patient with pneumonia.
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Figure 9. Diagnosis of a healthy patient.
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Figure 10. Diagnosis of patient with pneumothorax and lung lesion.

5. Conclusions

The experimental results of the models described in the previous section are satisfying,
and they can provide help to radiologists. The algorithm that uses a deep neural network
trained on segmented images and detects pulmonary consolidation turned out to be the
best model. It achieved a quality of over 91%. The worst model is the algorithm that detects
lung lesions with the result of 77% accuracy, which can be explained by the presence of
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medical devices on images which could have confused the algorithm. The model that
detects pneumothorax with a quality of 78% can be improved by a better segmentation
process used on the training data because the presence of pneumothorax can be vastly
discrete, and even a slight lack of information can outweigh the result.

Concluding, this paper proves that algorithms of this type can immensely help radiol-
ogists with their work. It will not replace the human who is responsible for the diagnosis,
but it can speed up the process and make it more accurate. Of course, this type of applica-
tion can be expanded with more models for diagnosing other diseases or pathologies. Its
capabilities are limited only to the number of models which are limited by databases. This
is why it is so important to gather data and create great databases, especially in terms of
medical imaging. Those databases should contain as much anonymous data as they can
and they should be increased with every new record. Many innovative approaches, such
as radiomics can combine features calculated from images with patient data, such as sex
or age to gain information. With continuous dataflow, engineers would be able to create
models which learn online, adapt to new information and predict even better.

In our future work, we can develop the issue of precision level mentioned in point
3 which was partially considered in Table 4. The approaches reported in [25,26] may be
applied in our research. It is also possible to create algorithms responsible for the detection
of pathology in images obtained from computed tomography, magnetic resonance imaging,
or other forms of medical imaging. As follows from the above considerations machine
learning and neural networks may be very promising in research for health and medicine.
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