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Abstract: This work presents a novel hybrid algorithm called GA-RRHC based on genetic algorithms
(GAs) and a random-restart hill-climbing (RRHC) algorithm for the optimization of the flexible job
shop scheduling problem (FJSSP) with high flexibility (where every operation can be completed by a
high number of machines). In particular, different GA crossover and simple mutation operators are
used with a cellular automata (CA)-inspired neighborhood to perform global search. This method is
refined with a local search based on RRHC, making computational implementation easy. The novel
point is obtained by applying the CA-type neighborhood and hybridizing the aforementioned two
techniques in the GA-RRHC, which is simple to understand and implement. The GA-RRHC is tested
by taking four banks of experiments widely used in the literature and comparing their results with
six recent algorithms using relative percentage deviation (RPD) and Friedman tests. The experiments
demonstrate that the GA-RRHC is a competitive method compared with other recent algorithms
for instances of the FJSSP with high flexibility. The GA-RRHC was implemented in Matlab and is
available on Github.

Keywords: flexible job shop scheduling instances; genetic operators; local search methods; cellular
automata

1. Introduction

Production planning is a priority factor in modern manufacturing systems [1], where
a critical aspect is the scheduling of operations and resource allocation [2]. Each industry
must find a better solution for its respective production scheduling jobs to execute efficient
manufacturing on time or launch new products to meet market demands satisfactorily [3].

This paper analyses the topic of task scheduling with flexible machines, also known as
the flexible job shop scheduling problem (FJSSP), especially concerning instances with high
flexibility, where many machines can process the same operation. The FJSSP reflects the
current problem faced by manufacturing industries in the allocation of limited but highly
flexible resources to perform tasks in the shortest possible time [4].

In the FJSSP, the goal is to find the most appropriate job sequencing, with each
job involving operations with precedence restrictions, in an environment where several
machines can perform the same operation but quite possibly in different processing times.
Thus, the FJSSP is an NP-hard combinatorial problem where for a bigger number of jobs,
there is an exponentially higher number of possible solutions [5]. It is thus impossible to
review all solutions to find the optimal scheduling in a suitable time that minimizes the
processing time of all operations [6].

Many mathematical methods have been proposed to resolve scheduling problems [7];
some works have approached the FJSSP using the branch and bound method [8], linear
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programming [9], or Lagrangian relaxation [10]. These methods ensure global convergence
and have worked very well in solving small instances, but their computational time makes
them impractical for problems with dozens of scheduling operations [6]. That is why many
researchers have chosen to move toward hybrid heuristic and metaheuristic techniques.

Over the years, distinct metaheuristic methods have been applied to solve combi-
natorial problems, including evolutionary algorithms using the survival of the fittest; an
example is genetic algorithms (GAs) [11,12]. Other metaheuristics are ant colony optimiza-
tion (ACO) [13], particle swarm optimization (PSO) [14], tabu search (TS) [15], etc. These
algorithms have been adapted to different programming problems, finding good solutions
with low computational time.

The FJSSP is an extension of the classic job shop scheduling problem [16]. In the
inital problem, the optimal allocation of operations is sought on a set of fixed machines.
In the FJSSP, several feasible machines can perform the same operation, often with distinct
processing times.

Two problems must be considered to solve an instance of the FJSSP: the order of
operations and the assignment of machines. In [17], the FJSSP is approached heuristically,
applying dispatch rules and tabu search and further introducing 15 instances with different
numbers of tasks and machines. Since this work, different heuristics and metaheuristics
conducting some hybrid searches have been investigated to solve this problem.

An algorithm using TS and a simplified computation of the makespan are explained
in [18], highlighting the importance of critical operations for local search. In [19], a hybrid
algorithm (HA) using GA and TS is proposed to minimize the makespan. Its model
maintains a good balance between exploitation and exploration. In [20], a multi-objective
problem (MO-FJSP) is addressed applying the non-sorting genetic algorithm (NSGA-
II) together with a bee evolutionary guide (BEG-NSGA-II) to minimize the makespan,
the workload of the most-busy machine, and the total workload.

In [21], a combination of genetic algorithm and a variable neighborhood descent
method is shown to optimize a multi-objective version that takes into account the makespan,
the total workload, and the workload of the most-busy machine, using two methods of
local search. Another hybrid algorithm using the PSO and TS is presented in [22], again for
a multi-objective problem. The use of different variable neighborhoods (VNs) to refine the
local search is proposed in [23] to minimize the makespan. Another algorithm combining
TS and VNs is described in [24] for a different multi-target version of the FJSSP. In [25],
the FJSSP is studied considering maintenance costs, where a hybrid genetic algorithm
(HGA) uses a local search based on simulated annealing (SA). The combination of the
Harmony Search (HS) algorithm with other heuristic and random techniques is analyzed
in [26] to handle two discrete vectors, one for the sequence of operations and the other for
machine allocation, to minimize makespan. Another hybrid algorithm between artificial
bees and TS is presented in [27], where the quality and diversity of solutions is rated with
three metrics.

Task rescheduling is investigated in [28], for which another hybrid technique was
proposed using a two-stage artificial bee colony algorithm with three rescheduling strate-
gies. Another hybrid method is introduced in [29] by applying an artificial bee colony
algorithm (ABC) and a TS, introducing new reprogramming processes. In [30], a hybrid
algorithm is implemented using PSO with random-restart hill-climbing (RRHC), obtaining
a competitive and straightforward algorithm compared with other techniques. Another
hybrid algorithm based on GA is presented in [31] for a new specification of the FJSSP
that considers the human factor as a multi-objective problem. In [32], a PSO-GA hybrid
algorithm is proposed to minimize the workload and the makespan. The minimization of
inventory costs and total workflow are studied in [33], which involves a hybrid algorithm
between the ABC algorithm and the modified migrating birds optimization (MMBO) al-
gorithm to obtain satisfactory results. Another hybrid method is put forth in [34] based
on SA and saving heuristics to minimize the energy consumption of machines, taking into
account their deterioration to determine the precise processing time. In [35], the FJSSP



Appl. Sci. 2022, 12, 8050 3 of 25

with fuzzy times is solved with a hybrid multi-verse optimization (HMVO) algorithm.
A hybrid approach to general scheduling problems is discussed in [36], considering batch
dimensions, rework, and shelf-life constraints for defective items. The algorithm applies
late acceptance hill-climbing (LAHC) and analytic procedures to accelerate the process.
The computational results show the benefits of using hybridization techniques. In [37],
a two-stage GA (2SGA) is developed; the first stage is to choose the order of operations and
the selection of machines simultaneously, and the second is to include new variants that
avoid population stagnation. A hybrid algorithm that combines brain storming optimiza-
tion (BSO) with LAHC is advanced in [38]; the BSO is adapted to the FJSSP to explore the
search space by grouping the solutions, and the exploitation is performed with the LAHC.
The hybridization of the human learning optimization (HLO) algorithm and the PSO is
analyzed in [39], again applying the HLO for global search and an adaptation of the PSO to
refine the local search.

The above-mentioned works suggest that hybrid approaches are still a developing
research trend in solving the FJSSP and its variants, for which many of these works use GA
in conjunction with another technique for local search.

However, to our knowledge, no work has applied GA operators based on a cellular
automata-inspired neighborhood to explore solutions and their hybridization with the
RRHC for the refinement of these solutions.

This article proposes a new hybrid technique called GA-RRHC that combines two
metaheuristic techniques: the first for global search using genetic algorithm (GA) operators
and a neighborhood based on concepts of cellular automata (CA) used mostly on the
programming of the order of operations. As a second step, each solution is refined by a
local search that applies random-restart hill-climbing (RRHC), in particular, to make the
best selection of machines for critical operations, which is more convenient for problems
with high flexibility. Restart is used as a simple strategy to avoid premature convergence
of solutions.

The contribution of this research lies in the original use of two types of easy-to-
implement operators to define a robust hybrid technique that finds satisfactory solutions
to instances of the FJSSP for minimizing the processing time of all the jobs (or makespan).
The GA-RRHC was implemented in Matlab and is available on Github https://github.
com/juanseck/GA-RRHC (accessed on 5 August 2022).

The structure of this article is as follows: Section 2 provides the formal presentation of
the FJJSP. Section 3 proposes the new GA-RRHC method explaining the genetic operators
used, the CA-inspired neighborhood for the evolution of the population of solutions,
and the operation of the RRHC to refine each solution. Section 4 discusses the parameter
adjustment of the GA-RRHC, the comparison with six other recently published algorithms
in four FJSSP datasets commonly used in the literature, making a statistical analysis based
on the non-parametric Friedman test and the ranking by the relative percentage deviation
(RPD). Section 5 gives the concluding comments of this manuscript.

2. Description of the FJSSP

The flexible job shop scheduling problem (FJSSP) consists of a set J = {J1, J2, . . . Jn}
of n jobs and a set M = {M1, M2, . . . Mm} with m machines. Each job Ji has ni operations
OJi = {Oi,1, Oi,2, . . . , Oi,ni}. Each operation Oi,j can be performed by one machine from a
set of feasible machines Mi,j ⊆ M, for 1 ≤ i ≤ n and 1 ≤ j ≤ ni. The processing time of Oi,j
in Mk is represented by pi,j,k, and o = ∑ ni is the total number of operations.

It is necessary to carry out all operations to complete a job, respecting the opera-
tion precedence. The FJSSP has the following conditions: (1) At the start, all jobs and
all machines are available. (2) Each operation can only be performed by one machine.
(3) A machine cannot be interrupted when processing an operation. (4) Every machine can
perform one operation at the same time. (5) Once defined, the order of operations cannot be
changed. (6) Machine breakdowns are not considered. (7) Different jobs have no precedence
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restrictions of operations. (8) The machines do not depend on each other. (9) The processing
time includes the preparation of the machines and the transfer of operations.

One solution of an FJSSP instance includes two parts, a sequence of operations that
respects the precedence constraints for each job, and the assignment of a feasible machine
to each operation. The objective of this paper is to calculate the sequence of operations and
the assignment of machines that minimize the makespan Cmax, the total time needed to
complete all jobs, as defined in Equation (1).

min{Cmax} where Cmax = max{Ci}, for 1 ≤ i ≤ n (1)

Ci is the time when all operations in Ji are completed, subject to:

1 ≤ i ≤ n, 1 ≤ j ≤ ni, 1 ≤ k ≤ m such that Mk ∈ Mi,j, pi,j,k > 0 (2)

si,j,k + pi,j,k ≤ si,j+1,k (3)

Xi,j,k =

{
1, iff operation Oi,j is processed on Mk
0, otherwise

}
(4)

m

∑
k=1

Xi,j,k = 1 (5)

n

∑
i=1

ni

∑
j=1

Xi,j,k = 1 (6)

In this formulation, the start time of operation Oi,j in Mk is si,j,k. The processing time
of every operation greater than 0 is reviewed in Equation (2). The precedence between
operations of the same job is considered in Equation (3). Equation (4) is an assignment
record of one operation to a valid machine; Equation (5) represents that each operation is
processed by only one machine. The constraint in Equation (6) guarantees that, at any time,
every machine can process only one operation.

Table 1 provides an example of an FJSSP instance with three jobs, two operations per
job, and three machines, where all machines can perform all operations. A possible solution
to this problem is presented in the Gantt chart in Figure 1.

Table 1. Example of an FJSSP with 3 jobs, 3 operations per job, and 3 machines.

Job Op. M1 M2 M3

J1 O1,1 3 4 4
O1,2 1 2 1

J2 O2,1 2 3 3
O2,2 3 3 2

J3 O3,1 3 3 3
O3,2 2 2 1

Figure 1. Gantt diagram of one possible solution for the FJSSP in Table 1.
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3. Genetic Algorithm and Random-Restart Hill-Climbing (GA-RRHC)

The idea of using a genetic algorithm with a random-restart hill-climbing (GA-RRHC)
algorithm is to propose a method that is easy to understand and implement and simulta-
neously capable of obtaining competitive results compared with other techniques in the
optimization of different FJSSP instances.

The GA-RRHC uses a genetic algorithm as a global search method, mainly using
job-based crossover (JBX) and precedence operation crossover (POX), and as mutation,
the swapping of two operations and the shift of three-position jobs for the sequences of
operations. Two-point crossover and mutation by changing feasible machines at random
are used for machine allocation. These operators have been previously used to resolve
instances of the FJSSP and have shown good [19] results. A contribution of this work is the
method of applying these operators using a neighborhood inspired by cellular automata
(CA), where each solution chooses several neighbors. Crossover and mutation are applied
for each neighbor, and from all the neighboring solutions, the best one replaces the original.
This idea has already been explored in the global–local neighborhood search (GLNSA)
algorithm, although using different operators [40].

The local search in the GA-RRHC applies a random-restart hill-climbing (RRHC) algo-
rithm to refine the machine selection for the critical operations of each solution. The RRHC
has been used successfully in the FJSSP [30], although not in combination with a GA,
which represents another contribution of this work. An advantage of RRHC is its easy
implementation, unlike other techniques for discrete problems such as simulated annealing
or tabu search [41].

In short, the GA-RRHC generates a random population of solutions. A neighborhood
of new solutions produced with genetic operators is taken for each solution, and the best
one is chosen. This new solution is refined with the RRHC. The optimization loop repeats
until a limit of iterations is met, or a best solution is not calculated after a certain number
of repetitions.

3.1. Encoding and Decoding Solutions

Initially, the GA-RRHC generates a random population of Sn solutions called smart-
cells. Each smart-cell comprises two sequences, one for the operations (OS) and the other
for the machine assigned to each operation (MS). Both sequences have o elements. The GA-
RRHC uses the decoding described in [19].

In the sequence OS, each job Ji appears ni times (a permutation with repetitions).
The sequence MS has o elements and is divided into n parts. The ith part holds the
machines selected to process the job Ji and has as many elements as ni. Figure 2 depicts the
codification of the solution in the Gantt diagram of Figure 1.

Figure 2. Coding of the solution in the Gantt diagram of Figure 1 in sequences OS and MS.

To decode the solution, OS is read from left to right. The jth occurrence of Ji signifies
that operation Oi,j must be processed. This encoding allows that any permutation with
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repetitions represents a rightful sequence OS. For each part i of MS, the jth value represents
the machine processing Oi,j.

3.2. Qualitative Description of the GA

Each iteration of the GA used in this work involves a selection stage to refine the
population of smart-cells, favoring those with lower makespan. Inspired by the CA neigh-
borhood concept [42], for each smart-cell, a neighborhood of new solutions is produced with
different crossover and mutation operators. The one with the lowest makespan is chosen
as the new smart-cell. The operators used for each part of the GA are described below.

3.2.1. Population Selection

Two types of selection are used in this stage: elitism and tournament. Elitism selects a
proportion Ep of the best smart-cells for the next iteration without change, guaranteeing
that their information remains available to improve the rest of the population. Genetic
operators and RRHC will not be applied in elite smart-cells. A tournament selection is used
to select the rest of the smart-cells. Random pairs of smart-cells are chosen, and for each
pair, the smart-cell with the lowest makespan is selected for the next iteration.

3.2.2. Crossover Operators

Smart-cell crossover uses two operators for OS sequences, each type of crossover
is applied with 50% probability. The first is the precedence operator (POX), where the
set of jobs is divided into two random subsets JA and JB such that JA ∪ JB = J and JA ∩
JB = ∅. For two sequences OS1 and OS2, two new sequences OS′1 and OS′2 are obtained.
The operations of jobs JA are placed in OS′1 in the same order as in OS1. The operations of
JB fill the empty positions of OS′1, keeping the order from left to right (seriatim) in which
they appear in OS2. The analogous process is carried out to form OS′2 by first taking the
operations of JA at the same positions as OS2. The empty spaces of OS′2 are filled with the
operations of JB in OS1 seriatim. Figure 3 exemplifies the POX crossover with three jobs
and six operations.

Figure 3. Example of a precedence operation crossover (POX).

The second operator is the job-based crossover (JBX), which also defines the subsets JA
and JB. From two sequences OS1 and OS2, OS′1 is obtained in the same way. The difference
lies in the specification of OS′2, first taking the operations of JB in the same positions as OS2.
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Next, the empty spaces of OS′2 are filled with the operations of JA in OS1 seriatim. Figure 4
presents an example of a JBX crossover with three jobs and six operations.

Figure 4. Example of a job-based crossover (JBX).

A two-point crossover is used for the sequences MS. For two sequences MS1 and MS2,
two random positions 1 < a1 < a2 < o are chosen. A new sequence MS′1 is obtained by
taking the elements of MS1 at positions [1, a1 − 1] and [a2 + 1, o] and from MS2 at positions
[a1, a2]. Similarly, a new sequence MS′2 is formed by exchanging the roles of MS1 and MS2.
Figure 5 presents a two-point cross for three machines and six operations.

Figure 5. A two-point crossover example.
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3.2.3. Mutation Operators

Smart-cells mutation uses two operators over the OS sequences, and each type of
mutation is used with 50% of probability. The first is swap mutation, where two positions
of OS are selected and their elements swapped to obtain OS′. An example is in Figure 6.

Figure 6. Example of swapping mutation.

The second mutation is the random change of positions for operations of three different
jobs. Three positions of OS belonging to different jobs are selected and their positions
randomly swapped to obtain OS′. Three operations from different jobs are chosen since
exchanging their positions in OS would not generate a new solution if the operations were
from the same job. Moreover, a more significant perturbation is achieved by selecting three
operations. This is suitable for the exploration stage and to escape local minima, especially
in cases with a more significant number of jobs and operations. This type of mutation was
proposed by [19], obtaining good results. An example is depicted in Figure 7.

Figure 7. Example of three job mutation.

For the sequence MS, a mutation of assigned machines is applied; bo/2c random
positions are chosen, and for those positions, feasible random machines, different from the
initial selection, are chosen. One example is presented in Figure 8.

Figure 8. Example of machine mutation.



Appl. Sci. 2022, 12, 8050 9 of 25

3.2.4. CA-Type Neighborhood to Apply Genetic Operators

According to Eiben and Smith [43], an evolutionary algorithm is an optimization
strategy modelled around the evolution of different biological systems. If a system shows
dynamic behaviors applicable in solving complex problems, it can be a source of inspiration
to define new evolutionary algorithms, regardless of whether these systems are natural
or artificial.

CAs are elemental discrete dynamical systems capable of generating complex global
behaviors [42,44]. The simplest model, known as elementary CA, is discrete in states and
time; it consists of a linear array of cells with an initial assigned state, which can be a
number or color. Each cell keeps or changes its state depending on its present state and
those of its neighbors on either side, having a whole neighborhood of three cells. This
process is applied synchronously to update the state of all cells.

This CA-type neighborhood has been successfully applied in different optimization
algorithms [45–48]. However, to our knowledge, this type of neighborhood has not yet
been applied with genetic operators for the FJSSP. In this work, to explore the solution
space, each smart-cell will generate l new neighboring solutions using crossover and
mutation. The best of these l solutions (with the smallest makespan) is selected to update
to the original smart-cell. Figure 9 shows the CA-type neighborhood implemented in the
proposed algorithm.

CA neighborhood

Figure 9. CA-type neighborhood used in the GA-RRHC. Colors represent the selection and modifica-
tion of different smart-cells.

The previous genetic operators perform the global search mainly to improve the OS
sequence of each smart-cell. Next, the local search method for optimizing the MS sequences
of each smart-cell is described.
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3.3. Random-Restart Hill-Climbing (RRHC)

A local search method is intended to exploit the information of the smart-cells to
decrease the value of their makespan. The general idea is to start from each smart-cell
and make small changes to improve the makespan. The metaheuristic used is the random-
restart hill-climbing (RRHC) [30]. The RRHC can restart the search from a solution with a
makespan worse than the original one after a given number of steps to escape local minima.
The whole process ends after a fixed number of steps.

The critical operations of the smart-cell are first detected to apply the RRHC. These
operations define the value of the makespan, and these operations are linked by job or by a
machine whose sum of processing times from the beginning to the end gives the makespan
as a result, with no idle times between these operations [18].

A record of the previous task of each operation is kept when calculating the makespan
to know which are the critical operations of a smart-cell, where the initial operations of
each job do not have a previous operation. This record allows a fast computation of the
critical operations by simply taking one of the last operations with a completion time
identical to the makespan. Subsequently, previous operations on the same machine and at
the same job are analyzed, taking that with end time equal to the start time of the present
operation. A random pick is made if the same completion time is held by both previous
operations. The procedure is repeated until an operation with no preceding operation
is reached. Figure 10 presents the critical path of the solution represented in the Gantt
diagram of Figure 1.

Figure 10. Critical path of the solution described in Figure 1.

From the set of critical operations, one is taken at random, and a different feasible
machine is chosen to have a new sequence MS′. Additionally, another critical operation
with probability αc is selected, and is swapped with any other operation in OS to have a new
sequence OS′ and generate a different solution. Figure 11 shows a makespan improvement
changing the machine assignment of a critical operation.
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Figure 11. New solution obtained by selecting another random machine of a critical operation.

The RRHC is applied for Hn iterations, having a pile of Hr < Hn new solutions
generated through the described process. If one of these solutions improves the makespan,
this solution replaces the smart-cell, emptying the pile. If the makespan of the original
smart-cell has not been improved after Hr iterations, a new random solution is taken from
the pile to restart the climbing. Since the RRHC focuses on improving machine allocation,
it works best for instances with high flexibility.

3.4. Integration of the GA-RRHC Algorithm

Algorithm 1 depicts the GA-RRHC pseudocode. Figure 12 illustrates the flowchart
of the proposed method. After the GA-RRHC parameters are defined, the smart-cell
population is generated, evaluated, and selected. GA operators are applied in a CA-like
neighborhood for a global search to update every smart-cell. Next, each smart-cell is
improved by a local search performed by the RRHC. Finally, the best smart-cell is returned.

Algorithm 1: Pseudocode of the GA-RRHC
Result: Smart-cell with minimum makespan
Set GA-RRHC parameters;
Initialize Sn initial smart-cells at random;
Calculate the makespan of each smart-cell ;
do

Apply elitism and tournament to obtain a refined population;
Using GA crossover and mutation operators, generate a CA-like neighborhood
for each solution; the best neighbor replaces the smart-cell;

Improve the machine assignment of critical operations in each smart-cell
applying RRHC;

while (Stagnation number < Gb or iteration number < Gn);
Return the best smart-cell;
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Start
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solution. 
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Return best smart-cell

Stop

Yes

No

Figure 12. GA-RRHC flowchart.

4. Results of Experiments

The GA-RRHC was coded in Matlab R2015a (TM) on an Intel Xeon W machine
with 128 GB of RAM and running at 2.3 GHz. The source code is available on Github
https://github.com/juanseck/GA-RRHC (accessed on 5 August 2022). Four datasets were
taken to test the effectiveness of the GA-RRHC. These datasets have been widely used in
the specialized literature, with instances having different degrees of flexibility. A flexibility
rate between 0 and 1 is specified as β = (flexibility average/number of machines). A high
value of β means that the same operation can be processed by more machines.

The first experiment takes the Kacem dataset [49], with five instances of which four
have a value of β = 1 (full flexibility). The BRdata dataset is used for the second experiment
and consists of 10 instances, from 10 to 20 jobs and 4 to 15 machines, with partial flexibility
(β ≤ 0.35) [17]. The third and fourth datasets are the Rdata and Vdata datasets, with each
having 43 problems going from 6 to 30 jobs and 6 to 15 machines. The Rdata set has a
maximum value of β ≤ 0.4, while all instances of the Vdata set have a rate of β = 0.5,

https://github.com/juanseck/GA-RRHC
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which means that half of the machines can perform each operation [50]. These datasets are
available at https:/people.idsia.ch/~monaldo/fjsp.html (accessed on 5 August 2022).

4.1. GA-RRHC Parameter Tuning

The GA-RRHC has nine parameters that control its operation. The total number of
iterations is Gn; Gb is the limit of stagnation iterations, Sn is the number of smart-cells, Ep
is the proportion of elite smart-cells, and l is the number of neighbors of each smart-cell
generated by the genetic operators. Further, αm is the probability of mutation of a solution,
Hn is the number of RRHC iterations, Hr are the iterations to restart the RRHC, and αc is
the probability of moving a critical operation in the RRHC.

For the first three parameters (Gn = 250, Gb = 50, Sn = 100), the values used in [19,38]
were employed as a reference since these works obtained good results in minimizing the
makespan. These parameter values are typically used in specialized publications and are
comparable to those utilized by methods employed in the following sections to compare
the performance of the GA-RRHC.

To adjust the other parameters, different levels of each parameter were taken to
minimize the mt20 instance of the Vdata dataset and the best combination of parameters
was chosen.

For Ep, the values 0.02 and 0.04 were tested, the parameter l was tested between 2 and
3, and the values 0.1 and 0.2 were tested for αm. For the RRHC, the values between 80 and
100 and between 30 and 40 were taken to tune Hn and Hr respectively. For αc, the values
0.025 and 0.05 were proved. In this way, 64 different combinations of parameters were
taken; for each combination, 30 independent runs were performed, selecting the set of
parameters with the least average makespan. Table 2 shows the GA-RRHC parameters to
analyze its results in the rest of the instances.

Table 2. Parameters selected for the execution of the GA-RRHC.

Gn total iterations of the algorithm 250
Gb limit of stagnation iterations 50
Sn number of smart-cells 100
Ep proportion of elite smart-cells 0.02
l neighbors of each smart-cell 3
αm mutation probability 0.1
Hn iterations of the RRHC 100
Hr iterations to restart the RRHC 30
αc probability of moving a critical operation in the RRHC 0.05

4.2. Comparison with Other Methods

Six algorithms published between 2016 and 2021 were used to compare the GA-RRHC
performance. These algorithms include the global–local neighborhood search algorithm
(GLNSA) [40], the hybrid algorithm (HA) [19], the greedy randomized adaptive search
procedure (GRASP) [51], the hybrid brain storm optimization and late acceptance hill-
climbing (HBSO-LAHC) [38], the improved Jaya algorithm (IJA) [52], and the two-level
PSO (TlPSO) [53].

Comparing the execution times of the different algorithms is not appropriate since
these were implemented in different architectures and languages and with different pro-
gramming skills. That is why this work compares these algorithms using their computa-
tional complexity concerning the total operation number (O(o)). To use a standard notation
for all algorithms, the number of solutions will be represented by X, the iteration number
by Gn, the number of local search iterations by Hn, and m is the number of machines.
The CA-inspired neighborhood algorithms (GA-RRHC and GLNSA) satisfy that X = Snl,
where l is the number of neighbors in the global search.

The GLNSA uses elitism to select solutions and generates l neighbors with insertion,
swapping, path-relinking operators, a machine mutation, and a tabu search on Sn solutions.

https:/people.idsia.ch/~monaldo/fjsp.html
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The GRASP calculates a Gantt chart and then applies a greedy local search which is
quadratic with respect to o. The HA applies four genetic operations for each solution and
then a TS to select different machines for the critical operations. The HBSO-LAHC uses
a clustering of solutions, which requires calculating the distance between them, and then
applies four strategies and three neighborhoods for each solution, with one of them on
critical operations. For the local search, a hill-climbing algorithm with late acceptance for
Hn steps is applied in each solution. The IJA is a modified Java algorithm that applies
three exchange procedures to each solution and a local search with the random exchange
of blocks of critical operations. Finally, the TlPSO uses two modifications of the PSO: the
first is applied to improve the order of operations, and in each iteration of the first PSO,
another PSO is used for the allocation of machines.

Table 3 presents the algorithms ordered from least to most complex, with Sn < X < Hn
since Hn usually has a high value concerning obtaining a better local search. This table
shows that the GA-RRHC has computational complexity comparable to recently proposed
state-of-the-art algorithms.

Table 3. Computational complexity of the methods used in the experiments.

Method Complexity Rank

TlPSO O(o(Gn(2X + Gn2X))) 1
GA-RRHC O(o(Gn(Sn + X + Sn Hnm))) 2
GLNSA O(o(Gn(Sn + X + Sn Hnm))) 2
IJA O(o(Gn(3X + XHnm)) 3
HA O(o(Gn(4X + XHnm))) 4
HBSO-LAHC O(o(Gn(4X + XHnm))) 4
GRASP O(o2(Gn ∗ Hn)) 5

This analysis only considers the complexity inherent in modifying the order of op-
erations and the machine assignment in a solution. The computational complexity for
calculating the makespan or tracking the critical operations is not considered since all the
algorithms use them. Thus, the analysis only focuses on the computational processes that
make each method different.

4.3. Kacem Dataset

In every experiment described in this work, the selected methods were tested with
the same datasets as those exposed in their references, making the presented analysis
reliable. For each instance, 30 independent runs were executed and the smallest makespan
obtained was taken. The best values reported in their respective papers were taken for the
other algorithms.

For the Kacem dataset, the HBSO-LAHC does not report results, and only the GLNSA
and IJA report complete results. Table 4 presents the outcomes of the GA-RRHC, where n
indicates the number of jobs, m the number of machines, and β the flexibility rate of each
instance. These problems have total flexibility and start with fewer jobs and machines until
they reach a high dimensionality.

Table 4. Kacem dataset results.

Instance n ×m β
GA-

RRHC GLNSA GRASP HA IJA TlPSO

K1 4 × 5 1. 11 11 − − 11 11
K2 8 × 8 0.81 14 14 14 14 14 14
K3 10 × 7 1 11 11 − − 11 −
K4 10 × 10 1 7 7 7 7 7 7
K5 15 × 10 1 11 11 11 11 11 −
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Figure 13 presents the number of best results obtained for each algorithm in this
dataset. Table 4 exposes that the GA-RRHC calculates the best makespan values besides
the GLNSA and IJA, confirming the satisfactory operation of the GA-RRHC for instances
with high flexibility.

Figure 13. Number of best results per algorithm for the Kacem dataset.

4.4. Brandimarte Dataset

For the rest of the experiments, the relative percentage deviation (RPD) and Fried-
man’s non-parametric test were employed to compare the GA-RRHC with the other meth-
ods [54]. The RPD is defined in Equation (7); BOV is the best-obtained makespan by each
algorithm, and BKV is the best-known makespan for each problem.

RPD =
BOV − BKV

BOV
× 100 (7)

Table 5 provides the results of the GA-RRHC compared with the other methods for
the BRdata dataset. In each case, the smallest obtained makespan is marked with *.

Table 5. BRdata dataset results.

Instance n ×m β BKV BSO-
LAHC

GA-
RRHC GLNSA GRASP HA IJA TlPSO

MK01 10 × 6 0.2 36 40 * 40 * 40 * 40 * 40 * 40 * 40 *
MK02 10 × 6 0.35 24 26 * 26 * 26 * 26 * 26 * 27 26 *
MK03 15 × 8 0.3 204 204 * 204 * 204 * 204 * 204 * 204 * 204 *
MK04 15 × 8 0.2 48 60 * 60 * 60 * 60 * 60 * 60 * 60 *
MK05 15 × 4 0.15 168 173 172 * 173 172 * 172 * 172 * 173
MK06 10 × 15 0.3 33 61 58 58 64 57 * 57 * 60
MK07 20 × 5 0.3 133 141 139 * 139 * 139 * 139 * 139 * 139 *
MK08 20 × 10 0.15 523 523 * 523 * 523 * 523 * 523 * 523 * 523 *
MK09 20 × 10 0.3 299 307 * 307 * 307 * 307 * 307 * 307 * 307 *
MK10 20 × 15 0.2 165 204 198 205 205 197 * 197 * 205
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It can be seen in Table 5 that the GA-RRHC calculates the least makespan in eight
cases, behind the HA and IJA, and with the same optimal results as the GRASP. Figure 14
shows the number of best results obtained for each algorithm in this dataset.

Figure 14. Number of best results per algorithm for the BRdata dataset.

Table 6 shows the ranking of each method based on the average RPD, as well as the
value p of the non-parametric Friedman pairwise test, comparing the GA-RRHC with each
of the other algorithms. The GA-RRHC secured the second place among the compared
algorithms, obtaining a value of p < 0.05 with the BSO-LAHC and GRASP.

Table 6. Algorithm ranking and Friedman test value for BRdata dataset.

Algorithm: BSO-LAHC GA-RRHC GLNSA GRASP HA IJA TlPSO

Average RPD: 11.3881 10.6710 11.0121 11.4890 10.5289 11.2665 11.2017
Rank: 6 2 3 7 1 5 4
p-value: 0.0455 ˜ 0.1573 0.0435 0.1643 0.0803 0.0833

Figure 15 gives the signed difference between the average RPD of the GA-RRHC
against the other methods in pairs. A negative difference means an inferior performance in
contrast to the GA-RRHC.
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GA-RRHC

Figure 15. Comparison of the RPD difference per algorithm for the BRdata dataset.

This analysis indicates that the GA-RRHC is statistically competitive with the other
four best algorithms for optimizing the BRdata dataset.

4.5. Rdata Dataset

This experiment takes the 43 instances of the Rdata dataset, with a flexibility rate β
ranging from 0.13 to 0.4. The results generated by the GA-RRHC are compared in Table 7
with those obtained by the GLNSA, HA, and IJA, which are the methods that report results
for this dataset. Figure 16 depicts the number of best results obtained for each algorithm in
this dataset, where the GA-RRHC calculated the 23 best values, behind the HA and IJA.

Figure 16. Number of best results per algorithm for the Rdata dataset.

Table 8 sorts each algorithm with its average RPD and the comparative Friedman
test. From the results, it can be noted that the GA-RRHC ranked third overall, as might
be expected in instances with low flexibility. The statistical analysis shows no significant
difference with the IJA.
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Table 7. Rdata dataset results, best makespan values are marked with *.

Instance n ×m β BKV GA-RRHC GLNSA HA IJA

mt06 6 × 6 0.33 47 47 * 47 * 47 * 47 *
mt10 10 × 10 0.2 686 686 * 686 * 686 * 686 *
mt20 20 × 5 0.4 1022 1022 * 1022 * 1024 1024
la01 10 × 5 0.4 570 571 571 570 * 571
la02 10 × 5 0.4 529 530 * 530 * 530 * 530 *
la03 10 × 5 0.4 477 477 * 477 * 477 * 477 *
la04 10 × 5 0.4 502 502 * 502 * 502 * 502 *
la05 10 × 5 0.4 457 457 * 457 * 457 * 457 *
la06 15 × 5 0.4 799 799 * 799 * 799 * 799 *
la07 15 × 5 0.4 749 749 * 749 * 749 * 749 *
la08 15 × 5 0.4 765 765 * 765 * 765 * 765 *
la09 15 × 5 0.4 853 853 * 853 * 853 * 853 *
la10 15 × 5 0.4 804 804 * 804 * 804 * 804 *
la11 20 × 5 0.4 1071 1071 * 1071 * 1071 * 1071 *
la12 20 × 5 0.4 936 936 * 936 * 936 * 936 *
la13 20 × 5 0.4 1038 1038 * 1038 * 1038 * 1038 *
la14 20 × 5 0.4 1070 1070 * 1070 * 1070 * 1070 *
la15 20 × 5 0.4 1089 1089 * 1089 * 1090 1090
la16 10 × 10 0.2 717 717 * 717 * 717 * 717 *
la17 10 × 10 0.2 646 646 * 646 * 646 * 646 *
la18 10 × 10 0.2 666 666 * 666 * 666 * 666 *
la19 10 × 10 0.2 647 700 * 700 * 700 702
la20 10 × 10 0.2 756 756 * 756 * 756 * 760
la21 15 × 10 0.2 808 850 852 835 * 854
la22 15 × 10 0.2 737 770 774 760 * 760 *
la23 15 × 10 0.2 816 850 854 840 * 852
la24 15 × 10 0.2 775 810 826 806 * 806 *
la25 15 × 10 0.2 752 800 803 789 * 803
la26 20 × 10 0.2 1056 1070 1075 1061 * 1061 *
la27 20 × 10 0.2 1085 1100 1109 1089 * 1109
la28 20 × 10 0.2 1075 1090 1096 1079 * 1081
la29 20 × 10 0.2 993 999 1008 997 * 997 *
la30 20 × 10 0.2 1068 1088 1096 1078 * 1078 *
la31 30 × 10 0.2 1520 1521 * 1527 1521 * 1521 *
la32 30 × 10 0.2 1657 1667 1667 1659 * 1659 *
la33 30 × 10 0.2 1497 1500 1504 1499 * 1499 *
la34 30 × 10 0.2 1535 1539 1540 1536 * 1536 *
la35 30 × 10 0.2 1549 1553 1555 1550 * 1555
la36 15 × 15 0.13 1016 1050 1053 1028 * 1050
la37 15 × 15 0.13 989 1092 1093 1074 * 1092
la38 15 × 15 0.13 943 995 999 960 * 995
la39 15 × 15 0.13 966 1030 1034 1024 * 1031
la40 15 × 15 0.13 955 998 997 970 * 993

Table 8. Algorithm ranking and Friedman test value for Rdata dataset.

Algorithm: GA-RRHC GLNSA HA IJA

Average RPD: 1.5761 1.7768 1.0872 1.5155
Rank: 3 4 1 2
p-value: ˜ 0.0001 0.0001 0.9195

Figure 17 shows the difference between the GA-RRHC and the other methods for
the average RPD. A negative value means again an inferior performance compared to
the GA-RRHC.
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GA-RRHC

Figure 17. Comparison of the RPD difference per algorithm for the Rdata dataset.

This experiment verifies that the GA-RRHC performs comparably to the IJA for
problems with low flexibility and outperforms the GLNSA.

4.6. Vdata Dataset

This experiment takes the 43 instances of the Vdata dataset, all of which have a
flexibility rate β = 0.5. The results generated by the GA-RRHC have been compared again
with those obtained by the GLNSA, HA, and IJA (Table 9).

Table 9. Vdata dataset results, best makespan values are marked with *.

Instance n ×m β BKV GA-
RRHC GLNSA HA IJA

mt06 6 × 6 0.5 47 47 * 47 * 47 * 47 *
mt10 10 × 10 0.5 655 655 * 655 * 655 * 655 *
mt20 20 × 5 0.5 1022 1022 * 1022 * 1022 * 1024
la01 10 × 5 0.5 570 570 * 570 * 570 * 571
la02 10 × 5 0.5 529 529 * 529 * 529 * 529 *
la03 10 × 5 0.5 477 477 * 477 * 477 * 477 *
la04 10 × 5 0.5 502 502 * 502 * 502 * 502 *
la05 10 × 5 0.5 457 457 * 457 * 457 * 457 *
la06 15 × 5 0.5 799 799 * 799 * 799 * 799 *
la07 15 × 5 0.5 749 749 * 749 * 749 * 749 *
la08 15 × 5 0.5 765 765 * 765 * 765 * 765 *
la09 15 × 5 0.5 853 853 * 853 * 853 * 853 *
la10 15 × 5 0.5 804 804 * 804 * 804 * 804 *
la11 20 × 5 0.5 1071 1071 * 1071 * 1071 * 1071 *
la12 20 × 5 0.5 936 936 * 936 * 936 * 936 *
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Table 9. Cont.

Instance n ×m β BKV GA-
RRHC GLNSA HA IJA

la13 20 × 5 0.5 1038 1038 * 1038 * 1038 * 1038 *
la14 20 × 5 0.5 1070 1070 * 1070 * 1070 * 1070 *
la15 20 × 5 0.5 1089 1089 * 1089 * 1089 * 1089 *
la16 10 × 10 0.5 717 717 * 717 * 717 * 717 *
la17 10 × 10 0.5 646 646 * 646 * 646 * 646 *
la18 10 × 10 0.5 663 663 * 663 * 663 * 665
la19 10 × 10 0.5 617 617 * 617 * 617 * 618
la20 10 × 10 0.5 756 756 * 756 * 756 * 758
la21 15 × 10 0.5 800 804 * 806 804 * 806
la22 15 × 10 0.5 733 737 * 737 * 738 738
la23 15 × 10 0.5 809 813 * 813 * 813 * 813 *
la24 15 × 10 0.5 773 777 * 777 777 * 778
la25 15 × 10 0.5 751 754 * 754 754 * 754 *
la26 20 × 10 0.5 1052 1053 * 1054 1053 * 1054
la27 20 × 10 0.5 1084 1085 * 1085 * 1085 * 1085 *
la28 20 × 10 0.5 1069 1070 * 1070 * 1070 * 1070 *
la29 20 × 10 0.5 993 994 * 994 * 994 * 994 *
la30 20 × 10 0.5 1068 1069 * 1069 * 1069 * 1069 *
la31 30 × 10 0.5 1520 1520 * 1520 * 1520 * 1521
la32 30 × 10 0.5 1657 1658 * 1658 * 1658 * 1658∗
la33 30 × 10 0.5 1497 1497 * 1497 * 1497 * 1497 *
la34 30 × 10 0.5 1535 1535 * 1535 * 1535 * 1535 *
la35 30 × 10 0.5 1549 1549 * 1549 * 1549 * 1549 *
la36 15 × 15 0.5 948 948 * 948 * 948 * 950
la37 15 × 15 0.5 986 986 * 986 * 986 * 986 *
la38 15 × 15 0.5 943 943 * 943 * 943 * 943 *
la39 15 × 15 0.5 922 922 * 922 * 922 * 922 *
la40 15 × 15 0.5 955 955 * 955 * 955 * 956

Figure 18 presents the number of best results obtained for each algorithm in this
dataset, where the GA-RRHC calculated the 43 best values, the same as the HA and
superior to the GLNSA and IJA.

Figure 18. Number of best results per algorithm for the Vdata dataset.
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Table 10 shows the ranking, the average RPD, and the non-parametric Friedman
pairwise test values of each algorithm. The results show that the GA-RRHC obtained the
first place concerning the RPD of the 43 problems, and the results indicate a significant
difference with the IJA.

Table 10. Algorithm ranking and Friedman test value for Vdata dataset.

Algorithm: GA-RRHC GLNSA HA IJA

Average RPD: 0.0693 0.0772 0.0724 0.1177
Rank: 1 3 2 4
p-value: ˜ 0.1573 0.3173 0.0005

Figure 19 depicts the difference of the average RPD between the GA-RRHC and the
other methods.

GA-RRHC

Figure 19. Comparison of the RPD difference per algorithm for the Vdata dataset.

4.7. Generated Large Dataset

The previous experiments proved the correct performance of the GA-RRHC. However,
the largest instance considers only 30 jobs, 10 machines, and 300 operations, which can be
insufficient in real-world cases. Consequently, three randomly generated large instances
were studied using the parameters established by [17,55]. These instances are named VL01,
VL02, and VL03, considering from 50 to 80 jobs, from 20 to 50 machines, and from 704
to 2773 operations, with a flexibility rate β = 0.75. Since these instances have not been
used before in previous studies, we only apply the GLNSA for comparison, whose code
is available in Github https://github.com/juanseck/GLNSA-FJSP-2020 (accessed on 5
August 2022).

Table 11 shows that GA-RRHC performs much better than GLNSA, with enhanced
performance for an increasing problem dimension. Figure 20 presents three examples, one
for each VL instance, of the optimization process achieved by the GA-RRHC. In the Gantt
charts, it is remarkable how the idle times decrease from initial random solutions and the
continuous convergence to calculate the minimum makespan.

https://github.com/juanseck/GLNSA-FJSP-2020
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Table 11. Experiment with large instances.

Instance n × m o GLNSA GA-RRHC

Best Avg. Best Avg.

VL01 50× 20 704 592 617.3 551 570.9
VL02 60× 30 1246 759 781.3 705 717.8
VL03 80× 50 2773 1155 1183.1 1041 1058.4

Initial solution

Final solution

VL03

Initial solution

Final solution

VL02

Initial solution

Final solution

VL01

Figure 20. Comparison of the RPD difference per algorithm for the Vdata dataset.

These results corroborate that the GA-RRHC exhibits a performance comparable to
recent algorithms recognized for their robustness in optimizing this type of problem, mainly
for instances with high flexibility, and with competitive computational complexity.

5. Conclusions

This paper has described a hybrid algorithm that applies a global search with genetic
crossover and mutation operators in a CA-like neighborhood. These operators mainly
optimize the sequence of operations. Random-restart hill-climbing performs a local search
to allocate the best machine to each critical operation. This GA-RRHC feature makes it
suitable for FJSSP instances with high flexibility.
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The CA-like neighborhood allows the concurrent application of genetic operations,
which gives the GA-RRHC a better exploration capability. Hill-climbing uses a similar
number of iterations compared to other algorithms and is easy to implement, reflecting a
satisfactory complexity. Four popular datasets (covering 101 problems) were used for the
numerical experimentation of the GA-RRHC. The results expose good performance com-
pared to recent algorithms taken as reference, especially for instances with high flexibility.

The GA-RRHC opens a new way to apply CA-like neighborhoods that concurrently
apply the exploration and exploitation operators to solve task scheduling problems; for
instance, the flowshop, the job shop, or the open shop cases.

As a possible future work, it is suggested to use another type of exploitation technique
such as simulated annealing, similar to the one proposed in [56], to reduce the complexity
of the local search. Other variants of scaling algorithms can be tested for optimizing
the sequences of operations to solve FJSSP instances with low flexibility, in addition to
extending this methodology for the optimization of multi-objective problems.
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FJSSP Flexible job shop scheduling problem
GA Genetic algorithm
RRHC Random-restart hill-climbing algorithm
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