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Abstract: High slope simulation analysis is an essential means of slope engineering design, con-
struction, and operation management. It is necessary to master slope dynamics, ensure slope safety,
analyze slope instability mechanisms, and carry out slope stability early warning and prediction.
This paper, aiming at the landslide phenomenon of the high slope on the left bank of a reservoir
project, considering the influence of stratum lithology, fault, excavation unloading, rainfall, and water
storage, establishes a refined finite element model that reflects the internal structure of the slope.
The fluid-solid coupling numerical simulation analysis of the high slope is carried out. Based on
this, the failure mechanism of the slope under excavation unloading and heavy rainfall is explained.
The application of an engineering example shows that under the combined action of excavation
unloading and rainfall infiltration, the in-plane saturation of the structure formed at fault at the
trailing edge of the excavation slope surface increases, the pore water pressure increases, and the
shear strain concentration area appears at the internal structural surface of the slope. The shear
strain concentration area extends along the structural surface to the front and rear edges of the slope,
resulting in landslide damage.

Keywords: landslide; excavation; rainfall; hydraulic engineering; high slope

1. Introduction

According to the environmental objectives of the 2030 agenda for sustainable develop-
ment, building infrastructure with disaster resilience, promoting inclusive and sustainable
industrialization, and promoting innovation are the main objectives [1]. Slope stability is
one of the main means of ensuring the ability of infrastructure to resist disasters. Land-
slides are the fourth most fatal natural disaster after floods, storms, and earthquakes. It
has comprehensive coverage, high frequency, and incredible destructive power and can
seriously endanger human life and property [1–3]. The evolution of landslides is closely
related to geological structure conditions [2,3], seismic activities [4,5], rainfall [6], human
activities [7], and other factors. The rock slope is an essential structure in hydropower
engineering [8]. It plays a role in bearing the thrust of the dam and preventing water
seepage [8,9]. Due to complex geological processes, many joints are often developed in
the rock slope, which threatens the slope’s stability during construction and operation [6].
Under complex geological conditions in mountainous areas, the stability of the slope is
affected by many factors. Based on the analysis and numerical analysis of the actual rock
mass structure of the slope, the instability mechanism of the slope under the influence of
the double factors of excavation and rainwater infiltration is studied, which has reference
significance in the analysis of slope stability [10].

In slope engineering, the rock mass stress near the excavation face is redistributed
due to the disturbance of excavation to the rock mass. Its mechanical characteristics
are significant areas of unloading [11]. Unloading causes the rapid deterioration of rock
mass quality [12]. Therefore, unloading should be considered in the stability analysis of
unloaded rock slope [13]. Rock mass excavation must undergo the dynamic change process
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of unloading, deformation damage, and deterioration of rock mass mechanical conditions.
Its dynamic stability in the excavation process is a problem worthy of study. After slope
excavation, the rock mass is unloaded and damaged, the joint connectivity increases, and
the rock mass quality deteriorates [8]. The unloading degree of rock mass in different areas
is different, and with the progress of excavation, the unloading area and unloading degree
of rock mass are constantly changing [9]. Therefore, the simulation process of unloading
analysis should be a dynamic process of continuous adjustment [10]. Li et al. [14] took the
three failure modes of the landslide in the Zigui basin of the Three Gorges Reservoir as
an example to explain the main factors controlling the reservoir-induced landslide. The
research results show that a low water level of 145 m to 155 m dramatically reduces the
stability of the bank slope of the Three Gorges reservoir. Chen et al. [15] conducted a
series of uniaxial compression tests and conventional creep tests. The results showed that
the stress cycle instantaneously increased the strain rate and promoted the sharpening
of microcracks, thus improving the efficiency of stress corrosion cracking. Dai et al. [9]
conducted a numerical simulation based on the FLAC3D program to study the mechanisms
and influencing factors of displacement mutation caused by blasting excavation. The
results show that strain energy will accumulate and be stored in the slope rock mass under
the compression of in situ stress. When blasting or excavation produces a free surface,
the stored rock strain energy under in situ stress is released, resulting in joint opening
and displacement mutation of the jointed rock slope. The magnitude of joint opening
displacement is positively correlated with the strain energy release rate. Zhu et al. [4] found
through the unloading test that the cohesion of the unloading normal stress direct shear
test decreased significantly, while the internal friction angle increased slightly, the shear
displacement increased linearly at the initial stage of the unloading normal stress, and
then rapidly increased nonlinearly before failure. Peng et al. [16] analyzed and compared
the deformation characteristics and failure mechanisms of homogeneous loess slopes and
double paleosol interlayer loess slopes under different excavation slope angles and believed
that the response of lateral horizontal earth pressure in the excavation area was closely
related to the failure of the slope.

In addition to the landslide caused by artificial disturbances, such as excavation and
blasting, rainfall infiltration is also one of the main factors inducing slope instability [6].
Soil in nature is a loose porous medium [17]. Under rainfall infiltration, the stress and
seepage field of the soil slope interact with each other [18], and this interaction between
fluid and solid is called fluid–solid coupling. The rainfall-type landslide is mainly affected
by stress and seepage fields. The infiltration of rainwater into the soil produces a seepage
field. With the continuous infiltration of rainfall, the seepage field changes continuously
and then has seepage pressure [19]. Seepage pressure acts on the soil for a long time, which
changes the stress field of the ground [20]. The change in the stress field will shift the
pore volume of the soil and cause the evolution of the seepage field and the permeability
coefficient of the ground. The stress field and seepage field of slope soil are closely related
to each other. However, the analysis of slope stability under rainfall infiltration mainly
focuses on a single field or indirect coupling analysis. The production of rainfall-type
landslides results directly from multi-field coupling [21]. Therefore, it is necessary to study
the coupling of the seepage field and stress field of the slope under rainfall conditions.
Numerical simulation, especially the fully coupled water force large deformation model,
is helpful for correctly simulating the complex failure and post-failure mechanisms of
rainfall-induced landslides [22]. By analyzing the measured data, Jia et al. [1] concluded
that rainfall has the most significant impact on vertical displacement, accounting for 56.76%
of total vertical displacement. However, it is still an elastic displacement, which usually
causes minor damage to the slope. Pan et al. [6] conducted mechanical tests on rock samples
with different water contents, studied the change law of rock mechanical behavior under
the action of water, and established the function of rock water-induced weakening. Zheng
et al. [23] found that the stability of rainfall-induced dams is relatively poor based on the
collected 1578 dam case studies; with the increase of dam height and storage capacity,
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the stability first decreases and then increases; with the increase of dam volume and dam
material D50, the stability increases gradually; with the increase of catchment area, the
stability decreases gradually. Zhang et al. [24] analyzed slope cracks’ development and
failure modes and studied the early warning strategy for rainfall-induced fill slope failure.
The results show that rainfall-induced loess landslides have hysteresis, and saturation and
matrix suction responses are earlier than pore water pressure. The slope is damaged when
the saturation and matrix suction are at their maximum and minimum values, respectively.
Due to the pore water in the unsaturated soil slopes, the seepage field and stress field
cannot be separated in a direct manner. Li et al. [25–27] suggest that the seepage-stress
separation method can simulate the slope excavation-rainfall coupling process by analyzing
the excavation stress field first and then imposing rainfall on the formed boundary.

The finite element method is a very mature numerical method that has been applied
to solve stress distribution and displacement characteristics in rock and soil mass for a long
time. It can be used to solve problems of elasticity, elastoplasticity, viscoelastoplasticity, and
viscoplasticity [28]. The advantage of the finite element method is that the heterogeneity
and discontinuity of the rock and soil mass of the slope are considered in part. The size
and distribution of the stress and strain of the rock mass can be given, which avoids the
shortcomings of the limit equilibrium analysis method in that the sliding body is regarded
as rigid and too simplified. It can make us analyze the deformation and failure mechanism
of the slope approximately from the stress and strain, explore the first and most prone to
yield failure parts, and identify the parts that need to be strengthened first [29].

In this paper, a fluid-structure coupling numerical simulation analysis is carried out
for the landslide phenomenon of a reservoir project’s left bank high slope. The influence
of formation lithology, fault, excavation unloading, rainfall, and water storage is com-
prehensively considered to explain the failure mechanism of the slope under the action
of excavation unloading and heavy rain. Section 2 introduces the study area and slope
deformation. In Section 3, taking a simple two-dimensional slope model as an example,
the basic theory of fluid–structure coupling analysis is introduced. In Section 4, the three-
dimensional finite element model is introduced. According to the three-dimensional finite
element analysis results, the failure mechanism of the slope under the action of excavation
and rainfall is explained, and a water storage analysis is carried out. Section 5 presents the
research conclusion.

2. Project Overview

A water control project is located in the gorge section of the upper reaches of the
mainstream of the Hanjiang River and Yangxian, east of the Hanzhong Basin in southern
Shaanxi. It focuses on water supply, considers power generation, and improves water
transport conditions. It is composed of water retaining structures, water release structures,
pump station buildings, navigation structures, and fish passing structures. The dam is a
roller-compacted concrete gravity dam with a crest elevation of 455.00 m, a maximum dam
height of 63.00 m, and a dam axis length of 349.00 m.

The Hanjiang River flows into the northwest of the dam site area from west to east,
and the flow direction turns southeast. The river channel is relatively straight. The riverbed
elevation in the dam site area is 402–413 m, and the riverbed width is 160–220 m. The dry
water surface of the riverbed is about 405 m. The natural slope of the left bank slope has a
strike of approximately 315◦ and a dip of approximately 225◦. The elevation of the top of
the riverside slope is 695 m, and the topographic slope is 37–39◦. Large-scale Liushu gully
and Daihen gully are developed on both upstream and downstream sides of the slope, with
about 750 m and a depth of 10–40 m. There is water all year round. Figure 1 shows the
original landform of the left bank slope.
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Figure 1. Original landform.

The dominant orientation of fissures in the slope area on the left bank is NEE, NNW–
NNE, and NWW, with a steep dip angle, and the proportion of the medium steep dip
angle accounts for about 90%. The length of the fracture trace in adit is generally less
than 5 m, that of surface rock mass is generally less than 10 m, and the fracture surface
is mostly flat and rough. The fractures in strongly weathered rock mass are mainly filled
with argillaceous and ferromanganese, with a thickness of 3–8 mm. The fissures in the
weakly weathered rock mass are mainly filled with ferromanganese and calcareous, with
a thickness of 1–5 mm. The cracks in the micro new rock mass are mainly filled with
calcareous or no filling, and the width is generally less than 2 mm.

The groundwater in the rock mass of the slope is mainly bedrock fissure water, with
a buried depth of 19.2–35.3 m. The underground water level is relatively stable. Under
normal conditions, the water level changes by 0.1–0.5 m. After heavy rainfall, the water
level changes by 1.0–3.0 m. The strongly weathered rock mass of diorite in the dam site area
has medium water permeability. The rock mass in the weakly weathered upper area mainly
has weak water permeability, and some parts have medium and slight water permeability.
The weakly weathered lower area and micro new rock mass are dominated by micro
permeability, followed by weak permeability. The strongly weathered rock mass of diorite
on the left bank is 5–34 m thick, the rock mass in the upper weakly weathered area is
5–23 m thick, the rock mass in the lower weakly weathered area is 5.4–34.3 m thick, and the
maximum exposed thickness of the lower micro fresh rock mass is 44.5 m. The weathering
degree becomes weaker from the slope surface to the inside, and the weathering thickness
becomes thicker as elevation increases.

On 10 November 2015, the left bank slope excavation was started. In early April 2016,
the left slope was excavated to 506 m. On 14 July 2016, cracks on the left bank slope at 536 m
berm and above suddenly widened. During the patrol inspection, the on-site personnel
found that there were more cracks on the 553 m berm and the slope above. On 18 July 2016,
the construction site began to suffer from a continuous rainstorm. At about 7:40 a.m. on
19 July, the slope body below the elevation of 650 m on the left bank slope collapsed, as
shown in Figure 2.
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3. Impact of Rainfall on Slope Stability

Rainfall will reduce the shear strength of rock and soil mass, raise the groundwater
level [30], and increase pore water pressure. In addition, long-term and high-intensity
rainfall will lead to a transient saturation area in the area above the stable groundwater
level, and the pore water pressure will rise in the corresponding area [31]. Therefore, it is
necessary to study the impact of transient seepage of rainwater infiltration on the stress
and strain of soil slope [32]. Here, a typical example is selected for analysis.

3.1. Numerical Simulation Model and Parameters

As shown in Figure 3, the slope toe is 40◦, and the slope height is 30 m. The initial
groundwater level is level with the slope toe. This example assumes that pore water
pressure (including suction) is linearly distributed with depth. See Figure 4 for the variation
process of rainfall amplitude simulated for 72 h. The rainfall infiltration intensity of the
slope is set at 0.015 m/s, and the rainfall infiltration intensity of the slope top is set at
0.02 m/s. The elastic modulus of the soil used for the calculation is 10 MPa, Poisson’s ratio
is 0.3, cohesion c′ = 15 kPa, and friction angle ϕ′ = 30◦.
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The relationship between the material permeability coefficient and the matrix suction
is:

Kw = awKws/
[
aw + (bw × (ua − uw))

cw
]

(1)

where Kws is the permeability coefficient when the soil is saturated, taking 5.0 × 10−6 m/s
(0.018 m/h). ua and uw are air pressure and the water pressure in the soil, respectively.
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Since the slope surface is in contact with the atmosphere, ua is simply taken as 0. aw, bw,
and cw are material coefficients, which are taken as 1000, 0.01, and 1.7, respectively, in this
example.

The relationship between saturation and matrix suction is:

Sr = Si + (Sn − Si)as/
[
as + (bs × (ua − uw))

cs
]

(2)

where Sr is saturation; Si is residual saturation, which is 0.08 in this case; Sn is the maximum
saturation, taken as 1; as, bs and cs are material coefficients, which are taken as 1, 5 × 10−5,
3.5 in this example.

The relationship between the efficiency of capability reduction and matrix suction and
water content obtained from the above two formulas is shown in Figure 5.
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3.2. Analysis of Calculation Results

Through finite element calculation, the saturation distribution and pore water pressure
distribution of the slope before and after rainfall are shown in Figures 6 and 7, and the
rainfall flow velocity distribution at the beginning and end of rainfall is shown in Figure 8.
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According to the above analysis results:

(1) Considering that the pore water pressure distribution after rainfall infiltration differs
from the initial state, the suction area below the top of the slope decreases, and the
matrix suction also decreases. Comparing the results at different times, it can be
found that with the extension of rainfall time, the saturation increases, the pore water
pressure increases, and the matrix suction in shallow soil decreases or disappears.
After rainfall decreases or stops, saturation decreases gradually with the extension
of time, saturation decreases, pore water pressure drops, and matrix suction in the
shallow soil layer increases slowly.

(2) The maximum horizontal displacement occurs at the slope toe, and the full settlement
occurs in the middle of the soil slope. This is because, after rainfall infiltration,
suction decreases. The pore pressure increases, the effective stress decreases, and the
unloading rebound phenomenon occurs. On the other hand, with rainfall infiltration,
soil moisture content and unit weight will increase, leading to heave and stress
development. The slope tends to cause sliding deformation due to rainfall infiltration,
so it can be considered that slope stability is reduced.

(3) As the rainfall intensity changes according to the law in Figure 2, it first increases
from 0 to the maximum value and then gradually decreases to 0. Therefore, at the
beginning of rainfall, rainwater infiltrates downward through the slope and slope top.
As the rainfall intensity gradually decreases to 0, the overflow phenomenon occurs at
the slope toe, and the flow velocity is largest at the middle elevation inside the slope.

(4) For the slope toe element, the pore water pressure increases, and the effective average
stress decreases under the action of rainfall infiltration. The effective stress path
reaches the yield surface when it drops to a certain extent. Currently, the stress path
moves to the left and down along the yield surface (Mohr–Coulomb strength envelope)
until the rainfall gradually decreases, the suction increases, the pore water pressure
drops, and the effective stress increases gradually shifts to the yield surface. For the
internal unit of the soil slope, the unit weight above the unit increases after water
absorption, increasing the average effective stress and partial stress. Until the later
stage of rainfall, adequate moderate pressure and partial stress decrease near the end
of the rains. This also confirms the view of some scholars that instability may occur
mainly in the shallow layer of the slope under the action of rainfall infiltration [18,19].

4. Numerical Simulation Analysis of Slope Instability
4.1. Finite Element Model

The overall three-dimensional numerical model of the slope is established according
to the geological engineering conditions exposed during the excavation and slope cleaning
of the left bank slope, as well as the original terrain and construction excavation form
before the damage, as shown in Figure 9a. The slope excavation process is simulated in the
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calculation according to the original design scheme. The simulated excavation is from 590
m to 470 m platform. See Figure 9b for the model after excavation.
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In the model, the x-axis is along the river and points downstream as positive; the Y
axis is the dam axis direction; the direction pointing to the inner side of the mountain is
positive; the Z axis is the numerical direction; and the vertical direction is positive. 10.
The calculation range of the Y axis is 916 m and 728 m, respectively, and the calculation
range of the Z axis is from an elevation of −106 m to the surface. The maximum elevation
difference of the slope body is 801 m. The model has 174,097 units and 31,662 nodes. The
rock stratum involved in the model is mainly diorite, divided into four layers from top to
bottom: strongly weathered area, weakly weathered upper area, weakly weathered lower
area, and micro new rock mass. Adverse structural planes, such as F1, F15, F8, fz39, and
l920, are mainly considered.

4.2. Slope Material Properties

The ideal elastoplastic model with the Mohr–Coulomb criterion as the yield function
is adopted for each rock mass. Mohr–Coulomb failure criterion is a set of linear equations
without considering the intermediate principal stress of rock materials, which can be used to
judge whether rock materials are damaged. See Table 1 for the specific material parameters
used in the numerical simulation.

Table 1. Strength parameters of slope materials.

Rock Mass and Fault Zoning
Severe Deformation Parameters Strength Parameters

γ/(kN/m3) E/GPa Poisson’s Ratio µ f
′
/◦ c

′
/MPa

Intensely weathered 26.5 0.5 0.32 24 0.15
Weakly weathered upper layer 28.2 4.5 0.27 40 0.8
Weakly weathered lower layer 28.4 6.5 0.26 45 0.9

Micro new rock 28.5 18.0 0.25 50 1.1
f8 27.0 0.5 0.32 15 0.24
F1 26.0 0.5 0.32 16 0.25
f15 26.0 0.5 0.28 16 0.3

f39-1/f39 26.0 0.5 0.32 16 0.22
L920 27.0 3.5 0.26 23 0.75

4.3. Calculation Conditions and Boundary Conditions

The life and death element functions are used to simulate bank slope excavation.
During the simulation process, the excavated slope soil element is deleted layer by layer
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according to the actual construction sequence to analyze the impact of bank slope excavation
on its disturbance.

In the reservoir impounding analysis, the influence of impounding on the left bank
slope is analyzed from no water to 450 m (normal pool level).

The initial in situ stress is only considered a self-weight stress field without considering
tectonic action. The slope surface is free, the foundation bottom is fixed and restrained, and
normal constraints surround the foundation. During rainfall and water storage analysis,
the initial groundwater level is set to a level with the slope toe, and the pore water pressure
(including suction) is linearly distributed with depth. As the slope angle changes little, the
rainfall infiltration intensity on the slope is uniformly set at 0.02 m/s.

4.4. Analysis of Finite Element Simulation Results
4.4.1. Initial Ground Stress

Through the initial ground stress analysis, the initial ground stress field of the high
slope on the left bank is formed, as shown in Figure 10. The displacement distribution char-
acteristics before and after balance under the action of self-weight are shown in Figure 11.
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Figure 11. Distribution characteristics of initial displacement. (a) Displacement along slope.
(b) vertical displacement.

It can be seen from Figures 10 and 11 that under the action of self-weight, the initial
ground stress of the left bank slope is larger below the slope, and smaller at the river
valley and the deeper Daihen ditch, which conforms to the characteristics of ground stress
distribution. The river valley and initial displacement are mainly vertical, and the area
with relatively large displacement is concentrated primarily on the higher ridge on the
upstream side and the block surrounded by faults FZ8 and F15.

4.4.2. Slope Instability Analysis

Figure 12 shows the displacement distribution characteristics after excavation, and
Figure 13 shows the surface displacement vector diagram.
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According to the finite element calculation results:

(1) After the completion of the excavation, due to the influence of excavation unloading,
the settlement and deformation of the left bank slope recover rapidly. Relative to the
initial in situ stress state, the displacement is mainly vertical and upward, indicating
that under excavation unloading, the left bank slope has rebounded in the excavation
range and nearby soil. Due to the poor mechanical properties of the rock mass in the
upper strongly weathered area, the slope in the strongly weathered area is mainly
deformed along the slope direction, and the excavated slope in other parts is mainly
deformed by unloading and rebounding toward the excavation free face. At the initial
stage of excavation, the surface deformation of the slope mainly occurs downward,
and the displacement of the slope before excavation is significantly greater than that
after excavation. In the later stage of excavation, the whole body moves upward, and
the displacement within the excavation range is significantly greater than that of the
other parts.

(2) When the excavation is completed, and the whole slope is balanced, the incremental
deformation of the slope is between 3–160 mm, and the maximum value mainly occurs
in the block with an elevation of 465–480 m and is surrounded by faults FZ8 and F15.
The deformation of the front edge of the excavated slope is significant, and the rear
rim is small.

(3) It is worth noting that in the displacement along the slope, there is a prominent area
with large displacement at an elevation of about 615 m above the upper edge of
the excavation. The displacement along the slope is about 1.5–2.5 times that of the
excavation platform at an elevation of 590 m. This phenomenon may be caused by
rebound deformation of the foundation soil due to excavation unloading. However,
due to the existence of fault F1, the deformation is not coordinated, and the fault
interior becomes loose. This may be one of the geological causes of the landslide on
19 July 2016.

The slope stability is analyzed through the shear strain concentration area caused by rainfall
after excavation. Figure 14 shows the slope plastic area distribution characteristics after recess,
and Figure 15 shows the shear strain rate concentration area development after rain.
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The results show that with rainfall infiltration, the shear strain concentration area first
appears at the internal structural plane of the slope and extends along the structural plane
to the front and back edges of the slope. When the excavation is completed and balanced,
the shear strain concentration area penetrates the entire excavation slope. The plastic area
of the slope is dominated by shear yield. Tension shear yield exists locally at the structural
plane and the excavation-free face. After the excavation is completed and balanced, the
rock mass above the fault has entered the plastic yield state, and the slope is close to the
critical state at this stage.

4.4.3. Safety Factor of Slope Stability

The essence of the sliding failure of the slope is strength failure caused by insufficient
shear strength of rock and soil mass or structural plane [8]. Therefore, the strength reduction
method is used to recheck the safety factor of slope stability. In the numerical calculation,
the non-convergence of the analysis, the inflection points of the relation curve between the
displacement of the key points of the slope and the strength reduction coefficient, and the
penetration of the shear strain concentration area are used to judge whether the slope has
entered the critical state comprehensively.

The strength reduction method is used to calculate the safety factor of slope stability.
The shear strength reduction factor is defined as the ratio of the maximum shear strength
provided by the soil in the slope to the actual shear stress generated by the external load
when the external load remains unchanged. The strength reduction method is used to
calculate the safety factor of slope stability by continuously reducing the c and ϕ value of
materials. The reduced shear strength parameters can be expressed as:

cm = c/Fr (3)

ϕm = arctan(tan ϕ/Fr) (4)

where cm and ϕm are the shear strength required to maintain equilibrium or exerted by the
soil mass. Fr is the strength reduction factor.

The original model, the first excavation model, and the second excavation model are
used to calculate the stability safety factor of the slope. In the calculation of each model, Fr
is set to increase linearly from 0.75 to 2.5 until it does not converge and the safety factor is
calculated, and the safety factors of slope stability under different working conditions are
shown in Table 2.
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Table 2. Strength parameters of slope materials.

Model Type Calculated Safety Factor Tolerable Safety Factor

Original model 1.09 0.5 1.35
First Excavation Model 1.10 4.5 1.35

Second Excavation Model 1.27 3.5 1.35

According to the analysis results in Table 2, the calculation results show that the safety
factor before slope excavation is 1.09; After the bank slope is cut for the first time and
the load is reduced, the safety factor is only increased to 1.10. Since bolt support is not
considered in the calculation, the safety factor of the slope is low. Compared with the
tolerable safety factor, the calculated safety factor of all models is small to meet the safety
requirements of slope stability.

To sum up, for typical structural plane-controlled slopes, excavation unloading defor-
mation is mainly represented by structural plane deformation. The slope deformation is
composed chiefly of structural plane dislocation deformation. Structural plane deformation
is primarily controlled by the exposure of the structural plane when excavating the free
face, excavation unloading scale, etc. Therefore, it is reasonable to adopt “load reduction”
measures in combination with the block shape of “wide at the top and narrow at the bottom,
top heavy and foot light”.

5. Conclusions

In this paper, a fluid-structure coupling numerical simulation analysis is carried out
for the landslide phenomenon of a reservoir project’s left bank high slope. The influence
of formation lithology, fault, excavation unloading, rainfall, and water storage is compre-
hensively considered to explain the failure mechanism of the slope under the action of
excavation unloading and heavy rain. The main conclusions are as follows:

(1) With the extension of rainfall time, saturation increases, pore water pressure increases,
and matrix suction in shallow soil decreases or disappears. After rainfall decreases or
stops, saturation decreases gradually with the extension of time, pore water pressure
drops, and matrix suction in the shallow soil layer increases slowly.

(2) Under the action of excavation unloading, the high slope rebounds and deforms,
resulting in a loose structural plane at fault F1 at the back edge of the excavated
slope. Under the action of rainfall infiltration, saturation in the structural plane
increases, and pore water pressure increases. With rainfall infiltration, the shear
strain concentration area first appears at the inner structural plane of the slope. It
extends along the structural plane to the front and rear edges of the slope, resulting in
landslide failure of the slope.

(3) For the typical structural plane-controlled slope, excavation unloading deformation
is mainly represented by structural plane deformation. The slope deformation is
composed chiefly of the structural plane dislocation deformation. Structural plane
deformation is primarily controlled by the exposure of the structural plane when
excavating the free face, excavation unloading scale, etc. The shear failure and unstable
displacement caused by excavation unloading are the leading causes of landslides.

(4) The unloading deformation of slope excavation is mainly manifested as the defor-
mation of the structural plane, and the slope deformation is composed chiefly of
the dislocation deformation of the structural plane. The deformation of the struc-
tural plane is mainly controlled by the exposure of the structural plane in excavating
the free surface and the scale of excavation unloading. In practical applications,
load-reduction measures can be used to improve the stability of the slope.
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