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Abstract: Plant diseases such as drought stress and pest diseases significantly impact crops’ growth
and yield levels. By detecting the surface characteristics of plant leaves, we can judge the growth
state of plants and whether diseases occur. Traditional manual detection methods are limited by
the professional knowledge and practical experience of operators. In recent years, a detection
method based on deep learning has been applied to improve detection accuracy and reduce detection
time. In this paper, we propose a disease detection method using a convolutional neural network
(CNN) with multi-scale feature fusion for maize leaf disease detection. Based on the one-stage
plant disease network YoLov5s, the coordinate attention (CA) attention module is added, along
with a key feature weight to enhance the effective information of the feature map, and the spatial
pyramid pooling (SSP) module is modified by data augmentation to reduce the loss of feature
information. Three experiments are conducted under complex conditions such as overlapping
occlusion, sparse distribution of detection targets, and similar textures and backgrounds of disease
areas. The experimental results show that the average accuracy of the MFF-CNN is higher than that
of currently used methods such as YoLov5s, Faster RCNN, CenterNet, and DETR, and the detection
time is also reduced. The proposed method provides a feasible solution not only for the diagnosis of
maize leaf diseases, but also for the detection of other plant diseases.

Keywords: deep learning; plant diseases; leaf detection; multi-scale feature fusion

1. Introduction

Plant diseases are one of the main factors that affect plant growth, and the detection
and identification of plant diseases are the keys to early diagnosis and the precise control
of pests and diseases. Maize is the world’s top-producing food crop. When encountering
diseases, maize plants infected with viruses and fungi produce physiological lesions. The
infected parts of the leaves show characteristics such as deformation, discoloration, curling,
rotting, and discoloration. There is a need for the quick, easy, and accurate detection of
plant disease areas and identification of the disease species. Traditional leaf detection
methods by manual observation and judgment of maize leaves require extensive practical
experience and professional knowledge, which are time-consuming and have a high cost
and high false detection rate.

In recent years, deep learning has been widely used in various fields such as face recog-
nition, intelligent transportation, and automatic driving. Deep learning applied to plant
disease detection and identification can overcome the drawbacks of traditional diagnostic
methods and significantly improve the accuracy of disease detection and identification,
and it has attracted widespread attention [1,2].

Girshick et al. proposed R-CNN [3], which uses a convolutional neural network (CNN)
to extract image features for plant disease detection. The proposed Fast R-CNN is based on
R-CNN [4] to solve the problem of large numbers of overlapping boxes in the process of
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candidate region selection in R-CNN. Faster R-CNN is widely used in the disease detection
of grapes [5] and rice [6] due to its outstanding detection accuracy. However, Faster R-CNN
is a two-stage detector, and the computational effort of selecting candidate frames is heavy,
which leads to its slow detection speed and makes it difficult to achieve real-time detection.

Redmon et al. proposed the YoLo method [7], which is based on one-stage detection
and does not require the generation of a proposal box, but it divides the image into a grid to
determine target boundaries and classes, which improves the detection speed and alleviates
the real-time detection problem compared with Faster R-CNN. YoLo-based methods are
also widely used in plant disease detection, such as YoLov3-based tea disease detection [8]
and YoLov4-based citrus disease detection [9], but YoLo is not accurate enough in the
detection and localization of small targets.

Zhou et al. [10] proposed CenterNet, a detection algorithm without anchor frames,
which removes the operation of generating anchor frames and saves some time-consuming
operations by estimating the loss from the heat map, thus improving the detection speed.
Albattah et al. [11] improved CenterNet by extracting deep-seated key points based on
DenseNet-77 and classifying and recognizing 26 kinds of plant diseases in 14 plants, such as
tomatoes, apples, grapes, etc., but the detection effect of small plant diseases was not ideal.

Rashid et al. performed potato disease detection [12] based on YoLov5 using multi-
scale pooling and feature pyramid up- and down-sampling to enhance contextual linguistic
features to accommodate multi-scale plant diseases and directly improve small plant
disease accuracy. It also combined the advantages of the accuracy of the anchor-less frame
algorithm and the detection speed of the single-segment algorithm, and the detection effect
is remarkable.

Scholars have undertaken a lot of research on the target detection and classification
and recognition of plant leaf diseases based on deep learning technology, as shown in
Table 1. In practical application scenarios, plant disease detection and recognition still face
many challenges. The main reasons are as follows:

(1) The change of illumination makes it difficult to locate the target area accurately. Due
to the change in light intensity and reflection, as well as other reasons, it is difficult
to accurately locate the diseased area in some detection images. Even under the
same light intensity, the shooting angle and height may cause the color depth of the
diseased area to be different, making the disease characteristics not significant, and
thus affecting the detection accuracy.

(2) The complex background makes it difficult to detect the target accurately. The image
background of plant leaf disease is complex and may include leaves, trunks, weeds,
fallen leaves, shadows, etc. The color and shape of the plant disease may be similar to
other objects in the background, resulting in an increased difficulty of target detection.

(3) Occlusion leads to missing target features and overlapping noise. Occlusion problems
include blade occlusion caused by blade attitude changes, branch occlusion, light
occlusion caused by external illumination, and mixed occlusion caused by different
occlusion types. Due to occlusion, feature deletion and noise overlap lead to false
detection or even missed detection.

(4) The sparse target distribution affects the detection accuracy. Due to the limitation
of the convolution receptive field, the connection between target pixels with sparse
distribution is not strong, and the context extraction is not sufficient, which leads to
the failure of modeling, thus affecting the detection accuracy.

This paper proposes a multi-scale feature fusion convolutional neural network (MFF-
CNN) for the disease detection of maize leaves based on the anchor-free frame one-stage
plant disease detection method, with the addition of the CA attention module and improve-
ment of the SSP module based on YoLov5s.

The main contributions of this paper are as follows:

(1) We add a coordinate attention (CA) module to the backbone network and increase the
weight of key features to strengthen the effective information of the feature map.
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(2) We improve the spatial pyramid pooling (SPP) module to reduce the loss of feature
information caused by traditional pooling.

(3) We solve the problem of the insufficient dataset through data enhancement, enrich the
training data, improve the generalization performance and robustness of the model,
and prevent overfitting.

Table 1. Summary of related work on plant disease detection.

Plant Type Dataset Strength Detection Network
Framework References Year

Paddy crops 1500 Better accuracy Mask R-CNN Anandhan, Singh, etc. [13] 2021

Sugarcane 2940 Higher accuracy Faster-RCNN Kumar [14] 2021

Papaya 2000

Propose the use of lighter
versions of YOLO which are
more efficient and have high

detection speed

YOLO Maski, Thondiyath [15] 2021

Citrus 392 Higher accuracy YoLov4 Li Hao, etc. [16] 2021

Apple 1200 Better accuracy Mask RCNN Rehman etc. [17] 2021

Grape 4500 Better accuracy GLDDN Dwivedi, etc. [5] 2021

Tomatoes 2385 Efficient and precise MobileNetv2-YoLov3 Liu and Wang [18] 2020

Grape 4449 Higher accuracy and a
satisfactory detection speed Faster DR-IACNN Xie, etc. [19] 2020

Cassava 2415

Deploy the model in a
mobile application and test
its performance on mobile

images and video

SSD Ramcharan, etc. [20] 2019

Tea 4000
Identify an accurate yet

efficient detector in terms of
speed and memory

YOLOv3 Bhatt, etc. [8] 2019

2. Materials and Methods
2.1. Deep Learning-Based Plant Disease Detection Technology

Plant disease detection technology uses computer vision technology to detect plant
disease-infested areas and their exact locations under complex natural conditions, which
is a prerequisite for the accurate classification and identification of plant diseases and the
assessment of disease damage levels.

Early plant disease algorithms used a sliding window strategy to select candidate
regions, then extract candidate region features, and, finally, using a classifier, classify
them to obtain the target regions. This method traverses the image by setting different
scales and widths. Although this method does not miss any disease region target, the
ensuing redundant candidate windows bring great computational effort and it is very
time-consuming to traverse the disease image all over again, resulting in poor real-time
detection [21].

With the rapid development of artificial intelligence technology, different techniques
are based on artificial vision for digital image processing and the implementation of
the image classification model. Reference [22] proposed methodology that consists of
five stages, as shown in Figure 1, i.e., image acquisition, preprocessing, segmentation,
feature extraction, and classification, to find the damages caused by the cogollero worm in
corn fields.
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Figure 2. Deep learning-based plant disease detection technology.

2.1.1. Anchor-Based Plant Disease Detection Algorithm

The anchor-based plant disease detection algorithm adopts the detection idea of an
anchor plus a priori box, setting a priori boxes (anchor-box) with different aspect ratios at
each feature point of the plant feature map for screening and adjustment to obtain the final
prediction box. Due to the redundant computation of the anchor-box, anchor-based plant
disease detection is slow.

Anchor-based plant disease detection frameworks can be divided into two categories:
two-stage detectors and one-stage detectors [23], as shown in Figure 3.
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Two-Stage Detector

The main plant disease algorithms based on a two-stage detector are RCNN [3], SPP-
Net [24], Fast R-CNN [4], Faster R-CNN [25], etc. The two-stage detector utilizes two
networks to implement classification and regression, respectively. A feature extractor
(backbone) is used to generate a series of proposal boxes that may contain plant disease
targets to be detected, and then some filtering rules are applied to filter the proposal boxes
and identify the disease targets.

Taking Faster-RCNN as an example, firstly, the images are fed into the feature ex-
tractor for feature extraction, and the extracted features are fed into the region proposal
network (RPN) to generate candidate frames. Secondly, the final proposal boxes are filtered
according to the results of the classification and regression. Next, features are extracted
from the suggestion frames in the feature map, and each feature is input to the pooling
layer of the region of interest (ROI) and unified into a 7× 7 size. Then, it is transformed into
a one-dimensional vector by a fully connected layer. Finally, a classification and regression
task is carried out to further correct the proposal box and determine the specific class
of targets. The two-stage detector is more advantageous in the detection accuracy and
classification precision of plant diseases.

One-Stage Detector

One-stage detector-based plant disease detection algorithms mainly comprise YoLo [26],
SSD [27], and RetinaNet [28]. A one-stage detector accomplishes the classification and local-
ization of plant disease targets in a network and extracts features directly from the network
for plant disease category and location prediction.

Anchor-based plant disease algorithms have been dominating the field of plant disease
detection, beginning with the initial RCNN, with the rapid development of algorithms
with decreasing numbers of parameters and an increasing speed and accuracy of plant
disease detection.

2.2. Anchor-Free Plant Disease Detection Algorithms

The anchor-free plant disease detection algorithms mainly include YoLo, Corner-
Net [29], FSAF [30], FoveaBox [31], and CenterNet [32]. They abandon the idea of the prior
bounding box and adopt the detection idea of key point prediction to obtain the final plant
disease prediction box. These algorithms have a small number of network parameters,
small calculations, and fast plant disease detection, but their accuracy is not very high.
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2.2.1. YoLo

The main versions of YoLo are YoLov3 and YoLov5. YoLov3 first compresses the
image size to 416 × 416 and extracts feature maps of the same size through the feature
extraction network, then it divides the image into 13× 13 grids and locks the grid to predict
the certain target once the center coordinate of a target in the ground truth falls in a grid.
Each grid corresponds to three anchors, predicts three bounding boxes, and outputs three
feature maps at different scales. YoLov3 uses multiple independent logical classifiers for
object prediction to calculate the likelihood of belonging to a specific label while using a
binary cross-entropy loss for each label when calculating the classification loss, reducing
the complexity of the computation.

YoLov5 adds a new focus module (Focus) to YoLov4 [33] to reduce the information
loss during the under-sampling operation. In addition, the number of anchors of positive
samples is increased to improve the convergence speed.

2.2.2. CenterNet

CenterNet is a detection algorithm based on key points estimation, which enables
the detection of disease targets by estimating the center point or corner point. CenterNet
improves on CornerNet by detecting an additional key point in addition to a pair of corner
points, enhancing the ability to synthesize information about the target as a whole. As a
result, CenterNet’s detection speed and accuracy are considerably improved compared
to the frames with both one-stage and two-stage detectors. CenterNet was proven to be
applicable to plant disease detection under natural conditions. Xia et al. [34] performed the
detection of apples through CenterNet’s detection network combined with MobileNet v3,
and the detection speed and accuracy were superior to SSD. However, there is still the
problem of inaccurate matching of key points in intensive targets, and the results are less
satisfactory for small target diseases of plants.

2.3. Transformer-Based Plant Disease Detection Algorithm

CNN-based target detection algorithms (such as Faster RCNN, YoLo, FCOS [35], etc.)
usually rely on a lot of manual design, such as the rules-based label matching mechanism,
inspirational reprocessing processing, etc. An end-to-end concise target detection frame-
work based on a transformer [36] was proposed, which has good detection performance.

The transformer is a new neural network structure that mainly uses an attention
mechanism to capture global contextual information and achieves long-range information
fusion to extract more effective feature extraction. The transformer has had great success in
natural language processing.

Carion et al. first proposed the transformer-based detection transformer (DETR) [37].
DETR treats target detection as a simple set prediction problem, removes the NMS and
anchor design, has a concise pipeline, and introduces an attention mechanism to enhance
feature representation, enabling simple and complete end-to-end target detection. This
algorithm has high feature fusion capability and a high accuracy of detection, but the cost
of training is significant.

DETR extracts maize leaf image features using CNN networks and compresses the
feature dimension into one dimension. The features are encoded at a fixed position before
being fed into an encoder–decoder converter. The decoder uses a multi-head attention
mechanism to decode N objects in parallel at each decoding layer to produce N outputs.
Finally, the target class recognition and bounding box regression are performed by feedfor-
ward neural networks (FFNs) to achieve disease target detection.

2.4. The Method Proposed in This Paper

The design framework is divided into the following stages, as shown in the activity
diagram in Figure 4. First, obtain the image dataset of maize leaf disease in Kaggle and
enhance the data. Secondly, load the relevant model parameters for pre-training. Thirdly,
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the MFF-CNN model is obtained through multiple training. Then input the maize leaf data
to test the disease area, and, finally, receive the maize leaf disease detection results.
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2.4.1. Network Structure

A one-stage plant disease detection method based on MFF-CNN is proposed based on
YoLov5s with a one-stage detector, as shown in Figure 5. The MFF-CNN consists of three
parts, i.e., the backbone, neck, and detection head.
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Backbone

The backbone is based on CSP Darknet53 and mainly uses the Conv module, CBL mod-
ule, and CSP1_X module to obtain the disease information characteristics of maize leaves.

The Conv module consists of a convolutional layer, a batch normalization operation,
and a SiLU activation function. Its kernel size is 3 × 3, and the step size is 2. The CBL
module is similar to the Conv module in that it also uses convolutional layers with batch
normalization operations, except that it uses Leaky ReLU as the activation function.

The MFF-CNN uses two different CSP structures. The CSP1-X with residual compo-
nents (X bottlenecks) in the backbone is shown in Figure 6, while the neck uses convolu-
tional layers (X CBLs) instead of residual components, shown as CSP2-X in Figure 7. The
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cross-layer design of the CSP reduces computation, improves inference speed, reduces
memory cost, and guarantees accuracy.
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The MFF-CNN model also adds the coordinate attention (CA) attention module (see
Section 2.4.2) and the spatial pyramid pooling (SSP) improvement module (see Section 2.4.3)
to the backbone.

Neck

The neck adopts the feature pyramid network (FPN) [38] and path aggregation net-
work (PAN) [39]. The MFF-CNN borrows from PAN and adds a bottom-up feature pyramid
network after sampling on the FPN for feature fusion. The FPN extracts stronger semantic
information from the top-down, while the PAN extracts stronger localization information
from the bottom-up, thus fusing the feature maps of the different layers of the CNN and
strengthening the feature information extraction ability.

Three feature maps of different sizes with rich semantic information are obtained after
three different concatenation operations to meet the needs of plant disease target detection
at different scales. Finally, the CSP2-1 operation is added to each of the three feature maps
and then sent to the detection end.

Detection Head

The detection network uses three detection heads with GIOU-LOSS as the loss function
and outputs three scales of feature maps with 20 × 20, 40 × 40, and 80 × 80 grids for
detecting small, medium, and large maize disease targets, respectively. Each grid contains
three prediction boxes, each containing information about the confidence of the object and
the position of the prediction box. Maize disease detection is accomplished at the detection
head by non-maximal suppression (NMS) [40] as post-processing to eliminate duplicate
redundant prediction frames and retain the prediction frame with the highest confidence.

Intersection over union (IOU) is a metric for evaluating the accuracy and can be
expressed as:

IOU =
|A∩ B|
|A∪ B| (1)
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The MFF-CNN for border regression uses complete-IOU (CIOU) instead of IOU [41]
for model training. CIOU is expressed as follows:

CIOU = IOU−
ρ2(b, bgt)

c2 − αν (2)

Among them, a denotes ground truth, B denotes the predicted frame, and ρ2(b, bgt)
represents the Euclidean distance between the centroids of the prediction box and the
ground truth.

The LOSS when CIOU is regressed can be calculated as:

LOSSCIOU = 1−CIOU = 1− IOU +
ρ2(b, bgt)

c2 + αν (3)

where α and ν are denoted as follows:

α =
ν

1− IOU + ν
(4)

ν =
4
π2

(
arctan

wgt

hgt − arctan
w
h

)2

(5)

2.4.2. Coordinate Attention

In this paper, the weight of key features is enhanced by adding coordinate attention
(CA) [42] in the backbone to select the feature information extracted from the backbone, as
shown in Figure 8 and Algorithm 1.
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Algorithm 1: Coordinate Attention

Input: Feature points in the C*H*W dimensions of the feature map.
Output: Attentional activation feature map with the three feature dimensions C*H*W.
1. First, conduct adaptive average pooling along the H direction and W direction, accordingly,
to obtain C*1*W and C*H*1 scale feature maps, respectively.
2. The two feature maps are then concatenated and convolved to obtain the C/r*1*(W + H)
feature map.
3. Perform BatchNorm and non-linear regression operations
4. Separately perform Sigmoid activation function operations.
5. The original input feature map and the output two feature maps are performing matrix
multiplication.
6. Finally, the C*H*W feature map is output.

In order to enhance the effective features of the feature map, the coordinate attention
module embeds the location information into the attention of the channel in the following
two steps: coordinate information embedding and coordinate attention generation.

Coordinate Information Embedding

In Figure 8, the coordinate information is embedded into the CA module through the
X average pool and the Y average pool. Global pooling is often used for global encoding
as it compresses global spatial information into channel descriptors, and it is difficult to
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preserve location information. To capture more precise location information, the CA module
converts the global pooling into a one-to-one feature encoding operation as established by
Equation (6):

Zc =
1

H × W

H

∑
i=1

W

∑
j=1

xc(i, j) (6)

Specifically, given the input xc(i, j), each channel is first encoded along the horizontal
and vertical coordinates using a pooling kernel of size (H, 1) or (1, W). The output of the c
channel of height h can be written as:

Zh
c (h) =

1
W ∑

0≤i<W
xc(h, i) (7)

Similarly, the output of the c channel of width w can be written as:

Zw
c (w) =

1
H ∑

0≤i<H
xc(j, w) (8)

The above two transformations, i.e., the X average pool and Y average pool of Figure 7,
correspond to two aggregated features of the spatial directions of x and y, thus obtaining
a pair of feature maps with perceptual capabilities in different directions. The two trans-
formations enable spatial attention to obtain long-term dependencies along one spatial
direction and to preserve precise position information along another spatial direction. This
addresses the difficulty of global pooling to preserve location information and helps the
network to locate the target of interest more accurately.

Coordinate Attention Generation

To take advantage of the embedded information in Section 3.2.1, the CA module
concatenates them and then transforms them using a shared 1 × 1 convolutional transform
function, as follows:

f = δ
(

F1

([
zh, zw

]))
(9)

where, [∗, ∗] denotes a concatenation operation along the spatial dimension, δ is a nonlinear
activation function, f ∈ RC/r×(H+W) is a feature map encoding spatial information in the
horizontal and vertical directions, and r is the reduction ratio.

Subsequently, along the spatial dimension, f are cut into two independent tensors,
fh ∈ RC/r×H and fw ∈ RC/r×W,. The feature maps fw and fh are then transformed to the
same number of channels as input xc(i, j) using the two convolutional transforms Fh and
Fw, respectively, with the following results:

gh = σ
(

Fh

(
fh
))

(10)

gw = σ(Fw(fw)) (11)

Then, expanding gh and gw as attention weights, the final output of the CA module is
as follows:

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j) (12)

2.4.3. SSP Improvement

Both maximum pooling and average pooling will lose some of the feature information
of the image during the process of pooling and reduce the performance of the whole
network. To solve this problem, we improve the spatial pyramid pooling (SPP) module
in the YoLov5s network, as shown in Figure 9. The SSP module has a spatial pyramidal
pooling structure, including three SoftPools [43] and a Skip Connection. SoftPool maps
all pixels within the receptive field to the next network layer in a Softmax-weighted
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summation. The SSP improvement module down-samples the feature map while retaining
more fine-grained plant information in the feature map, thus reducing information loss.
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This method achieves the fusion of global and local features, thus enriching the
expression capability of the feature map, and it is suitable for the feature extraction network
of plant diseases.

Suppose the activation value of each pixel in the SoftPool corresponding to the recep-
tive field is ai and the other activation values in the kernel region R are aj. Then, the weight
wi of each pixel in the receptive field is as follows:

wi =
eai

∑j∈R eaj
(13)

After SoftPool, we can obtain the standard summation output value ã of all weighted
activations in R, as follows:

ã = ∑i∈R Wi ∗ ai (14)

3. Experimentation and Performance Evaluation

To examine the effectiveness of the MFF-CNN in maize leaf detection, we present a
comparative analysis of the maize leaf detection results of five plant disease algorithms,
YoLov5s, DETR, CenterNet, Faster RCNN, and MFF-CNN, based on the maize leaf dataset.

3.1. Dataset and Parameter Settings

There are 2265 maize leaf data in the dataset [44] with image resolutions of 2448× 3264
and 3456 × 4608.To prevent over-fitting and, at the same time, to improve the robustness of
the maize leaf detection network, the data are enhanced with the help of flip transform,
random clipping, and scale transform to expand the maize leaf dataset to 6795, and they
take an RGB image format. The dataset is in PASCAL VOC [45,46], and it is divided into a
training set, a validation set, and a test set according to the ratio of 8:1:1.

To enhance the robustness of the leaf detection network, we use 5437 images of maize
leaves with location annotations for training the maize leaf detection model. The detection
result is considered correct when the intersection over union (IOU) between the prediction
box and the truth box is greater than 0.5. To verify the effectiveness of the MFF-CNN,
we selected four mainstream plant disease algorithms for comparison, including Faster
R-CNN based on the two-stage detector, YoLov5s based on the one-stage detector, anchor-
free CenterNet, and transformer-based DETR. The Faster R-CNN uses a Resnet50 model
pre-trained on ImageNet [47] as the backbone with a learning rate of 0.00001, an input
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image size of 600 × 600, and a training batch of two. CenterNet also uses Resnet50 as the
backbone with a learning rate of 0.00001, an input image size of 512 × 512, and a training
batch of eight. DETR uses Resnet50 as the backbone with a learning rate of 0.00001, input
image sizes of 2448 × 3264 and 3456 × 4608, and a training batch of two. CenterNet,
Faster-RCNN, and DETR all have an epoch of 300, and YOLO v5 and the MFF-CNN have
an epoch of 150.

YoLov5s uses Darknet53 as the backbone with a learning rate of 0.00001, an input
image size of 640 × 640, and a training batch of 16. The MFF-CNN proposed in this paper
uses New CSP-Darknet53 as the backbone with an initial learning rate of 0.00001, an input
image size of 640 × 640, and a training batch of 16. The graphics card for this experiment is
RTX3080ti, with Toolkit CUDA of version 11. and deep neural networks GPU-accelerated
library CUDNN of version 8.0.4 developed by NVIDIA Corporation. We installed PyTorch
1.8.2 + cu111 developed by Facebook AI Research, and open source python 3.8.12 on a
Linux system.

3.2. Experimental Results and Analysis

The quantitative analysis of all methods in this paper is conducted based on the same
indicators and the same dataset.

The mean average precision (mAP) is an essential performance evaluation metric for
target detection models. The mAP here is the average of the average precision (AP) of
detection calculated for each category when IOU = 0.5. The experimental results are shown
in Table 2, and the MFF-CNN has the best performance, in terms of mAP, compared to the
others’ maize disease detection. It is 10.4% higher than Faster R-CNN and 5.3% higher than
CenterNet, and it also outperforms YoLov5s and DETR.

Table 2. Comparison of mAP, detection time, and FLOPs.

Algorithm Mean Average Precision (mAP) Detection Time/s FLOPs

MFF-CNN 0.486 0.039 4.2
YoLov5s 0.47 0.017 16.5

DETR 0.467 2.054 76.5
CenterNet 0.433 1.222 34.97

Faster RCNN 0.382 0.409 256.3

There are two main reasons that the MFF-CNN achieves the best detection perfor-
mance in maize leaves. One is that the CA channel attention module enhances the feature
information of the detected targets. In particular, it enhances the feature information of
small targets, overlapping obscured targets and fuzzy targets, which makes the detection
better. Another reason is the application of Softpool, which uses down-sampling to reduce
the amount of data while retaining as much feature information as possible, thus prevent-
ing the loss of maize leaf detection information with blurred edges and corners. These
two modules significantly improve the detection accuracy and efficiency of the MFF-CNN
model in maize leaf detection.

To verify the superiority in temporal performance of the MFF-CNN, we use detection
time, i.e., the time to complete an image, to compare the time performance. To get the
detection time, we loop through 1000 corn leaf images for detection and then calculate the
average inference time between one image input to the network model and the output
model. The detection time of the MFF-CNN is 0.039 s, which is not as good as YoLov5s, but
its detection efficiency is faster than DETR, CenterNet, and Faster RCNN by at least 0.37 s.
Since the FOCUS module reduces the image size and the computation, it greatly reduces
the MFF-CNN detection time. However, as the MFF-CNN also adds a CA module and an
SSP module on top of the YoLov5s network, the detection time of the MFF-CNN algorithm
is slightly longer than YoLov5s.
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We use floating point operations (FLOPs) to test the algorithm’s complexity. The value
of the FLOPs for the MFF-CNN is 4.2 G, which is much lower than the other algorithms,
indicating little model complexity and a minimal computational effort.

In the detection of plant leaf diseases, missing detection is one of the important factors
affecting the accuracy of disease detection. This section uses sensitivities to test the missed
detection rate of the classifier model [48,49]. Sensitivity describes the ratio of true positive
(TP) to actual positive (TP plus FN), where FN is a false negative. The higher the sensitivity,
the lower the missed detection rate.

Table 3 compares the performance of the proposed MFF-CNN versus the other algo-
rithms in terms of sensitivities (%) at various false positives (FPs) per image.

Table 3. Sensitivities (%) at various false positives (FPs) per image.

Methods 0.5 1 2 3 4 8 Avg. [0.5, 1, 2, 4, 8]

MFF-CNN 25.59 37.05 47.93 56.13 61.27 71.01 49.83
YoLov5s 25.14 36.49 46.40 53.06 58.11 67.93 47.85

DETR 24.23 34.86 46.85 54.59 59.64 70.09 48.38
CenterNet 21.71 30.54 43.51 50.36 56.85 68.83 45.30

Faster RCNN 18.38 29.01 39.28 45.77 51.44 62.88 41.13

The numbers 0.5, 1, 2, and 4 represent the different values of FPs. As can be seen from
the table, when IOU = 0.5 and there are four false positives in each picture, the sensitivity
of our algorithm is 3.16% higher than Yolov5s and 9.83% higher than Faster RCNN. The
results show that the MFF CNN has the highest sensitivity, i.e., the lowest miss detection
rate, and it exhibits the optimal detection performance.

We analyze several specific cases in the following sections.

3.2.1. Detection of Target Area Overlap Occlusion

As shown in Figure 10, with the disease area of the maize leaves overlapped and
obscured, we can see that the three algorithms (with the exception of MFF-CNN) missed
the overlapping leaves in the upper left corner of the image. Both DETR and CenterNet
did not perform very well in the detection of the remaining disease areas in the images.

DETR is a transformer-based target detection framework that transforms target detec-
tion into a simple set prediction problem to achieve end-to-end target detection. However,
it has a long training time, misses the detection of small target diseases that appear densely
in the middle of maize leaves in the experiment, and has insufficient detection accuracy
for dense, small targets. CenterNet is an anchor-free method by direct prediction of the
centroid coordinates of objects. When there are multiple objects in overlapping centers,
they will be misidentified as one object. Further, CenterNet predicts that if the centroids of
two objects also overlap in down-sampling during the prediction process, they will also be
mistaken for one object. When there are dense targets in the detection area, such as maize
leaves close together and overlapping occlusions, CenterNet will mismatch the key points
and exhibit poor performance.

In our proposed MFF-CNN, the X average pool and Y average pool aggregate feature
along two spatial directions obtains a pair of feature maps with perceptual capabilities in
different directions, which helps the network to locate the target of interest more accurately.
Thus, the MFF-CNN performed best in the complex case of overlapping shading of diseased
areas of maize leaves, achieving a mAP of 0.486.
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3.2.2. Detection of Sparsely Distributed Targets

As can be seen in Figure 11, the diseased areas of the maize leaves were sparsely
distributed, mainly concentrated in the upper right part and the lower left part of the
leaves, and there was a certain distance between the two diseased areas. DETR and
CenterNet mainly detected disease in the upper right part of the leaf, and there were
a large number of missed detections. Although the transformer used in DETR focuses
more on local key information, the transformer model often requires a large amount
of data and a long training period to make the model converge. While the maize leaf
dataset uses data enhancement technology to mitigate the over-fitting, the dataset for
this experiment is much less massive than ImageNet, resulting in not fully meeting the
data volume requirements of the transformer model. This is the main reason why DETR
has a large number of missed detections in the lower left part of the leaf, as well as the
leaf edges. Although YoLov5s detects most of the diseases, the detection confidence is
lower than that of the MFF-CNN, and the detection effect is not satisfactory in the case
of sparse disease distribution.

The MFF-CNN algorithm proposed in this paper uses SoftPool to reduce the loss
of information of features in the pooling process, thus maximizing the assurance of
the comprehensible extraction of disease feature information in plant leaves. Thus, the
MFF-CNN performs best even in the complex case of sparse disease distribution in
maize leaves.
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3.2.3. Detection of Target and Background Texture Similarity

In Figure 12, the texture and color of the maize leaves are very similar to the background,
and it is hard to detect disease. YoLov5s does not have the same detection confidence as our
proposed MFF-CNN on the maize leaf dataset. The main reason is the relatively large image
resolution of the maize leaf dataset used in this experiment, which makes YoLov5s ineffective
at detecting small targets with inadequate multi-scale information.
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Our proposed MFF-CNN enhances the multi-scale features of the CA module and
prevents information loss as much as possible with the help of Softpool, which provides
a good foundation for the detection of multi-scale targets afterward. It is experimentally
demonstrated that with the joint efforts of the CA module and Softpool pooling, the
MFF-CNN obtains the optimal detection accuracy, with a 1.6% improvement compared to
YoLov5s and a 1.9% improvement compared to DETR.

4. Discussion

The proposed method of multi-scale feature fusion realizes the extraction of context
information and the detection of maize leaf diseases. However, in the detection of edge
targets and dense small targets, the prefetching of small target detection cannot be divided,
and even the problem of missed detection occurs. This is because the limitations of
convolution operation cannot model the image globally, resulting in insufficient global
context information extraction. To solve the above problems, in the next stage of work,
we use the idea of a transformer to achieve the optimization of the baseline and use a
DropBlock [50] convolutional regularization method to improve the detection accuracy.

In our model, we treat the images in a simple way such that the data are enhanced
with the help of flip transform, random clipping, and scale transform. In some techniques
of segmentation and classification using color [51], they are capable of processing trivial
features such as shadows, noise, pixel saturation, low light, different crop varieties, and
intrinsic camera parameters to improve model quality. We will attempt to use these methods
in our model to improve detection performance in the future.

The quality of the dataset plays an important role in the detection effect of the algo-
rithm. In a future study, we will sample maize leaves of different varieties, fertility stages,
and shooting angles under field conditions, and strictly label them to establish a large
dataset of maize leaves.

Moreover, through learning and analysis of big data, we will develop and design plant
disease models applicable to maize leaves in general, explore deep learning networks with
better performance, improve the accuracy of maize leaf disease detection, and apply them
to early plant diagnosis and intelligent monitoring.

Meanwhile, to improve the practical application capability, the MFF-CNN model was
developed into a corresponding access point installed on mobile devices such as UAVs and
smartphones to provide timely, accurate, and wide-range, real-time monitoring information
for maize leaf disease identification. In addition, we will attempt to use the MFF-CNN for
research on the detection of biotic and abiotic stresses in agriculture, such as saline stress
and drought stress.

5. Conclusions

In order to realize accurate and real-time maize leaf disease detection, based on deep
learning technology, this paper proposes an MFF-CNN based on multi-scale feature fusion
for maize leaf disease detection.

We conducted experiments under the complex conditions of combined overlapping
occlusion, sparse target distribution, and similar textures of the diseased areas and back-
grounds. The results show that the proposed method obtains the best detection perfor-
mance compared with the maize disease algorithms of Faster R-CNN, CenterNet, YoLov5s,
and DETR.
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