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Abstract: The Internet of Drones (IoD) is greatly developed and promotes many civil applications.
However, it can still be prone to several security problems which threaten public safety. The issue of
security poses further problems upon linking the IoD to the Internet, as its data stream is exposed to
attack. For secure communication between drones, an effective route planning scheme with a major
intention of accomplishing security is needed. With this aim, this study develops an enhanced search-
and-rescue optimization-enabled secure route planning (ESRO-SRP) scheme for the IoD environment.
The presented ESRO-SRP technique mainly aims to derive a set of optimal routes to the destination.
In addition, the ESRO-SRP algorithm is derived by the integration of the quasi-oppositional-based
learning (QOBL) concept with the conventional SRO algorithm. Moreover, the presented ESRO-SRP
technique derived a fitness function encompassing different input parameters such as residual energy,
distance, and degree of trust. The experimental validation of the ESRO-SRP technique is carried out
under several aspects, and the results demonstrated the enhancements of the ESRO-SRP model over
recent approaches. The ESRO-SRP model has provided an increased packet delivery ratio (PDR)
of 86%, whereas the BRUe-IoE, ORP-FANET, UAVe-WSN, and TR-UAV Swarm approaches have
accomplished a minimal PDR of 79.60%, 73.60%, 67.60%, and 63.20%, respectively.

Keywords: Internet of Drones; search-and-rescue optimization; metaheuristics; security; route planning

1. Introduction

The use of unmanned aerial vehicles (UAVs), also termed drones, is anticipated to
incline at exceptional rates because of growing curiosity from investors, hobbyists, and
researchers; the quantity of drones is quickly rising, and the Internet of Drones (IoD) envi-
ronment and number of related applications are expanding rapidly, in which an infinite
number of multi-sized drones flawlessly communicate with one another via area service
providers whose objective it is to understand and align the accessibility of drones to a con-
trolled airspace and operate a navigation service [1]. The economic development of drone
industries in the United States, involving military scouting, traffic, wildlife surveillance,
urban safety scrutiny of infrastructure, on-demand package supply, aerial photography,
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etc., is reported to be substantial for industries or business operations [2,3]. Figure 1 depicts
the procedure of IoD.

Figure 1. Application areas of IoD.

Even though the IoD network offers numerous benefits, it also carries numerous sus-
ceptibilities which should be handled, the most important criteria of which are privacy and
security problems [4]. However, the IoD network system is commonly placed for real-time
application zones where end users need to obtain real-time information from UAVs which
are connected to a particular area. So, there are high chances of security assaults occurring,
leading to the colossal ruin of the data exchange functions inside the network [5–7]. An
attacker can gain access to the keys and block transmissions. For the accessibility of keys, the
intruder can abuse a susceptibility in the IoD network and its application zones. The intruder
might alter this information, resulting in the misguidance of the receivers. However, IoD
access management is a significant variable, and security problems regarding authorization
and accessibilities must be emphasized [8,9]. This applies to the data in transfer, which
should be protected for confidentiality, authenticity, and integrity.

Most of the privacy and security methods advanced by authors were intended to
ensure security measures on the IoD network [10,11]. The approaches focused on miti-
gating problems which influence the secure localization of drones or privacy and security
necessities linked with the IoD network system. Localization fault assaults impede the
reliability position of UAVs, leading to distressing costs for the overall functionality of the
IoD network [12]. Additionally, privacy and security necessities are the objectives that
decide the functions and capacities of the IoD network attained in justifying certain privacy
and security measures [13]. The privacy and security needs of the IoD network involve
authenticity, integrity, availability, privacy preservation, and confidentiality [14].

Tian et al. [15] suggested a powerful privacy-preserving validation architecture. With
the help of a lightweight online/offline signature model, this architecture guarantees verifi-
cation effectiveness while placing resource constraints on small-scale UAVs. Considering
the high mobility of UAVs, a prediction validation model is explored by using mobile edge
computing (MEC) in this architecture for reducing the verification expenses for possible
verification activity. Allouch et al. [16] developed an Unmanned Traffic Management
(UTM)-Chain, a light-weight blockchain-related security model with hyper ledger fabric for
UTM of lower-altitude UAV that fits the storage and computation resource constraints of
UAV. Furthermore, UTM-Chain offers secured and unchangeable traffic information among
their ground control stations and the UAVs. In [8], a blockchain-related security model
for cyber-physical systems is introduced for ensuring secured transmission of datasets
amongst drones. In this model, the miner node is chosen by deep learning (DL)-based
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technique, that is, a deep Boltzmann machine, with features such as flight time of the drone,
computation resource, and the available battery power.

The authors in [17] developed a lightweight user verification system where the client
in the IoD environments needs to directly access information from a drone to show that the
client is authorized for accessing the dataset from that drone. The formal security validation
with the generally recognized automatic confirmation of Internet security protocol and
application tool alongside informal security investigation shows that the suggested tech-
nique is secured against well-known attacks. In [18], the authors developed a Drone-map
organizer, viz., a service-related fog-based drone managing scheme that monitors, commu-
nicates, and controls with drones through the networks. The suggested technique enables
interaction with various drones through the internet that allows drones to be controlled
anyplace and anywhere, with no long-distance restrictions. This model offers drones ac-
cess to fog computational resources for drones to perform heavyweight load computation.
Though existing works have focused on the IoD environment, it is still necessary to design
energy-efficient and security-based solutions for the IoD environment with the inclusion of
multiple input parameters of the drones.

This study develops an enhanced search-and-rescue optimization-enabled secure
route planning (ESRO-SRP) scheme for the IoD environment. The presented ESRO-SRP
technique mainly aims to derive a set of optimal routes to the destination. In addition,
the ESRO-SRP algorithm is derived by the integration of the quasi-oppositional-based
learning (QOBL) concept with the conventional SRO algorithm. Moreover, the presented
ESRO-SRP technique derived a fitness function encompassing different input parameters
such as residual energy (RE), distance, and trust degree. The experimental validation of the
ESRO-SRP technique is carried out under several aspects. In short, the major contributions
are summarized as follows.

• To the best of our knowledge, the ESRO-SRP technique for the IoD environment does
not exist in the literature.

• Develop a new ESRO-SRP technique for a secure route selection process in the IoD
environment.

• Derive an ESRO-SRP algorithm using the combination of QOBL with the traditional
SRO algorithm and derive a fitness function involving multiple input parameters.

• Simulate the performance of the ESRO-SRP technique under varying levels of energy
consumption in the IoD environment.

The rest of the paper is organized as follows. Section 2 offers a detailed discussion of
the proposed model and Section 3 validates the experimental results of the proposed model.
Finally, Section 4 concludes the study with key findings and possible future enhancements.

2. Materials and Methods

In this study, a novel ESRO-SRP technique has been developed for secure commu-
nication among drones in the IoD environment. The presented ESRO-SRP technique
mainly aims to derive a set of optimal routes to the destination. In addition, the ESRO-
SRP algorithm is derived by the integration of the QOBL concept with the conventional
SRO algorithm. Moreover, the presented ESRO-SRP technique derived a fitness function
encompassing different input parameters such as RE, distance, and trust degree.

2.1. Overview of ESRO-SRO Algorithm

In the SRO approach, the human position is equal to the resolution of the optimization
issues, and the clue quantity accomplished in the location characterizes the objective
function. The group members gather clue information in the search. Few clues are absent
in the event of gaining optimal clues in another position, but the dataset is exploited for
optimizing the searching technique [19]. Here, the position of the left clue can be stored
in the (M memory matrix), where the position of the human is stored in the (X position
matrix). The M matrix dimension is the same as X. They are N × D matrices, whereas D
symbolizes problem dimension and N embodies human count. The clue matrixes have
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the attained clue position. The M and C matrixes are upgraded in all human searching
processes [19]:

C =

{
X
M

}
=



X11 · · · X1D
...

. . .
...

XN1 · · · XND
M11 · · · M1D

...
. . .

...
MN1 · · · MND


, (1)

In Equation (1), X and M represent the position of human and memory matrixes; cor-
respondingly, XN1 embodies the position of initialized dimension for Nth human, and M1D
characterizes Dth dimensional position for the preliminary memory. Given the description
presented in the previous section, in addition to an arbitrary clue amid accomplished clues,
the search path is described as follows:

SDi = (Xi − Ck) , k 6= i, (2)

In Equation (2), Xi, Ck, and SDi correspondingly symbolize jth human location, the kth

clue location, and jth human searching direction; k suggests arbitrary numbers within 1 and
2N and appropriately chosen k 6= i. It is important to emphasize that human usually seeks
accordingly, and some repetitious positions could not be searched another time. Henceforth,
the search should be generated if the group member is restrained. Therefore, Xj dimension
could not be rehabilitated.

For applying this constraint, the binomial crossover operator has been exploited when
the clue is larger than that of the clue associated with the present position, an SDj direction
and the position of that search clue; next, the searching method undergoes the present
location beside the SDi direction [16].

X′i,j=


 Ck,j + rl×

(
Xi,j − Ck,j

)
, i f f (Ck) >, f (Xi)

Xi,j + rl×
(

Xi,j − Ck,j

)
, otherwise

Xi,j

i f r2 < SEor j = jrand,
otherwise,

(j = 1, . . . , D), (3)

where the following are defined: X′i,j symbolizes the novel place of jth parameters of ith

humans; Ck, j specifies place of jth parameter for the kth accomplished clues; f (Ck) and
f (Xi) correspondingly imply an objective function for the Ck and Xi solution; rl and r2
epitomize arbitrary value; jrand symbolizes arbitrary value within 1 and D that assures
that 1D of X′i,j is varied from Xi,j. Equation (3) is applied to accomplish a new place of jth

human in all dimensions.
Next, humans search nearby the current place, and the concept of related discrete

clues applied in the social phase is exploited for searching. In conflict with the social phase,
Xi dimension is attuned in the separation phase. The novel place of jth human can be
accomplished as follows [16]:

X′i = Xj + r3× (Ck − Cm) , i 6= k 6= m, (4)

In Equation (4), k and m characterize arbitrary numbers within 1 and 2N. To evade
motion besides another clue, k and m are designated in this manner, such that i 6= k 6= m.
r3 symbolizes an arbitrary value between zero and one. In the metaheuristic method, each
solution should be positioned in the solution region, and when they are farther from the
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permitted solution region, they should be altered. If the novel place of a human is farther
from the solution region, the succeeding equation is exploited for altering the novel place:

X′i,j=


(

Xi,j+X max
j

)
2 , i f X′i,j > xmax

j ,(
Xi,j+X min

j

)
2 , i f X′i,j < xmin

j ,

(
j

= 1, . . . , D

)
(5)

The process involved in the SRO algorithm is given in Algorithm 1.
Next, in all iterations, the member of the group searched according to the two phases,

and after each stage, once the value of the main function is in position, X′i
(

f
(
X′i
))

is greater
than that of the preceding one ( f (Xi)), thus the earlier position (Xi) would be stored in an
arbitrary place of the M memory matrix and it would be adopted as a novel place. If not,
the position is left and memory is not improved:

Mn =

{
Xi, i f f

(
X′i
)
>, f (Xi)

Mn, otherwise
(6)

Xi =

{
X′i , i f f

(
X′i
)
>, f (Xi)

Xi, otherwise,
(7)

where Mn indicates the location of nth clue saved in the M, and n represents arbitrary
numbers within 1 and N. With that memory, upgrading increases the different kinds of
techniques and the ability of methods for detecting a globally optimum solution. Firstly,
the unsuccessful search number (USN) is fixed as zero for all human beings. Once the
human discovers an optimal clue in the first and second stages of the searching technique,
the USN is fixed as zero for that human; if not, it raises it by one point as follows [16]:

USNi =

{
USNi + l, i f f

(
X′i
)
<, f

(
Xj
)

0, or else
(8)

The arbitrary place from the search region is represented in the following equation
and USNi is fixed as zero for that human:

Xi,j = Xmin
j + r4×

(
Xmax

j − X min
j

)
j = 1, . . . , D, (9)

In Equation (9), r4 designates an arbitrary value and is discrete for each dimension.
Tizhoosh proposed the concept of oppositional-based learning (OBL) that includes opposite
numbers having the highest possibility of accomplishing a solution compared to arbitrary
numbers. The incorporation of OBL with the SRO method leads to an improved conver-
gence rate and effective result of the presented ESRO-SRP algorithm. The QOBL method
applies quasi-opposite value efficiently through the opposite number in the global optimal
outcome. Assume χ represents a real number in I-dimensional region. The xo and xqo(of x)
opposite and quasi-opposite numbers are shown in the following [20]:

x0 = a + b− x (10)

In which x ∈ R and ∈ b].

xqo = rand
(

a + b
2

, x0
)

(11)

Let X(x1, x2, . . . , xn) be a point from the n-dimensional region. The opposite point,
Xo(xo

1, xo
2, . . . , x0

n
)

and quasi-opposite point, Xqo
(

xqo
1 , xqo

2 , . . . , xqo
n

)
are shown in the

following.
xo

i = ai + bi − xi (12)
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Algorithm 1: Pseudo-code of the SRO algorithm

Begin
Initialize parameters : Arbitrary population initialization of 2N solutions,

[
Xmin

j , Xmax
j

]
, j =

1, . . . , D
Organize the solution in a decreasing manner and decide the optimal location (Xbest)
Exploit the 1st half of the organized outcome for X and the remaining for M
Represent variables (SE, MU) and set the USNi = 0 where i = 1, . . . , N
While end criteria are not met do

For i = 1 to N do

C =

{
X
M

}
//Social Phase

SDj =
(

Xj −Ck

)
, k was chosen arbitrarily that i 6= k

jrand = rand int [1, D]
r1= rand [−1, 1]
For j = 1 to D do

X′i,j =


{

Ck,j + r1× SDi,j, i f f (Ck) > f (Xi),
Xi,j + r1× SDi,j, otherwise

X′i,j =


(

Xi,j + Xmax
j

)
/2, if X′i,j > Xmax

j(
Xi,j + Xmin

j

)
/2, if X′i,j < Xmin

j
End For

Mn =

{
Xi, if f

(
X′i
)
> f (Xi),

Mn, otherwise

Xi =

{
X′i , if f

(
X′i
)
> f (Xi)

Xi, otherwise

USNi =

{
USNi + 1, if f

(
X′i
)
< f (Xi)

0, otherwise

C =

{
X
M

}
//Individual Stage

X′i = Xi+ rand [0, 1]×(Ck −Cm),
For j = l to D do

X′i,j =


(

Xi,j + Xmax
j

)
/2, if X′i,j > Xmax

j(
Xi,j + Xmin

j

)
/2, if X′i,j > Xmin

j
End For

Mn =

{
Xi, if f

(
X′i
)
> f (Xi),

Mn, otherwise
n randomly chosen

Xi =

{
Xi if f

(
X′j
)
> f (Xi)

Xi otherwise

USNi =

{
USNi + 1, if f

(
X′i
)
< f (Xi)

0, otherwise
If the USNi > MU do

For j = l to D do
Xi,j = Xmini

j + rand [0, 1]×
(

Xmaxi
j − Xmini

j

)
End for
USNi = 0

End If
End for
Decide the existing finest place and upgrade Xbest

End while
Return Xbest
End
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Here, xi ∈ R and xi ∈ [ai, bi]∀i ∈ 1, 2, . . . , n.

xqo
i = rand

(
ai + bi

2
, xo

i

)
(13)

In QOBL is exploited to the SRO algorithm to initialize the population as well as cre-
ation jumping. It generates a group of optimum outcomes for population initialization [8].
Algorithm 2 defines the QOBL pseudo-code to the novel population.

Algorithm 2: Pseudo-code of QOBL

for i = 1 : Eco_size
for j = 1 : D

Xo
i,j = lbj + upj − Xi,j;

Ci,j =
(

lbj + upj

)
/2;

if (Xi,j < Ci,j)

Xqo
i,j = Ci,j +

(
Xo

i,j − Ci,j

)
× rand;

else
Xqo

i,j = Xo
i,j +

(
Ci,j − Xo

i,j

)
× rand;

end if
end for

end for

2.2. Process Involved in ESRO-SRP Technique

To define an optimum group of routes, an offered function was employed to determine
the following hop to destination and is represented by:

f (x) =
{

i, f or which
∣∣∣∣( i

k
− Xi f j

)∣∣∣∣ is minimum, ∀i1 ≤ i ≤ k (14)

The drive is to determine an optimum group of routes from the cluster heads (CHs)
to the base station (BS), employing a fitness function (FF) comprising 2 parameters such
as energy and distance. Primarily, the RE of the next-hop node is determined, and a node
with higher energy was provided as a relay node. To transfer data, the source node sends it
to the relay node, which is further forwarded to BS utilizing inter CHs. Thus, the node with
higher RE is provided as the next-hop node. A primary sub-objective f 1 was offered as:

f 1 = ECH (15)

In addition, the Euclidean distance was executed to define the distance from CH to BS.
The minimized energy dissipation was frequently dependent on the broadcast distances.
With a lesser distance, the energy was retained significantly [21]. Once the distance is
improved, a further count of energy is spent. Hence, the node with lesser distances is chosen
to relay nodes. So, the next sub-objective using distance is f 2 which is formulated as:

f 2 =
1

∑m
i=1 d is(CHi, NH) + dis(NH, BS)

(16)

The present research work utilized direct trust values (TVs) amongst drones, and their
mathematical process was signified as:

f 3 = Trust (17)

Tri,j =
(

TrDir
ij + TrIndir

ij

)
/2. (18)
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Here, Trdir
ij and Trindir

ij denotes the direct as well as indirect TVs of one node to another
node correspondingly. The count of trust nodes from the cluster is attained in the group
with maximal TVs, and their state value was provided by the level of confidence values
suggested in one node to another node. The TV of BS was computed as:

TrC =
S−1

∑
j=1

TrC(i,j)/(S− 1). (19)

In the above formula, TrC refers to the trusted value and S represents the amount of
drones. If the path trust was smaller than the trust requirement value, the path trust alert
occurrence was triggered.

The above-mentioned sub-objective was revised as to FF as offered in that α1 and α2
denotes the weight assigned to every sub-objective.

Fitness = α1( f 1) + α2( f 2) + α1( f 3), where
3

∑
i=1

αi = 1αiε(0, 1); (20)

3. Results and Discussion

In this section, the performance validation of the ESRO-SRP model is examined under
distinct levels of energy consumption (EC). The EC is varied from 5% to 100% with a step
size of 5%. Table 1 and Figure 2 report a comparative throughput (THRP) inspection of the
ESRO-SRP model with recent models under distinct levels of energy [22–25]. The results
portrayed that the ESRO-SRP model has accomplished maximum values of THRP under
all energy levels. For instance, with an EC of 5%, the ESRO-SRP model has provided
an increased THRP of 33.95 bytes/s, whereas the BRUe-IoE, ORP-FANET, UAVe-WSN,
and TR-UAV Swarm models have accomplished a reduced THRP of 14.54 bytes/s, 14.54
bytes/s, 9.69 bytes/s, and 7.75 bytes/s, respectively. Moreover, with an EC of 100%, the
ESRO-SRP system has offered a maximal THRP of 189.20 bytes/s, whereas the BRUe-IoE,
ORP-FANET, UAVe-WSN, and TR-UAV Swarm techniques have accomplished a lower
THRP of 165.91 bytes/s, 140.68 bytes/s, 110.60 bytes/s, and 99.93 bytes/s, respectively.

Figure 2. Throughput analysis of ESRO-SRP technique under distinct levels of energy.
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Table 1. Throughput analysis of ESRO-SRP technique with existing algorithms under distinct levels
of energy.

Throughput (bytes/s)

EC (%) ESRO-SRP BRUe-IoE ORP-FANET UAVe-WSN TR-UAV Swarm

5 33.95 14.54 14.54 9.69 7.75

10 36.86 17.45 14.54 12.60 1.93

15 44.62 19.39 20.36 12.60 5.81

20 60.15 34.92 20.36 15.51 9.69

25 100.90 74.70 25.21 17.45 8.72

30 114.48 89.26 31.04 21.33 14.54

35 138.74 112.54 37.83 28.12 15.51

40 142.62 105.75 37.83 31.04 21.33

45 149.42 123.22 44.62 38.80 24.24

50 152.33 126.13 64.03 52.38 32.98

55 157.18 129.04 81.49 63.06 36.86

60 154.27 133.89 92.17 71.79 44.62

65 155.24 134.86 102.84 71.79 47.53

70 163.00 141.65 100.90 79.55 55.29

75 178.53 148.45 108.66 84.40 64.03

80 187.26 157.18 108.66 88.28 69.85

85 187.26 160.09 112.54 97.99 79.55

90 187.26 162.03 125.16 100.90 85.37

95 188.23 164.94 142.62 110.60 96.05

100 189.20 165.91 140.68 110.60 99.93

Table 2 and Figure 3 define a comparative PDR examination of the ESRO-SRP approach
with recent models under distinct levels of energy. The results exposed that the ESRO-SRP
model has accomplished maximal values of PDR under all energy levels. For example,
with an EC of 5%, the ESRO-SRP model has provided an increased PDR of 65.20%, whereas
the BRUe-IoE, ORP-FANET, UAVe-WSN, and TR-UAV Swarm systems have accomplished
a decreased PDR of 58.40%, 49.60%, 40.80%, and 39.20%, respectively. Additionally, with
an EC of 100%, the ESRO-SRP model has provided an increased PDR of 86%, whereas the
BRUe-IoE, ORP-FANET, UAVe-WSN, and TR-UAV Swarm approaches have accomplished
a minimal PDR of 79.60%, 73.60%, 67.60%, and 63.20%, respectively.

Table 3 and Figure 4 demonstrate a comparative average HOPS (AHOPS) analysis
of the ESRO-SRP system with recent models under distinct levels of energy. The results
depicted that the ESRO-SRP approach has accomplished higher AHOPS values under
all energy levels. For instance, with an EC of 5%, the ESRO-SRP model has provided an
increased AHOPS of 9%, whereas the BRUe-IoE, ORP-FANET, UAVe-WSN, and TR-UAV
Swarm algorithms have accomplished a minimal AHOPS of 7%, 5%, 5%, and 2%, respec-
tively. Finally, with an EC of 100%, the ESRO-SRP model has offered superior AHOPS of
23%, whereas the BRUe-IoE, ORP-FANET, UAVe-WSN, and TR-UAV Swarm methodologies
have accomplished a lower AHOPS of 22%, 21%, 11%, and 7% correspondingly.
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Table 2. PDR analysis of ESRO-SRP technique with existing algorithms under distinct levels of energy.

Packet Delivery Ratio (%)

EC (%) ESRO-SRP BRUe-IoE ORP-FANET UAVe-WSN TR-UAV Swarm

5 65.20 58.40 49.60 40.80 39.20

10 64.80 60.00 50.00 42.00 39.60

15 66.00 60.00 53.20 46.80 39.60

20 70.80 61.60 54.00 46.40 42.00

25 72.40 64.00 56.00 47.60 43.60

30 73.20 66.40 56.40 50.00 44.80

35 74.40 66.40 57.60 51.60 46.40

40 74.40 66.40 59.20 53.60 48.00

45 75.20 66.00 60.00 54.00 50.80

50 76.40 67.20 61.60 54.40 50.00

55 76.00 68.00 61.60 54.40 50.80

60 76.40 69.60 64.40 55.20 51.60

65 78.40 72.80 64.80 58.40 52.80

70 80.40 73.60 66.80 59.20 54.00

75 83.20 75.20 70.00 61.20 54.40

80 81.60 76.80 71.60 62.80 56.40

85 86.00 77.60 71.60 64.00 59.20

90 85.60 79.20 72.80 64.80 61.20

95 89.20 80.40 73.20 65.60 60.00

100 86.00 79.60 73.60 67.60 63.20

Figure 3. PDR analysis of ESRO-SRP technique under distinct levels of energy.
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Table 3. Average HOPS analysis of ESRO-SRP technique with existing algorithms under distinct
levels of energy.

Average HOPS (%)

EC (%) ESRO-SRP BRUe-IoE ORP-FANET UAVe-WSN TR-UAV Swarm

5 9 7 5 5 2

10 9 7 6 5 2

15 10 7 6 5 2

20 11 8 6 5 2

25 14 10 8 5 2

30 16 12 9 5 3

35 16 12 10 6 3

40 16 13 10 6 4

45 17 14 11 6 4

50 17 14 11 7 3

55 18 15 11 7 4

60 20 15 12 8 4

65 20 15 12 8 5

70 21 16 12 9 6

75 21 18 13 9 6

80 21 18 15 9 6

85 22 19 18 10 7

90 24 20 18 10 7

95 24 22 20 10 6

100 23 22 21 11 7

Figure 4. AHOPS analysis of ESRO-SRP technique under distinct levels of energy.

Table 4 and Figure 5 illustrate a comparative coverage inspection of the ESRO-SRP
approach with recent models under distinct levels of energy. The outcomes represented that
the ESRO-SRP model has accomplished improved values of coverage under all energy levels.
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For instance, with an EC of 5%, the ESRO-SRP model has provided a maximal coverage of
97.69%, whereas the BRUe-IoE, ORP-FANET, UAVe-WSN, and TR-UAV Swarm methods
have accomplished a decreased coverage of 91.18%, 83.58%, 81.41%, and 73.26%, respectively.
Finally, with an EC of 100%, the ESRO-SRP model has provided an enhanced coverage of
48.29%, whereas the BRUe-IoE, ORP-FANET, UAVe-WSN, and TR-UAV Swarm models have
accomplished minimal coverage of 33.63%, 16.26%, 15.18%, and 3.24%, respectively.

Table 4. Coverage analysis of ESRO-SRP technique with existing algorithms under distinct levels
of energy.

Coverage (%)

EC (%) ESRO-SRP BRUe-IoE ORP-FANET UAVe-WSN TR-UAV
Swarm

5 97.69 91.18 83.58 81.41 73.26

10 98.78 92.81 81.41 75.43 70.01

15 96.61 90.09 79.23 73.26 66.21

20 92.81 89.01 75.98 71.63 65.12

25 89.01 85.21 72.18 71.63 58.61

30 86.83 82.49 70.01 64.03 53.18

35 86.83 77.06 59.15 65.66 43.95

40 77.61 68.38 56.43 55.35 42.32

45 75.98 67.83 56.98 51.01 39.06

50 65.12 60.78 49.92 47.21 36.35

55 62.41 54.26 45.03 42.32 35.26

60 61.32 50.46 42.86 39.61 28.21

65 60.78 47.75 38.52 36.35 26.03

70 58.61 46.66 36.35 31.46 25.49

75 55.89 43.95 30.92 27.66 23.86

80 52.09 40.69 30.38 27.66 21.15

85 51.01 38.52 27.66 19.52 16.81

90 51.01 37.43 21.69 19.52 13.01

95 51.01 35.26 18.98 15.18 3.24

100 48.29 33.63 16.26 15.18 3.24

Table 5 and Figure 6 depict a comparative lifetime analysis of the ESRO-SRP algorithm
with recent methodologies under distinct levels of energy. The results outperformed in that the
ESRO-SRP model has accomplished maximum values of a lifetime under all energy levels. For
instance, with an EC of 5, the ESRO-SRP system has provided a higher lifetime of 57 rounds,
whereas the BRUe-IoE, ORP-FANET, UAVe-WSN, and TR-UAV Swarm algorithms have
accomplished a minimal lifetime of 41, 25, 10, and 1 round, respectively. Moreover, with an EC
of 100, the ESRO-SRP model has an obtainable increased lifetime of 176 rounds, whereas the
BRUe-IoE, ORP-FANET, UAVe-WSN, and TR-UAV Swarm approaches have accomplished a
decreased lifetime of 157, 144, 124, and 107 rounds, respectively.
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Figure 5. Coverage analysis of ESRO-SRP technique under distinct levels of energy.

Table 5. Lifetime analysis of ESRO-SRP technique with existing algorithms under distinct levels of energy.

Lifetime (No. of Rounds)

EC (%) ESRO-SRP BRUe-IoE ORP-FANET UAVe-WSN TR-UAV Swarm

5 57 41 25 10 1

10 65 48 38 15 6

15 65 53 40 35 14

20 75 56 48 41 15

25 75 62 52 43 19

30 88 65 58 43 22

35 94 72 66 52 30

40 113 96 73 51 32

45 124 110 80 58 37

50 130 108 93 60 40

55 142 121 96 66 39

60 148 124 105 72 44

65 149 130 107 75 44

70 157 139 120 78 58

75 163 147 119 95 78

80 167 147 117 94 86

85 170 151 124 102 90

90 174 154 135 104 94

95 175 157 136 119 100

100 176 157 144 124 107
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Figure 6. Lifetime analysis of ESRO-SRP technique under distinct levels of energy.

The experimental results ensured the superior outcomes of the proposed model over
other models in the IoD environment.

4. Conclusions

In this study, a novel ESRO-SRP technique was established for secure communication
among the drones in the IoD environment. The presented ESRO-SRP technique mainly aims
to derive a set of optimal routes to the destination. In addition, the ESRO-SRP algorithm
is derived by the integration of the QOBL concept with the conventional SRO algorithm.
Moreover, the presented ESRO-SRP technique derived a fitness function encompassing
different input parameters such as RE, distance, and trust degree. The experimental
validation of the ESRO-SRP technique is carried out under several aspects, and the results
demonstrated the enhancements of the ESRO-SRP model over recent approaches. The
ESRO-SRP model has provided an increased PDR of 86%, whereas the BRUe-IoE, ORP-
FANET, UAVe-WSN, and TR-UAV Swarm approaches have accomplished a minimal PDR
of 79.60%, 73.60%, 67.60%, and 63.20%, respectively. Therefore, the ESRO-SRP technique
can be exploited as an effective tool to improve security and network efficiency. In the
future, the performance of the ESRO-SRP algorithm will be extended to the integration of
lightweight cryptographic techniques.
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