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Abstract: Tor serves better at protecting users’ privacy than other anonymous communication tools.
Even though it is resistant to deep packet inspection, Tor can be de-anonymized by the website
fingerprinting (WF) attack, which aims to monitor the website users are browsing. WF attacks
based on deep learning perform better than those using manually designed features and traditional
machine learning. However, a deep learning model is data-hungry when simulating the mapping
relations of traffic and the website it belongs to, which may not be practical in reality. In this paper,
we focus on investigating the composition mechanism of website fingerprinting and try to solve
data shortage with bionic traffic traces. More precisely, we propose a new concept called the send-
and-receive pair (SRP) to deconstruct traffic traces and design SRP-based cumulative features. We
further reconstruct and generate bionic traces (BionicT) based on the rearranged SRPs. The results
show that our bionic traces can improve the performance of the state-of-the-artdeep-learning-based
Var-CNN. The increment in accuracy reaches up to 50% in the five-shot setting, much more effective
than the data augmentation method HDA. In the 15/20-shot setting, our method even defeated TF
with more than 95% accuracy in closed-world scenarios and an F1-score of over 90% in open-world
scenarios. Moreover, expensive experiments show that our method can enhance the deep learning
model’s ability to combat concept drift. Overall, the SRP can serve as an effective tool for analyzing
and describing website traffic traces.

Keywords: Tor; privacy; website fingerprinting; data augmentation; send-and-receive pair; bionic trace

1. Introduction

Tor has been proven better at protecting users’ privacy than other anonymous com-
munication tools. It establishes a random multi-hop communication circuit through relays
provided by global volunteers. The user’s browsing data is encrypted and contained in mul-
tiple layers in the process of transmitting, similar to an onion wrapped in layers. Random
multi-hop communication circuits bring significant challenges to large-scale supervision.
Onion encryption effectively prevents the attacker from analyzing the communication con-
tent to hide the user’s identity and location, as well as the target website visited by the user.
Nevertheless, website fingerprinting (WF) attacks have proven that there are characteristics
explicitly or implicitly hidden in traffic patterns. The attacker can de-anonymize the target
website a user is browsing by well-trained classifiers.

Early on, some WF attacks were based on machine learning, such as SVM [1,2], k-
NN [3], and random forest [4]. They used handcrafted features to describe the difference
between the traffic trace of different websites and achieved more than 90% accuracy in the
closed-world setting. Manually designed features have been criticized for being vulnerable
to protocol changes [5–8], while deep learning can make up for this deficiency through
automated feature engineering. Moreover, existing works show that features extracted
by unsupervised DNNs are more effective [9]. Deep-learning-based WF attacks, such as
Var-CNN [10], show great advantages with accuracy and a true positive rate of over 98% in
both closed-world and open-world settings.
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Although deep learning methods demonstrate promising results, they often require
massive data in the training phase. It would be costly for the attacker to collect sufficient
traffic instances for each website. Moreover, the content of a website may change irregularly
all the time causing the data distribution shift. The adversary must collect training data
frequently and retrain new models to catch up with the variation. It is an unaffordable
expense, especially when running into a large set of monitored websites. As a result,
the data hunger problem severely restricts the application of WF attacks. To tackle this
problem, many studies [11–13] were inspired by transfer learning, introducing pre-trained
feature extractors in their attack process. The issue is that these attacks need a large amount
of additional pre-training data. What is more, the effectiveness of the extractor will be
lost when faced with target data with a different distribution than the pre-training data.
Others [14] have tried to use data augmentation methods borrowed from the computer
vision field to offer extra training data. However, website traffic and pictures are of a
completely different nature. For example, the mixup can perturb the color and shading of a
picture without changing the semantics. The same perturbation does not work for traffic
traces which only contain the direction and timestamps of cells.

In this study, we reviewed the loading process of web pages and proposed the send-
and-receive pair (SRP) as the basic unit to characterize website traffic. We observed that
traffic traces could be bionic, quite different from entities with unique semantics and
strict spatial structure,e.g., people’s faces. The bionic traces generated by our proposed
method can be used as a supplementary training dataset of WF attacks and further enhance
their capability.

The main contributions of this paper are listed as follows:

• We proposed a new concept called send-and-receive pair (SRP), which provides a
microscopic perspective for us to study website traffic.

• We demonstrated that website traffic could be bionic by reorganizing SRPs generated
by web page loading. Furthermore, we proposed a bionic trace generation method
based on the browser working mechanism and network state fluctuation simulation.

• We further investigate the concept drift problem of website traffic in closed-world and
open-world scenarios. We reveal that bionic traces and SRP-based cumulative features
can help mitigate the effects of concept drift.

• Expensive experiments show that bionic traces we generated can significantly alleviate
the data hunger problem of deep learning-based WF attacks. It can achieve a nontrivial
increase in performance when incorporating the state-of-the-art deep learning model.

The remainder of this paper is organized as follows. We first describe the threat model
of the WF section in Section 2. In Section 3, we give a review of related work. We introduce
the proposed SRP and bionic trace generation method in detail in Section 4. Section 5
describes our performance metrics and analyzes experimental results. Finally, we discuss
the limitation of this study and draw a conclusion in Section 6.

2. Threat Model

We consider the attacker as a passive eavesdropper between the user and the Tor
network entry node, as shown in Figure 1. A potential attacker could be the user’s internet
service provider, routers, autonomous services, etc. The attacker collects traffic traces
and does not delay, modify, or drop any packets. After that, the attacker trains machine
learning classifiers to identify whether users are visiting a particular website, thereby
destroying anonymity.
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Figure 1. Threat model.

Evaluation Scenario Two basic WF attack evaluation scenarios are used in this study:
closed-world and open-world.

• Closed-world scenario. The closed-world scenario assumes that the user only visits
a fixed collection of K websites, which is monitored by the attacker. We assume a
weak attacker could only gather N instances for each monitored website. The attacker
trains his classifier with the K× N training instances and the test instances belong to
one of the K monitored websites. Despite many criticisms for being unrealistic, this
scenario is widely used to evaluate the basic classification performance of WF attacks
in previous studies.

• Open-world scenario. The open-world scenario is a realistic but challenging setting. It
considers that users may visit a large number of websites that the attacker may not
be interested in, to be called unmonitored websites. The attack gathers instances for
the unmonitored websites to join with the monitored instances as the training set. In
reality, the number of unmonitored websites is over the capability of an attacker can
monitor. Therefore, the unmonitored instances in the test set would be from other
never-seen websites. The attacker must identify whether an instance belongs to the
unmonitored or monitored set. If it belongs to the latter, the attacker should further
figure out which is a monitored website.

3. Related Work

The history of WF attacks can be traced back to decades ago when Wagner et al. [15],
the pioneer of website fingerprint research, first studied the traffic encrypted by SSL. After
that, reaserchers have studied the WF attack against different communication protocols and
proxy tools [16–20]. As WF attacks increasingly threaten user privacy, high expectations are
placed on anonymous communication tools like Tor. Once the data leaves the user’s Tor
client, it would be encrypted to hide the content and destination. This mechanism ensures
that communication information is not leaked. As a contradictory pair, attack and defense
have continuously been developed in confrontation.

Handcrafted features can represent traffic traces with meaningful statistics and traditional
machine learning can work as classifiers to identify the monitored website. Some previous
WF attacks focus on manually designing features through prior knowledge, e.g., brust [1],
the sequence of packets, size of packets, and inter-packet timings. Herrmann et al. [21] first
attempted to destroy Tor’s anonymity with the distribution of IP packet sizes but only achieved
2.96% accuracy. After that, the attack effect gradually improved [1–4] with the progress
of machine learning. Hayes and Danezis [4] proposed k-fingerprinting based on random
decision forests, which can correctly determine one of 30 monitored hidden services a client
is visiting with 85% TPR, an FPR as low as 0.02%. Moreover, their results show that simple
features such as counting the number of packets in a sequence leak more information about
a web page’s identity than complex features such as packet ordering or packet inter-arrival
time features. Panchenko et al. [22] extract cumulative behavioral representations of the
page loading process along with other handcrafted features, e.g., packer ordering and
burst behavior. Their CUMUL can attack with excellent computational efficiency, achieving
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96.62% TPR in a sizeable open-world scenario. Nevertheless, attacks based on manually
designed features have their performance limited by the quality of the feature set. For
instance, simple WF defenses can easily perturb statistics between packets [4].

Recently, deep-learning-based WF attacks have gradually become the mainstream.
They can automate the process of feature engineering [23,24] and extract implicit features by
designing networks with more complex structures. Oh et al. [9] broadly study the applica-
bility of deep learning to website fingerprinting. Their work proved that features extracted
by unsupervised DNNs are more potent than the manual design features. Rimmer et al. [5]
systematically explored three deep learning algorithms applied to WF, including stacked
denoising autoencoder (SDAE), convolutional neural network (CNN), and long short-term
memory (LSTM). Their work shows that deep learning methods are more effective when
provided with more training data. Later, Bhat et al. [10] announced that Var-CNN was
effective in a low data setting with 50 instances per class available.

Considering a more practical setting, websites on the Internet are far beyond an
attacker’s monitoring capability, which means the attacker would not be able to have
enough training instances for all monitored websites. Therefore, the WF attacks are closer
to a few-shot problem in the real world. In this case, DF [24] and Var-CNN both become
weak in the few-shot setting, at the risk of overfitting the training data. Sirinam et al. [11]
decompose the attack model into two parts: a k-NN classifier and a triplet-network-based
feature extractor. Their TF outperforms other attacks in the few-shot setting with more
than 90% accuracy. However, WF attacks [11–13] based on transfer learning are highly
dependent on a large amount of pre-training data. Moreover, it is hard for these attacks to
counteract the distribution changes of target data. As a typical data augmentation method,
HDA [14] shows that virtual instances can help with the data hunger problem. Since HDA
is not designed for the characteristics of website traffic, its enhancement effect is limited.

Another unavoidable question is whether the WF attacks are time sensitive for the
reason web pages are constantly changing irregularly [25], namely the concept drift problem.
A several minutes time gap would lead to the content of a news website to be update [26].
With only a 10 days time gap, the accuracy of WF attacks dropped by approximately 40%.
Rimmer et al. [5] held that the classifier trained and evaluated at one moment in time might
overlook the stable fingerprint and learn the temporary features instead. On the other
hand, depending on the number of monitored websites an attacker aims to cover, the cost
to catch up with the changes brought by time would be a significant burden. Guiding deep
learning-based classifiers to learn deep abstract features will help combat concept drift in
website fingerprinting.

4. Methodology

In this section, we propose the SRP and bionic trace generation method. Firstly, we
cover the data representation of website traffic. Then, we analyze the website traffic trace
with a microscopic look based on SRP and display it in an intuitive manner. After that,
we explain the bionic trace generation method and introduce the base model used for
this study.

4.1. Data Representation

Tor uses a 512-byte cell as the basic unit to encapsulate application layer data, ensuring
that packet length analysis does not leak information. Nevertheless, researchers proposed
transforming traffic traces from packets to cell sequence [26] to perform WF attacks. Some
studies concerned the use of timing-related features [3,4,10,27] in their attacks. However,
timing-related features are highly correlated with specific network states and thus are
not general. Therefore, we only use the direction feature since the regularity of sending
and receiving packets is more important for website traffic. Note that traces of different
websites would have different lengths, depending on the resources a page is loading. We
align them to 5000 cells by padding zeros to the shorter and truncating the longer. A trace
is represented as a cell sequence vector (d1, d2, . . . , d5000), where d ∈ {±1, 0}.
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4.2. A Microscopic Look

We review the browsers’ behavior of loading a web page, which offers us an intuitive
understanding of website traffic. The browser first fetches the HTML template containing
the layout and resource index when visiting a website. After that, it performs resource
loading and page rendering synchronously. The browser classifies resources and performs
security policy checks. In order to ensure user browsing experience, the resources are
divided into different priority groups and downloaded in order, as shown in Figure 2.

Figure 2. The loading process of a web page.

Many elements make up a web page, such as text, pictures, cascading style sheets
(CCS), JavaScript, audio, and video. Different elements generate different sequences of
sending and receiving cells when loaded. Based on this observation, we propose that the
send-and-receive pair (SRP) can be used to describe the correlation between traffic cells
and web page elements. We present the results of an analysis of website traffic using SRP
in Figure 3. We drew four heatmaps for each website, and each represents the statistics for
50 instances from the website. The y-axis of the heatmap represents the number of outgoing
cells in the SRP, and the x-axis represents the number of incoming cells. The number of
each type of SRP is reflected with a different color in the heatmap.

We extensively observe the top 200 Alexa websites, which represent users’ browsing
preferences to some extent. It can be seen intuitively from examples in Figure 3 that the
heatmaps of the same website are highly similar, while the heatmaps of different websites
show different styles. Therefore, the SRP is statistically significant and can be used to
characterize website traffic. Note that we do not argue that the SRP can be strictly mapped
to a specific web page resource. The SRP is a rough representation of the resource loading,
which may be disturbed by network conditions or other factors. This feature can be reflected
in the subtle differences in the heatmap of the same website.



Appl. Sci. 2022, 12, 7937 6 of 17

(a) livedoor.jp

(b) amazon.com

(c) mozilla.org

Figure 3. Heatmaps of website traffic traces based on SRPs statistics. (a) shows four heatmaps of
the portal livedoor.jp. A large number of hyperlinks and other textual resources on this website
result in brief responses (fewer incoming cells). (b) shows that numerous thumbnails and advertising
animation results in lengthy responses to the shopping site amazon.com. (c) shows the statistics for
the home page of the Mozilla project group. The mozilla.org shows some pictures and descriptions
of their projects, resulting in both lengthy and brief responses. The limited resources on their page
result in a limited number of SRPs.

4.3. Bionic Traffic Generation

We now explain the principle of generating bionic traffic trace and give more details
about the operations.

The browser requests different resources through multiple threads simultaneously
during the page loading process. For example, three resources in the priority group may
be loaded simultaneously or successively, and cells generated by loading them will be
included in an arrangement, as shown in Figure 2. The loading time of each resource
depends on the state of the network link of the corresponding thread. Therefore, accessing
the same website in a short time will also produce different packet sequences.

We simulate the impact of network state fluctuations during the resource loading
phase by shuffling the order of SRPs. Figure 4 shows the generation process of bionic traces.
We first pick two traces of the same website and compare them cell by cell. Then we mark
the position where cells from two traces have different directions as the noise points. It
is easy to infer that cells within a certain distance around the noise point have a higher
probability of forming a priority group. We randomly selected noise points and set search
intervals around them. The search interval length gives the priority group’s approximate
location. We simulate the priority groups by allowing the boundary of the search interval
to be extended or shrunk to encompass a complete SRP. Finally, we generate bionic traces
by reorganizing the SRPs within the simulation priority group. The process of searching
and reorganizing the simulation priority group is described in Algorithm 1. The overall
procedure of bionic traffic generation is described in Algorithm 2. The proposed generation
algorithm can work at a low cost with O(n) time complexity.
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Figure 4. The process of bionic trace generation.

Algorithm 1 Search and reorganize simulation priority group.

1: Procedure SR_Simulation_ Priority_Group(~A, i, L)
2: start← i− L/2 // Searching backward for SRP
3: while start > 0 and astart > 0 and astart−1 > 0 do
4: start← start− 1
5: end while
6: end← i + L/2 // Searching forward for SRP
7: if aend − 1 > 0 then
8: while aend 6= 0 and aend−1 > 0 and aend > 0 do
9: end← end + 1

10: end while
11: end← end + 1
12: while aend 6= 0 and aend−1 < 0 and aend < 0 do
13: end← end + 1
14: end while
15: else
16: while aend 6= 0 and aend−1 < 0 and aend < 0 do
17: end← end + 1
18: end while
19: end if
20: ~P← ~A[start : end] // Take the simulation priority group.
21: ~P← operate_SRPs(~P) // Finding and shuffling SRPs.
22: ~S← Merge(~A[: start], ~P, ~A[end :])
23: return ~S
24: End procedure
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Algorithm 2 Bionic traffic generation.

Input: Traffic trace ~A = (a1, a2, . . . , a5000), Traffic trace ~B = (b1, b2, . . . , b5000)

Output: Bionic traffic trace ~S = (s1, s2, . . . , s5000)
1: Setting Unoise ← ∅
2: for each i ∈ [1, 5000] do
3: if ai 6= bi then
4: Unoise ← Unoise ∪ {i}
5: end if
6: end for
7: Unoise ← Compare_Instances(~A,~B)
8: Upick ← Random_Pick_Noise_Points(Unoise, Rperc) //Randomly pick Rperc of the noise

points.
9: ~S← ~A or ~S← ~B

10: for p ∈ Upick do
11: ~S← SR_Simulation_Priority_Group(~S, p, Rlen)

//Rlen is the length of the search range with p as the midpoint.
12: end for
13: return ~S

4.4. SRP-Based Cumulative Feature

We proposed a new cumulative feature based on the SRP for the attack model, which
is meaningful in representing the traffic pattern. As shown in Figure 5, we plot heatmaps
of traffic traces collected in different time. Heatmaps of the same website can be seen as
much more similar even under the effect of concept drift. Based on this observation, we
design the SRP-based cumulative feature, which consists of 336 values. Specifically, we
separate the number of packets sent into six types, from one to five each is a type, and more
than five is a type. Then, we separate the number of packets received into 56 types, from 1
to 55 each is a type, and more than 55 is a type. In this way, we can represent traffic traces
with 336 SRP types. Finally, We calculate the statistics for each trace instance and convert
them to normalized values to obtain the SRP-based cumulative feature.

(a)

Figure 5. Cont.
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(b)

Figure 5. Heatmaps of website traffic traces under concept drift. (a,b) show heatmaps of alibaba.com
and battle.net, respectively. Each heatmap is plotted based on traffic instances gather at different
times over a two-month period: 3 days, 10 days, 28 days, 42 days, and 56 days after the end of the
initial data collection (0 day).

4.5. Base Model

We test the effectiveness of bionic traffic trace with the Var-CNN model [10]. This model
uses techniques from computer vision, namely dilated causal convolution [28] and ResNet [29].
It is robust to the trace length variations of website traffic with the wide receptive field offered
by dilated causal convolution layers. The ResNet model architecture optimizes the learning
task to fit residuals, making the deeper neural network available. Therefore, the deep semantics
of traces can be extracted by the Var-CNN model. Both direction information and cumulative
features are used in our experiments. We build the model by following the recommended
hyperparameters [10].

5. Experiment

In this section, we design a series of experiments to prove that bionic traffic traces can
be used to expand the training dataset as compensation for the data shortage of the WF
problem. We simulate a tough, low data situation, where the attacker could only gather
N = 5, 10, 15, 20 instances for each monitored website. Note that, for investigating the
effectiveness of the proposed SRP-based cumulative feature, we report the results of the
attack with or without using it (BionicT* represents the use of SRP-based cumulative feature
while BionicT does not).

5.1. Dataset

We perform our experiment based on datasets used in the previous literature. These
datasets are labeled as follows:

• AWFseries [5]: This dataset is the largest WF dataset collected in 2017 with Tor browser
6.5, We use three subsets in our study:

– AWF100. The set consists of the top 100 Alexa websites, with 2500 instances each.
– AWF775. The set consists of the other 775 websites, with 2500 traffic traces each.
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– AWF400,000. The set consists of the top 400,000 Alexa websites, with one instance
each.

– AWFtime. The set consists of the top 200 Alexa websites, with 500 traffic traces
each. 100 instances of these 200 sites were gathered at each point in time over a
two-month period: 3 days, 10 days, 28 days, 42 days, and 56 days after the end of
the initial data collection.

• Wang100 [3]: This dataset was collected by using Tor Browser 3.5.1 in 2013, which
contains 100 monitored websites. Each website has 90 instances available.

• DF95,WTF−PAD [24]. This dataset contains 95 monitored websites each with 1000
instances defended by WTF-PAD [7].

5.2. Metric

In order to reasonably evaluate our work, we use different metrics for the closed-world
and open-world settings separately. We first define P as the total number of monitored
traces. True positive (TP) represents a monitored trace classified as its category. Wrong
positive (WP) indicates that it is classified as other monitored categories. Especially in the
open-world scenario, a false negative (FN) indicates that it is classified as the unmonitored
category. If an unmonitored trace is considered a monitored category, it is a false positive
(FP). Therefore, we define accuracy for closed-world evaluation as:

Accuracy =
TP
P

. (1)

The F1-score used for open-world evaluation is defined as:

F1 =
2× Precision× Recall

Precision + Recall
(2)

where:

Precision =
TP

TP + WP + FP
(3)

Recall =
TP

TP + WP + FN
(4)

We run each experiment 10 times and use the mean and standard deviation to report
the performance. Moreover, we randomly sample instances for training and testing each
time to ensure more reliable and representative results.

5.3. Hyperparameter Tuning

To develop the method of generating bionic traffic, we perform hyperparameter tuning
for Rperc and Rlen, which have been used in Algorithm 2. The search space of Rperc ranges
from 10% to 100%, with a step of 10%. The search space of Rlen is [6, 8, 10, 12, 14, 16]. We
carried out the tuning process based on AWF100.

5.3.1. Experimental Setting

We use 100 random-sampled examples for each website from AWF100 and divide
them into three chunks with 20/10/70 examples, respectively. N training instances were
collected from the first chunk to form the training datasets, and we generated 500 bionic
traffic traces for each website based on the training dataset. Then, we join the bionic traces
with original training samples to train the attack model. We train the model for 50 epochs
and use the checkpoint to save the best performing one on the second chunk (validation
dataset) and test on the third chunk (testing dataset). Note that, we apply these basic
experimental settings for the rest of the experiments.
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5.3.2. Results

Table 1 shows the effect of Rperc to bionic traffic when Rlen was fixed to 10, the accuracy
peaks at Rperc = 40%. It is reasonable since the traffic is disturbed for various reasons while
shuffling the order of SRPs can only simulate the disturbance to the priority group. If this
disturbance is applied to more noise points, it will destroy the basic traffic pattern. If it is
applied to fewer noise points, the disturbance will be limited, and the influence of Rlen will
become greater. As shown in Table 2, Rlen = 12 is the most suitable value to help locate
simulation priority group when Rperc was fixed to 40%.

Table 1. The effect of variation percentage on attack performance. Metrics: accuracy.

Rperc 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Var-CNN + BionicT 93.273 92.885 93.507 94.042 93.621 93.831 93.464 93.803 93.6 93.389

Table 2. The effect of seg_length on attack performance. Metrics: accuracy.

Rlen 6 8 10 12 14 16

Var-CNN + BionicT 92.831 93.468 93.434 94.251 93.728 93.838

As the results, we use Rperc = 40% and Rlen = 12 to generate bionic traffic traces for
the rest of the experiments.

5.4. Closed-World Evaluation

We investigate the effectiveness of the proposed bionic traffic generation method in
the closed-world setting. The experiments are carried out based on datasets AWF100 and
Wang100, which have different data distributions.

5.4.1. Experimental Setting

We use 100 random-sampled examples for each website from AWF100 and divide them
into three chunks with 20/10/70 examples, respectively. Since Wang100 only has 90 in-
stances per website, the dataset could be split into three chunks with 20/10/60 instances
each. N training instances were collected from the first chunk to form the n-shot training
datasets. The second and third chunks serve as validation and testing datasets, respectively.
We generated 1000 bionic traffic traces for each website.

5.4.2. Results

Table 3 shows the performance of WF attacks under n-shot settings. Traditional WF
attacks [4,22] based on manually designed features performed better than deep learning-
based attacks DF [29] and Var-CNN [10], which severely reveal the data hunger problem.
With data augmentation methods applied to traces, HDA [14] can somewhat alleviate this
problem. In contrast, our bionic traces show a significant advantage with 92.5% accuracy
compared to 74.7% of HDA in the 10-shot setting. Moreover, our method performs better
than TF [11] in both 15/20-shot settings with more than 95% accuracy. Since TF uses the
AWF775 [5,11] for pre-training, the data distribution shift occurs when testing on Wang100.
As shown in Table 4, our advantage over TF expanded to the 10-shot setting in this case.
Note that TF performs best in the five-shot setting because it learns extra knowledge from
pre-training data. These two datasets were collected in different network environments
with different browser versions, reflecting the feasibility and generality of the proposed
SRP and bionic traces. By a fair comparison, the proposed SRP-based cumulative feature
can enhance the performance of the attack further. The advantage is mainly shown when
there are few origin samples, especially in the five-shot setting. This phenomenon can be
reasonable since the manually designed features can help the model learn knowledge of
traces lacking due to not having enough samples.
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Table 3. Results of closed-world WF attack on AWF100. Metrics: accuracy.

Method 5-Shot 10-Shot 15-Shot 20-Shot

CUMUL [22] 72.2 ± 1.7 79.7 ± 1.4 83.3 ± 2.0 85.9 ± 0.6
k-FP [4] 79.3 ± 1.0 83.9 ± 1.0 85.9 ± 0.6 87.5 ± 0.8

DF [24] 3.2 ± 0.6 66.4 ± 5.3 89.3 ± 1.3 90.3 ± 2.4
TF [11] 92.2 ± 0.6 93.9 ± 0.2 94.4 ± 0.3 94.5 ± 0.2

Var-CNN [10] 24.6 ± 3.0 61.9 ± 4.3 79.3 ± 2.6 87.9 ± 0.7
Var-CNN + HDA [14] 59.7 ±1.5 74.7 ± 2.6 86.4 ± 1.3 90.7 ± 0.8

Var-CNN + BionicT 76.3 ± 2.4 92.5 ± 0.3 95.1 ± 0.1 95.7 ± 0.2
Var-CNN + BionicT * 78.2 ± 0.6 93.1 ± 0.2 95.0 ± 0.2 96.1 ± 0.2

* Using the proposed SRP-based cumulative feature.

Table 4. Results of closed-world WF attack on Wang100. Metrics: accuracy.

Method 5-Shot 10-Shot 15-Shot 20-Shot

DF [24] 1.2 ± 0.3 8.9 ± 3.4 58.6 ± 6.5 85.2 ± 2.3
TF [11] 84.5 ± 0.4 86.2 ± 0.4 86.6 ± 0.3 87.0 ± 0.3

Var-CNN [10] 37.4 ± 2.8 69.4 ± 1.8 79.9 ± 3.5 88.1 ± 0.2
Var-CNN + HDA [14] 76.9 ± 2.4 87.1 ± 0.6 89.8 ± 0.4 90.6 ± 0.4

Var-CNN + BionicT 78.8 ± 0.3 87.9 ± 0.7 90.2 ± 0.2 91.3 ± 0.1
Var-CNN + BionicT * 79.3 ± 0.3 88.1 ± 0.2 90.2 ± 0.3 91.0 ± 0.3

* Using the proposed SRP-based cumulative feature.

5.5. Open-World Evaluation

Next, we consider the more realistic open-world scenario to examine the practicality
of the bionic trace generation method.

5.5.1. Experimental Setting

We include the unmonitored samples from AWF400,000 with additional labels during
the model training phase. We randomly pick 10,000 websites (each with one instance)
from the dataset and split them into three disjoint chunks with 2000/1000/7000 instances,
respectively. By doing this, we simulate the practical situation where the attack model must
distinguish unmonitored websites that were never met in the training phase. To construct a
balanced training dataset, we sample the same number of unmonitored samples from the
first block as the monitored instances in the n-shot setting. We generate 1000 bionic traces
for each monitored website.

5.5.2. Results

Figure 6 shows the results of WF attacks in the open-world scenario. Attackers may
use high confidence thresholds to reduce false positives, resulting in higher precision but
lower recall. It is also possible for the attacker to sacrifice precision to capture the user’s
access to the monitored websites as much as possible. Therefore, we use the F1-score
to balance these two metrics. Like the closed-world results, our bionic traffic is more
effective than HDA. It significantly improves the detection ability of the Var-CNN model.
To a certain extent, our method is more practical than TF. For example, its performance is
more stable as the threshold changes in the 10/15/20-shot settings. Moreover, the model
trained with the SRP-based cumulative feature performs the best when the threshold grows.
This phenomenon indicates that our bionic traces and the SRP-based cumulative feature
give more detailed information about monitored websites. It can help the model better
understand the distinction between different websites.
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Figure 6. The performance of WF attacks in the open-world scenario.

5.6. Evaluation on Concept Drift

In this section, we compare the performance of attacks in dealing with concept drift.
We carried out experiments in both closed-world and open-world scenarios with 20 in-
stances available for each monitored website. We mimic a scenario where the attacker only
trains models on the initial dataset and tests on datasets collected after a period of time. We
set the confidence threshold to 50% to report the open-world scenario performance.

5.6.1. Experimental Setting

For the closed-world scenario, we use 100 random-sampled examples for each website
from AWF100 and divide them into three chunks with 20/10/70 examples, respectively. We
generated 1000 bionic traffic traces for each website base on the first chunk. We train the
model by following the same way used in Section 5.4. Then, we test the performance of
attacks on each AWFtime subset.

For the open-world scenario, we introduce the unmonitored samples from AWF400,000.
We randomly pick 10,000 websites (each with one instance) from the dataset and split them
into three disjoint chunks with 2000/1000/7000 instances, respectively. We organize the
balance training dataset and train the model by following the same way used in Section 5.5.
We join the AWFtime subset with unmonitored samples from AWF400,000 to form the test
dataset at every point in time.

5.6.2. Results

The closed-world results are shown in Table 5, all attacks suffer the detrimental effect
of concept drift. In a period of 56 days after training, the accuracy of DF dropped by nearly
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25%, and the accuracy of Var-CNN dropped by nearly 22%. Our bionic trace can strongly
weaken the influence of concept drift with the accuracy dropped by 18%. At every point in
time, our method shows an advantage over HDA. The performance of TF is impressive to
stay at high accuracy. However, the attack that applies our bionic traces and the SRP-based
cumulative feature performs the best.

Table 5. Results of closed-world concept drift WF attack on awf100. Metrics: accuracy.

Method 0-Day 3-Days 10-Days 28-Days 42-Days 56-Days

DF [24] 91.5 91.5 87.1 78.6 72.2 66.4
TF [11] 95.5 95.5 92.8 87.3 82.1 78.7

Var-CNN [10] 87.2 87.2 84.2 76.4 70.3 65.4
Var-CNN + HDA [14] 89.6 89.9 88.2 79.8 72.9 70.2

Var-CNN + BionicT 95.7 95.7 94.5 88.7 81.8 77.2
Var-CNN + BionicT * 96.3 96.5 94.7 88.2 83.1 78.9

* Using the proposed SRP-based cumulative feature.

Figure 7 illustrates the performance of attacks in the open-world scenario. Our method
leads the deep learning model to learn the deep abstract features of traffic traces, even
though concept drift affects the data distribution of target datasets. Furthermore, as illus-
trated in Figure 8a, the proposed SRP-based cumulative features show a greater advantage
at a time gap of 56 days. Figure 8b shows the enhancement of our method to the Var-CNN
model. As the time gap grows, the enhancement of the F1-score increases from 12% to 15%,
which proves that our method can enhance the model’s ability to combat concept drift.

Figure 7. The performance of WF attacks at each point in time in the open-world scenario.
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(a)

(b)

Figure 8. The performance of WF attacks under concept drift in the open-world scenario. (a) shows
WF attacks’ performance over a period of 56 days. (b) shows the enhancement of our method to
Var-CNN.

5.7. Closed-World Evaluation on the Defended Dataset

We further investigate whether bionic traces are effective for website traffic defended
by WTF-PAD [7], which is the main candidate to be deployed in Tor.

5.7.1. Experimental Setting

We randomly sample 100 instances for each website from the DF95,WTF−PAD. Then,
we form the n-shot training dataset by following the same procedure used in Section 5.4.
We generate 1000 bionic traces for each website.

5.7.2. Results

Table 6 shows the performance of WF attacks against WTF-PAD defense. The accuracy
of all attacks significantly dropped to nearly 60% in the 20-shot setting. DF also behaves less
than ideally even though it is announced to be effective against WTF-PAD. This observation
suggests that the data hunger is more severe when WF defenses are applied. On the other
hand, our bionic traces can help the Var-CNN model increase its capabilities to a certain
extent. However, it is not as effective as it would be on undefended traces. The SRP-
based cumulative feature even has a negative effect. It could be inferred that WTF-PAD
sent dummy packets by both ends of the communication, which results in dummy SRP
insertion and confusing traffic patterns. Therefore, we believe that the proposed bionic
generation method needs to be tuned with some other tricks, e.g., insertion or deletion at
SRP granularity.
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Table 6. Results of closed-world WF attack on DF95,wt f−pad. Metrics: accuracy.

Method 5-Shot 10-Shot 15-Shot 20-Shot

DF [24] 1.1 ± 0.1 8.6 ± 1.5 28.0 ± 6.8 42.5 ± 4.1
TF [11] 54.1 ± 0.7 57.8 ± 0.6 60.2 ± 0.4 61.2 ± 0.4

Var-CNN [10] 6.4 ± 0.4 7.8 ± 0.4 12.4 ± 0.9 12.9 ± 0.9
Var-CNN + HDA [14] 25.3 ± 2.2 46.9 ± 1.9 48.7 ± 1.4 63.2 ± 1.8

Var-CNN + BionicT 27.3 ± 1.1 44.2 ± 1.0 53.1 ± 0.5 59.9 ± 1.0
Var-CNN + BionicT * 20.4 ± 0.9 39.9 ± 1.1 51.9 ± 0.5 56.3 ± 0.4

* Using the proposed SRP-based cumulative feature.

6. Conclusions and Future Work

In this study, we investigated the composition mechanism of website fingerprinting
from a microscopic level by proposing the concept of the send-and-receive pair (SRP).
We demonstrated that SRP is statistically significant and can be used to describe website
traffic trace. Based on this finding, we further proposed the bionic trace generation method.
Expensive experiments show that bionic traces successfully simulated the website traffic
and relieved the data hunger problem. The proposed SRP-based cumulative feature can
help classify under the concept drift circumstances. Both closed-world and open-world
results demonstrate that our method is competitive with TF while reducing the burden of
data collection. The promising results verify that the concept of SRP is valuable.

We recognize some limitations in our study. For example, our bionic trace generation
does not work well when WF defenses are applied. The bionic traces generation method
we proposed is random to some extent, which may cause it useless for defended traffic.
To tackle this problem, we need to focus on the property of each defense and specifically
design our method. Therefore, more qualitative and quantitative studies are worthwhile
to explore its potential further. Moreover, we believe that the intra-relationship between
SRPs is an essential factor in composing fingerprints. We will continue researching in this
direction by referring to the successful experience of learning the contextual connection of
text in the natural language processing field.
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