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Abstract: This paper proposes novel unbiased minimum-variance receding-horizon fixed-lag
(UMVRHF) smoothers in batch and recursive forms for linear discrete time-varying state space
models in order to improve the computational efficiency and the estimation performance of receding-
horizon fixed-lag (RHF) smoothers. First, an UMVRHF smoother in batch form is proposed by
combining independent receding-horizon local estimators for two separated sub-horizons. The local
estimates and their error covariance matrices are obtained based on an optimal receding horizon filter
and the smoother in terms of the unbiased minimum variance; they are then optimally combined
using Millman’s theorem. Next, the recursive form of the proposed UMVRHF smoother is derived
to improve its computational efficiency and extendibility. Additionally, we introduce a method for
extending the proposed recursive smoothing algorithm to a posteriori state estimations and propose
the Rauch–Tung–Striebel receding-horizon fixed-lag smoother in recursive form. Furthermore, a
computational complexity reduction technique that periodically switches the two proposed recursive
smoothing algorithms is proposed. The performance and effectiveness of the proposed smoothers are
demonstrated by comparing their estimation results with those of previous algorithms for Kalman
and receding-horizon fixed-lag smoothers via numerical experiments.

Keywords: fixed-lag smoothing; receding-horizon estimation; minimum variance; unbiased estimation;
Millman’s theorem; Rauch–Tung–Striebel smoothing

1. Introduction

Fixed-lag smoothers have been widely investigated because they provide optimal esti-
mates, unlike filters and predictors [1–4]. In practice, smoothers are often used to improve
the performance of filters, provided delays can be tolerated. In smoothing problems, the
objective is to estimate past or delayed states using past measurements up to the current
time. Three types of smoothers exist: fixed-point, fixed-lag, and fixed-interval smoothers.
The fixed-lag smoother is the most useful type because it offers more accurate and general
solutions than filters. Thus, smoothers have been considered as a suitable choice in many
applications where a short time delay is acceptable, such as denoising ECG signals [5],
image processing [6], target tracking [7–9], system-on-chip testing [10], structural dynamics
estimation [11,12], and vibration analysis [13].

The structures of fixed-lag smoothers can be categorized as infinite impulse response
(IIR) and finite impulse response (FIR) structures, based on the duration of the impulse
responses. Owing to the IIR structure, the fixed-lag Kalman (FK) smoother has been widely
used considering its optimality [1,4,14,15]. However, certain potential problems may arise
due to this IIR structure. Because the FK smoother is designed under the assumption of
an accurate system model, optimality cannot be guaranteed when there exists a model
mismatch. Moreover, because it uses all the information from initiation to the current
time, undesirable errors can accumulate in the state due to modeling and numerical errors,
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such that the estimates might oscillate or diverge. To overcome the shortcomings of the
IIR structure, receding-horizon fixed-lag (RHF) smoothers have been proposed for linear
systems [5,16–21] and non-linear systems [22] as alternatives to FK smoothers. Because RHF
smoothers estimate the state by using the most recent finite measurements, they exhibit
good properties such as bounded-input bounded-output (BIBO) stability, fast tracking
ability, and robustness against modeling uncertainties and numerical errors.

However, previous RHF smoothers require vast amounts of computational power and
memory, thereby preventing efficient implementations in real-time applications. Moreover,
their complicated batch-form derivation is difficult to understand, and thus prevents further
developments. Because these disadvantages are mainly caused by the high-dimensional
matrix multiplications involved in batch calculations, one possible approach to solving this
problem is to consider the RHF smoother. In [17], a guideline for choosing the appropriate
horizon length of an RHF smoother is introduced for linear time-invariant systems; however,
the structure of the proposed smoothing algorithm has a complicated batch form, making
it difficult for application to large dimensional systems. In fact, the adjustment of horizon
length is not a fundamental solution to the problem of reducing the computational cost
because the horizon length is an important design parameter of RHF smoothers that can
significantly affect the estimation performance.

An alternative approach to reducing computational complexity and memory size
involves separating the estimation horizon by changing the high-dimensional matrix
multiplication into the sum of reduced-dimensional matrix multiplications. If the estimates
are obtained from two separated and independent estimators, the computational cost
can be reduced by parallel computing. Because RHF smoothers estimate the state at a
fixed lag time, finite measurements on the overall horizon can be partitioned into two
independent subsets of measurements based on the estimation time. For the separated
two subsets of measurements, different receding horizon estimators can be implemented
independently, and their estimates can be combined in an optimal manner using Millman’s
theorem [1]. A recursive RHF smoothing algorithm can provide a method for overcoming
the disadvantages of computational complexity and memory size.

To the best of the authors’ knowledge, there are few results on the recursive RHF
smoothing problem. In [19], an unbiased recursive RHF smoother based on receding
horizon filtering was proposed for discrete time-invariant systems. Because the proposed
unbiased RHF smoother is designed to ignore the statistical information of processes
and measurement noise, it affords a more robust estimate than the FK smoother when
the horizon length is selected appropriately. However, the proposed recursive unbiased
RHF smoother requires a heavy computational load to find the optimal horizon length,
in addition to obtaining the initial conditions and smoothed estimates from the filtering
results via batch calculations. Moreover, because the inverse of the state transition matrix
is required to establish the estimator gain matrix, it cannot be applied to systems with a
singular state transition matrix, making the estimation problem unfeasible.

A different type of recursive RHF smoother, finite-memory structure (FMS) smoother,
was proposed in [21]. In the derivation of the RHF smoother, smoothed estimates are ob-
tained from a one-step-ahead estimate, which affords a fast estimation ability. Although the
structure of recursive estimation seems appropriate, the performance might be degraded
by the system and measurement noises because the noise information is not considered
in the derivation. Owing to its IIR iteration structure, the estimation stability cannot be
guaranteed, resulting in the divergence of the estimation result due to accumulated errors
such as estimation and numerical errors in the processing. Furthermore, a batch calculation
is required during the estimate update and it also makes the matrix assumption of an invert-
ible state transition matrix. Additionally, although the recursive RHF smoothing algorithm
provides computational efficiency for time-varying systems, the previous recursive RHF
smoothing algorithms were solely proposed for time-invariant systems.
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Therefore, in this study, we propose a UMVRHF smoother in batch and recursive
forms involving separated sub-horizons for time-varying systems. The proposed UMVRHF
smoother is designed by combining two independent receding-horizon local estimators
for separated sub-horizons. The local estimates are obtained based on optimal receding
horizon filtering and smoothing in terms of the unbiased minimum variance; they are
then optimally combined using Millman’s theorem to obtain an overall unbiased optimal
estimate. We also propose a recursive algorithm for the proposed UMVRHF smoother
based on the one-step predicted finite horizon Kalman filter. The proposed UMVRHF
smoothers provide unbiased optimal estimates of the state on the finite estimation horizon.
In addition, the proposed smoothers do not require any assumptions about the a priori
information of the horizon initial conditions and inverse of the state transition matrix.
Moreover, because the recursive form of the proposed UMVRHF smoother is derived using
the Kalman filtering algorithm, it is easy to understand and extend. Thus, as extensions
of the proposed recursive UMVRHF (RUMVRHF) smoother, we introduce a method for
a posteriori state estimation. We also propose an additional recursive RHF smoother
based on the Rauch–Tung–Striebel smoothing algorithm and computational complexity
reduction strategy.

The main contributions of this study are as follows:

• Novel optimal unbiased RHF smoothers are proposed in batch and recursive forms
for linear discrete time-varying state-space models.

• The proposed RHF smoothers are obtained by optimally combining two local optimal
receding horizon filters for the separated sub-horizons.

• The Rauch–Tung–Striebel-type RHF smoother and reduced computational complexity
RHF smoother are proposed to improve the computational efficiency.

• The proposed RHF smoothers exhibit good properties, such as computational effi-
ciency, optimality, unbiasedness, robustness against temporary modeling uncertainty,
bounded-input and bounded-output stability, and fast convergence speed.

• The proposed RHF smoothers do not require any a priori information of the initial
state or any assumption of the invertible state transition matrix.

• Through the numerical experiments, it is shown that the proposed RHF smoothers
have advantages over the existing RHF smoothers and fixed-lag Kalman smoother
and are applicable for practical application.

The remainder of this paper is organized as follows. In Sections 2 and 3, UMVRHF
smoothers in the batch and recursive forms are proposed, based on two independent
optimal estimators for separated sub-horizons and Millman’s theorem. Thereafter, the ex-
tension method to estimate a posteriori states is introduced. The Rauch–Tung–Striebel RHF
smoother and the computational complexity reduction method based on the smoothing
algorithm are presented in Section 4. In Section 5, the performance and effectiveness of
the proposed RHF smoothers are demonstrated via numerical experiments. Finally, the
conclusions of this study are presented in Section 6.

2. Unbiased Minimum Variance Receding-Horizon Fixed-Lag Smoother in Batch Form

Consider the discrete time-varying state-space model as

xk+1 = Akxk + Gkwk, (1)

yk = Ckxk + vk, (2)

where xk and yk are the state vector and output vector, respectively. The process noise
vector wk and output noise vector vk are assumed as zero-mean white Gaussian noises,
where the covariance matrices are denoted as Qk and Rk, respectively. It is assumed that
the process and output noises are mutually uncorrelated with each other and are also
uncorrelated with the initial state xk0 . The pair (Ak, Ck) is also assumed to be observable.
For the system model (1) and (2), the conventional RHF smoother for estimating the h
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lag state xk−h is expressed as a linear function of the finite measurements on the overall
horizon [k− N k− 1] as follows [20]:

x̂k−h|k−1 =
k−1

∑
i=k−N

Hiyi = Hk−hYk−N,k1, (3)

where x̂k−h|k−1 is the overall estimate, N is receding horizon length, Hk−h and Hi are the
gain matrix and its i-th row vector of RHF smoother, and Yk−N,k−1 is the finite number of
measurements expressed as follows:

Yk−i,k−j =
[

yT
k−i yT

ki+1 · · · yT
k−j−1 yT

k−j

]T
, (4)

respectively.
To reduce the computational complexity and memory size, the proposed UMVRHF

smoother in this study is designed to be a weighted linear combination of two optimal and
independent local RH estimators as

x̂k−h|k−1 = U1,k−h x̂1,k−h|k−1 + U2,k−h x̂2,k−h|k−1, (5)

where x̂1,k−h|k−1 and x̂2,k−h|k1 are defined as the local unbiased minimum variance estimates
on the sub-horizons [k− N k− h− 1] and [k− h k− 1], and U1,k−h and U2,k−h are constant
weighting matrices for each local estimate, respectively.

Because two local RH estimators are implemented independently for the two separated
subsets of measurements, their estimates can be combined in an optimal manner using
Millman’s theorem. By using Millman’s theorem, constant weighting matrices U1 and U2
can be determined from the following mean-squared criterion [23]:

min
U1,k−h ,U2,k−h

E
[
(xk−h − x̂k−h)(xk−h − x̂k−h)

T
]
, (6)

with unbiased constraints

U1,k−h + U2,k−h = I. (7)

From (7), the overall estimate (5) can be rewritten as

x̂k−h|k−1 = U1,k−h x̂1,k−h|k−1 + (I −U1,k−h)x̂2,k−h|k−1. (8)

Then, the overall state error covariance matrix Pk−h can be represented as

Pk−h = E
[
(xk−h − x̂k−h)(xk−h − x̂k−h)

T
]

= U1,k−h(P1,k−h + P2,k−h)UT
1,k−h + P2,k−h −U1,k−hP2,k−h − P2,k−hUT

1,k−h, (9)

where P1,k−h and P2,k−h are local error covariance matrices of x̂1,k−h|k−1 and x̂2,k−h|k−1,
respectively.

By differentiating Pk−h with respect to U1,k−h as

∂Pk−h
∂U1,k−h

= 2
{

U1,k−h(P1,k−h + P2,k−h)− P2,k−h
}
= 0, (10)

we obtain the solution of the optimal problem (6) as follows:
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U1,k−h = P2,k−h(P1,k−h + P2,k−h)
−1, (11)

U2,k−h = P1,k−h(P1,k−h + P2,k−h)
−1, (12)

where the inverse of (P1,k−h + P2,k−h) always exists, since P1,k−h and P2,k−h are positive
definite.

By substituting (11) into (9), we can find the overall error covariance matrix as follows:

Pk−h = P2,k−h(P1,k−h + P2,k−h)
−1(P1,k−h + P2,k−h)(P1,k−h + P2,k−h)

−1P2,k−h + P2,k−h

−P2,k−h(P1,k−h + P2,k−h)
−1P2,k−h − P2,k−h(P1,k−h + P2,k−h)

−1P2,k−h

=
(

P1,k−hP−1
2,k−h + I

)−1
(P1,k−h + P2,k−h)

(
P−1

2,k−hP1,k−h + I
)−1

+ P2,k−h

−2
(

P1,k−hP−1
2,k−h + I

)−1
P2,k−h (13)

= P2,k−h

(
P1,k−hP−1

2,k−h + I
)−1
− P2,k−h + 2

(
P−1

1,k−h + P−1
2,k−h

)−1

=
(

P−1
1,k−h + P−1

2,k−h

)−1
,

If we assume that unbiased minimum variance estimators for each sub-horizon are
expressed as linear functions of the finite measurements, that is

x̂1,k−h|k−1 = H1,k−hYk−N,k−h−1, (14)

x̂2,k−h|k−1 = H2,k−hYk−h,k−1, (15)

where H1,k−h and H2,k−h are the optimal gain matrices of each estimator, the UMVRHF
smoother can be expressed in batch form, as follows:

x̂k−h|k−1 = Hk−hYk−N,k−1

= U1,k−hH1,k−hYk−N,k−h−1 + U2,k−hH2,k−hYk−h,k1, (16)

=
[

U1,k−hH1,k−h U2,k−h H2,k−h
]
Yk−N,k−1. (17)

Because local estimates x̂1,k−h|k−1 and x̂2,k−h|k−1 are unbiased, i.e., E[x̂1,k−h|k−1] =
E[xk−h] and E[x̂2,k−h|k−1] = E[xk−h], the overall estimate x̂k−h|k−1 is also unbiased as follows:

E
[

x̂k−h|k−1

]
= E

[
P2,k−h(P1,k−h + P2,k−h)

−1 x̂1,k−h|k−1

]
+ E

[
P1,k−h(P1,k−h + P2,k−h)

−1

×x̂2,k−h|k−1

]
=

[
P2,k−h(P1,k−h + P2,k−h)

−1 + P1,k−h(P1,k−h + P2,k−h)
−1
]
E[xk−h]

= E[xk−h]. (18)

Now, the final objective is to obtain the optimal estimators in terms of unbiased
minimum variance for each sub-horizon.

2.1. Unbiased Minimum Variance Estimation on the Sub-Horizon [k− N k− h− 1]

In this section, we derive an unbiased minimum variance estimator to estimate the
state at time k− h using given finite measurements on the sub-horizon [k− N k− h− 1].

Before we derive the optimal estimator, we define the following matrices:

Ãi,j = Ak−j · · · Ak−i+1 Ak−i (j ≤ i) (19)
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C̃i,j
4
=



Ck−i
Ck−i+1 Ãi,i

Ck−i+2 Ãi,i−1
...

Ck−j−1 Ãi,j+2
Ck−j Ãi,j+1


, (20)

M̃i,j =
[

Ãi,j+1Gk−i Ãi−1,j+1Gk−i+1 · · · Ãj+1,j+1Gk−j−1 Gk−j
]
, (21)

G̃i,j
4
=



0 0 · · · 0 0
Ck−i+1Gk−i+1 0 · · · 0 0

Ck−i+2 Ãi−1,i−1Gk−i+1 Ck−i+2Gk−i+2 · · · 0 0
Ck−i+3 Ãi−1,i−2Gk−i+1 Ck−i+3 Ãi−2,i−2Gk−i+2 · · · 0 0

...
...

. . .
...

...
Ck−j−1 Ãi−1,j+2Gk−i+1 Ck−j−1 Ãi−2,j+2Gk−i+2 · · · 0 0

Ck−j Ãi−1,j+1Gk−i+1 Ck−j Ãi−2,j+1Gk−i+2 · · · Ck−jGk−j 0


, (22)

Q̃i,j = diag

 i︷ ︸︸ ︷
Qk−i, Qk−i+1, · · · , Qk−j

, (23)

R̃i,j = diag

 i︷ ︸︸ ︷
Rk−i, Rk−i+1, · · · , Rk−j

, (24)

Π̃i,j = G̃i,jQ̃i,jG̃T
i,j + R̃i,j, (25)

Wk−i,k−j =
[

wT
k−i wT

k−i+1 · · · wT
k−j−1 wT

k−j

]T
, (26)

Vk−i,k−j =
[

vT
k−i vT

k−i+1 · · · vT
k−j−1 vT

k−j

]T
. (27)

On the sub-horizon [k − N k − h − 1], an optimal estimator in terms of unbiased
minimum variance with batch form for the state at k − h can be expressed as a linear
function of the finite measurements, as follows:

x̂1,k−h|k−1 = H1,k−hYk−N,k−h−1. (28)

where the optimal gain matrix H1,k−h is determined by following lemma.

Lemma 1. On the horizon [k− N k− h− 1], for the system models (1) and (2) and the following
unbiased minimum variance estimation problem:

min
H1,k−h

E
[
eT

1,k−he1,k−h

]
, (29)

subject to

E
[

x̂1,k−h|k−1

]
= E[xk−h], (30)

where the local estimation error e1,k−h is defined as

e1,k−h = x̂1,k−h|k−1 − xk−h. (31)

The optimal gain matrix H1,k−h of the optimal estimator (28) is given by [24]
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H1,k−h =
[

ÃN,h+1 M̃N,h+1
][ C̃T

N,h+1R̃−1
N,h+1C̃N,h+1 C̃T

N,h+1R̃−1
N,h+1G̃N,h+1

G̃T
N,h+1R̃−1

N,h+1C̃N,h+1 G̃T
N,h+1R̃−1

N,h+1G̃N,h+1 + Q̃−1
N,h+1

]−1

(32)

×
[

C̃T
N,h+1

G̃T
N,h+1

]
R̃−1

N,h+1.

Proof of Lemma 1. For a proof of Lemma 1, we refer the reader to [24].

Because the optimal estimator (28) on the sub-horizon [k− N k− h− 1] is satisfied
the unbiased condition (30), we can determine the unbiased constraint as [24]

ÃN,h+1 = H1,|k−hC̃N,h+1. (33)

With the unbiased constraint and following relations [24]

xk−h = ÃN,h+1xk−N + M̃N,h+1Wk−N,k−h−1, (34)

Yk−N,k−h−1 = C̃N,h+1xk−N + G̃N,h+1Wk−N,k−h1 + Vk−N,k−h−1, (35)

the estimation error e1,k−h (31) can be expressed as follows:

e1,k−h = x̂1,k−h|k−1 − xk−h

= H1,k−hYk−N,k−h−1 − ÃN,h+1xk−N − M̃N,h+1Wk−N,k−h−1

=
(

H1,k−hC̃N,h+1 − ÃN,h+1
)
xk−N +

(
H1,k−hG̃N,h+1 − M̃N,h+1

)
Wk−N,k−h−1 (36)

+H1,k−hVk−N,k−h−1

=
(

H1,k−h − M̃N,h+1
)
Wk−N,k−h−1 + H1,k−hVk−N,k−h−1.

Thus, the local estimate x̂1,k−h|k−1 and its error covariance matrix P1,k−h on the sub-horizon
[k− N k− h− 1] can be obtained as follows:

x̂1,k−h|k−1 = H1,k−hYk−N,k−h−1

=
[

ÃN,h+1 M̃N,h+1
][ C̃T

N,h+1R̃−1
N,h+1C̃N,h+1 C̃T

N,h+1R̃−1
N,h+1G̃N,h+1

G̃T
N,h+1R̃−1

N,h+1C̃N,h+1 G̃T
N,h+1R̃−1

N,h+1G̃N,h+1 + Q̃−1
N,h+1

]−1

(37)

×
[

C̃T
N,h+1

G̃T
N,h+1

]
R̃−1

N,h+1Yk−N,k−h−1,

P1,k−h = E
[
e1,k−heT

1,k−h

]
= (H1,k−hG̃N,h+1 − M̃N,h+1)Q̃N,h+1(H1,k−hG̃N,h+1 − M̃N,h+1)

T + H1,k−hR̃N,h+1HT
1,k−h, (38)

respectively.

2.2. Unbiased Minimum Variance Estimation on Sub-Horizon [k− h k− 1]

In this section, the optimal estimator in terms of unbiased minimum variance is
derived to estimate the state at time k− h on the sub-horizon [k− h k1].

An unbiased minimum variance estimator to estimate the state at time k− h for the
finite measurements on the sub-horizon [k− h k− 1] can be expressed as follows:

x̂2,k−h|k−1 = H2,k−hYk−h,k−1. (39)

The finite number of measurements Yk−h,k−1 can be expressed in terms of the horizon
initial state xk−h as follows:

Yk−h,k−1 = C̃h,1xk−h + G̃h,1Wk−h,k−1 + Vk−h,k−1, (40)
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and the following constraint is required to satisfy the unbiased condition, i.e., E[xx−h] =

E
[

x̂2,k−h|k−1

]
[20]:

H2,k−hC̃h,1 = I. (41)

From (40) and (41), the local estimation error e2,k−h can be expressed as

e2,k−h = x̂2,k−h|k−1 − xk−h

= H2,k−hYk−h,k−1 − xk−h (42)

=
(

H2,k−hC̃h,1 − I
)
xk−h + H2,k−hG̃h,1Wk−h,k−1 + H2,k−hVk−h,k−1

= H2,k−hG̃h,1Wk−h,k−1 + H2,k−hVk−h,k−1.

Thereafter, the objective is to determine the optimal gain matrix H2,k−h subject to the
unbiased constraint (41), which can be obtained from the following theorem:

Theorem 1. On the horizon [k− h k− 1], for the following unbiased minimum variance estimation
problem,

min
H2,k−h

E
[
eT

2,k−he2,k−h

]
, (43)

subject to

E
[

x̂2,k−h|k−1

]
= E[xk−h], (44)

the optimal gain matrix H2,k−h of the optimal estimator (39) is given by

H2,k−h =
(

C̃T
h,1Π̃−1

h,1 C̃h,1

)−1
C̃T

h,1Π̃h,1. (45)

Proof of Theorem 1. For convenience, the gain matrix H2,k−h in (39) is partitioned as follows:

HT
2,k−h =

[
h1,k−h h2,k−h · · · hh,k−h

]
, (46)

where hT
i,k−h is the i-th row vector of the gain matrix H2,k−h.

By denting the iT
i as the i-th row vectors of identity matrix I, then the i-th unbiased

constraint of (41) can be expressed as follows:

C̃T
h,1hi,k−h = ii, (47)

for 1 ≤ i ≤ h. Moreover, by denoting e2(i),k−h as the i-th row vectors of the estimation error
e2,k−h, calculating e2

2(i),k−h and taking expectation, we obtain

E
[
e2

2(i),k−h

]
= (hT

i,k−hG̃h,1)Qh(hT
i,k−hG̃h,1)

T + hT
i,k−hR̃h,1hi,k−h. (48)

Note that the i-th component of the estimation error only depends on hi,k−h. Hence,
the following performance criterion is established:

E
[
e2

2(i),k−h

]
= hT

i,k−h

(
G̃h,1Q̃h,1G̃T

h,1 + R̃h,1

)
hi,k−h + λT

i,k−h

(
C̃T

h,1hi,k−h − ii
)

(49)

= hT
i,k−hΠ̃h,1hi,k−h + λT

i,k−h

(
C̃T

h,1hi,k−h − ii
)

,

where λi,k−h is i-th row vectors of the Lagrange multiplier, which is associated with the i-th
unbiased constraint.
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To minimize (49) with respect to hi and λi, the following necessary conditions should
be satisfied:

∂E
[
e2

2(i),k−h

]
∂hi,k−h

= 0,
∂E
[
e2

2(i),k−h

]
∂λi,k−h

= 0. (50)

Then, we have

hi,k−h = −1
2

Π̃−1
h,1 C̃h,1λi,k−h. (51)

Substituting (51) into (47) yields

λi,k−h = −2
(

C̃T
h,1Π̃−1

h,1 C̃h,1

)−1
ii, (52)

hT
i,k−h can be obtained as

hT
i,k−h = iT

i

(
C̃T

h,1Π̃−1
h,1 C̃h,1

)−1
C̃T

h,1Π̃−1
h,1 . (53)

By reconstructing hi,k−h according to (46), the optimal gain matrix H2,k−h can be
obtained as follows:

H2,k−h =
(

C̃T
h,1Π̃−1

h,1 C̃h,1

)−1
C̃T

h,1Π̃−1
h,1 . (54)

This completes the proof.

Thus, on the sub-horizon [k − h k − 1], the local estimate x̂2,k−h|k−1 and its error
covariance matrix P2,k−h can be obtained as follows:

x̂2,k−h|k−1 = H2,k−hYk−h,k−1

=
(

C̃T
h,1Π̃−1

h,1 C̃h,1

)−1
C̃T

h,1Π̃h,1Yk−h,k−1, (55)

P2,k−h = E
[
e2,k−heT

2,k−h

]
= H2,k−hG̃h,1Q̃h,1G̃T

h,1HT
2,k−h + H2,k−hR̃h,1HT

2,k−h

=
(

C̃T
h,1Π̃−1

h,1 C̃h,1

)−1
. (56)

3. Unbiased Minimum Variance Receding-Horizon Fixed-Lag Smoother in
Recursive Form

In this section, we derive the recursive form of optimal estimators for each sub-horizon.
For the optimal estimator on the sub-horizon [k − N k − h − 1], we introduce the

one-step predicted Kalman filter and its batch form. The dynamic equation of the one-step
predicted Kalman filter in recursive form is expressed as [1]

x̂1,k−N+i+1|k−1 = Ak−N+i x̂1,k−N+i|k−1 − Ak−N+i P̄1,k−N+iCT
k−N+i

(
Ck−N+i P̄1,k−N+i

×CT
k−N+i + Rk−N+i

)−1(
yk−N+i − Ck−N+i x̂1,k−N+i|k−1

)
, (57)

P̄1,k−N+i+1 = Ak−N+i P̄1,k−N+i AT
k−N+i − Ak−N+i P̄1,k−N+iCT

k−N+i

(
Ck−N+i

×P̄1,k−N+iCT
k−N+i + Rk−N+i

)−1
Ck−N+i P̄1,k−N+i AT

k−N+i (58)

+Gk−N+iQk−N+iGT
k−N+i,
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for 0 ≤ i ≤ N− h− 1, where x̂1,k−N+i|k−1 and P̄1,k−N+i denote the i-th estimate and its error
covariance matrix on the sub-horizon [k− N k− h− 1], respectively. The batch form of the
one-step predicted Kalman filter (57) and (58) for the finite subhorizon [k− N k− h− 1]
can be represented as follows:

Lemma 2. [24] For the system model (1) and (2), the finite horizon one-step predicted Kalman
filter in batch form can be represented on the horizon [k− N k− h− 1] as follows:

x̂1,k−h|k−1

=
[

ÃN,h+1 M̃N,h+1
][ C̃T

N,h+1R̃−1
N,h+1C̃N,h+1 + P−1

k−N C̃T
N,h+1R̃−1

N,h+1G̃N,h+1

G̃T
N,h+1R̃−1

N,h+1C̃N,h+1 G̃T
N,h+1R̃−1

N,h+1G̃N,h+1 + Q̃−1
N,h+1

]−1

(59)

×
([

P−1
k−N
0

]
xk−N +

[
C̃T

N,h+1
G̃T

N,h+1

]
R̃−1

N,h+1Yk−N,k−h+1

)
,

where xk−N and Pk−N are the horizon initial state and its error covariance matrix, respectively, and
the solution of the Riccati equation for the Kalman filter is given as follows:

P1,k−h = P̄1,k−h

=
[

ÃN,h+1 M̃N,h+1
][ C̃T

N,h+1R̃−1
N,h+1C̃N,h+1 + P−1

k−N C̃T
N,h+1R̃−1

N,h+1G̃N,h+1

G̃T
N,h+1R̃−1

N,h+1C̃N,h+1 G̃T
N,h+1R̃−1

N,h+1G̃N,h+1 + Q̃−1
N,h+1

]−1

(60)

×
[

ÃN,h+1 M̃N,h+1
]T .

With the following initial conditions,

xk−N = x̂1,k−N|k−1 = (C̃T
N,h+1Π̃−1

N,h+1C̃N,h+1)
−1C̃T

N,h+1Π̃−1
N,h+1Yk−N,k−h−1, (61)

Pk−N = P̄1,k−N = (C̃T
N,h+1Π̃−1

N,h+1C̃N,h+1)
−1, (62)

the finite horizon one-step predicted Kalman filter (59) is equivalent to the optimal estimator (28)
involving the optimal gain matrix (32).

Proof of Lemma 2. We refer the reader to [24] for the proof of Lemma 2.

The recursive form of the optimal estimator for the sub-horizon [k− N k− h− 1] can
be obtained if the initial conditions (61) and (62) are calculated recursively. Moreover, the
local estimate (55) and its error covariance matrix (56) for the sub-horizon [k− h k− 1] have
the same equation structure because they are also the initial conditions of the sub-horizon.
The following theorem proves that the initial estimate and its error covariance matrix on
the finite horizon can be obtained recursively.

Theorem 2. On the horizon [k− n k−m− 1], the optimal estimate of the horizon initial state
x̂k−n|k−m−1 and its error covariance Pk−n in batch form are given as follows:

x̂k−n|k−m−1 = (C̃T
n,m+1Π̃−1

n,m+1C̃n,m+1)
−1C̃T

n,m+1Π̃−1
n,m+1Yk−n,k−m−1, (63)

Pk−n = P̄k−n = (C̃T
n,m+1Π̃−1

n,m+1C̃n,m+1)
−1, (64)
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where the initial conditions are obtained from

x̂k−n|k−m−1 = S−1
k−nŵk−n|k−m−1, (65)

P̄k−n = S−1
k−n, (66)

where the priori information matrix Sk−n and the priori information estimate ŵk−n|k−m−1 are
calculated from the following recursive equations:

Sk−m−l = CT
k−m−l R

−1
k−m−lCk−m−l + S+

k−m−l , (67)

S+
k−m−l−1 = AT

k−m−l−1Sk−m−l Ak−m−l−1 − AT
k−m−l−1Sk−m−lGk−ml

(
Q−1

k−m−l

+GT
k−m−lSk−m−lGk−m−l

)−1
GT

k−m−lSk−m−l Ak−m−l−1, (68)

and

ŵk−m−l|k−m−1 = CT
k−m−l R

−1
k−m−lyk−m−l + ŵ+

k−m−l|k−m−1, (69)

ŵ+
k−m−l−1|k−m−1 = AT

k−m−l−1ŵk−m−l|k−m−1 − AT
k−m−l−1Sk−m−lGk−m−l

(
Q−1

k−m−l

+GT
k−m−lSk−m−lGk−m−l

)−1
GT

k−m−lŵk−m−l|k−m−1. (70)

respectively, for 0 ≤ l ≤ n−m− 1, with the initial conditions S+
k−m−1 = 0 and ŵ+

k−m−1|k−m−1 =

0, where S+
k−n and ŵ+

k−n|k−m−1 are the posteriori information matrix and the posteriori information
estimate, respectively.

Proof of Theorem 2. With the definition of C̄i,j, Ḡi,j, Π̄i,j, Sk−m−l , and ŵk−m−l|k−m−1 as

C̄i,j =


Ck−i+1 Ãi,i

Ck−i+1 Ãi,i−1
...

Ck−j Ãi,j+1

 =

[
Ck−i+1
C̄i−1,j

]
Ak−i, (71)

Ḡi,j =


Ck−i+1Gk−i+1 0 · · · 0

Ck−i+2 Ãi−1,i−1Gk−i+1 Ck−i+2Gk−i+2 · · · 0
...

...
. . .

...
Ck−j Ãi−1,j+1Gk−i+1 Ck−j Ãi−2,j+1Gk−i+2 · · · Ck−jGk−j


=

[
Ck−i+1Gk−i+1 0

C̄i−1,jGk−i+1 Ḡi−1,j

]
, (72)

Π̄i,j = Ḡi,jQ̃i−1,jḠT
i,j + R̃i−1,j, (73)

Sk−m−l = C̄T
m+l,m+1Π̄−1

m+l,m+1C̄m+l,m+1, (74)

ŵk−m−l|k−m−1 = C̄T
m+l,m+1Π̄−1

m+l,m+1Yk−m−l+1,k−m−1, (75)

for 2 ≤ l ≤ n−m, respectively, C̃n,m+1 and Π̃n,m+1 can be rewritten as follows:



Appl. Sci. 2022, 12, 7832 12 of 29

C̃n,m+1 =

[
Ck−n

C̄n,m+1

]
, (76)

Π̃n,m+1 = G̃n,m+1Q̃n,m+1G̃T
n,m+1 + R̃n,m+1

=

[
0 0

Ḡn,m+1 0

]
Q̃n,m+1

[
0 0

Ḡn,m+1 0

]T

+ R̃n,m+1

=

[
Rk−n 0

0 Π̄n,m+1

]
, (77)

respectively.
From (76) and (77), the estimated horizon initial error covariance Pk−n (64) and state

x̂k−n|k−m−1 (63) can be represented as follows:

Pk−n = (CT
k−nR−1

k−nCk−n + S+
k−n)

−1 = S−1
k−n, (78)

x̂k−n|k−m−1 = Pk−n

(
CT

k−nR−1
k−nyk−n + C̄T

n,m+1Π̄−1
n,m+1Yk−n+1,k−m−1

)
,

= (CT
k−nR−1

k−nCk−n + S+
k−n)

−1
(

CT
k−nR−1

k−nyk−n + ŵ+
k−n|k−m−1

)
,

= S−1
k−nŵk−n|k−m−1, (79)

where Sk−n and ŵk−n|k−m−1 are denoted as

Sk−n = CT
k−nR−1

k−nCk−n + S+
k−n, (80)

ŵk−n|k−m−1 = CT
k−nR−1

k−nyk−n + ŵ+
k−n|k−m−1, (81)

respectively.
To obtain the recursive form of Pk−n and x̂k−n|k−m−1, we must know the recursive

calculations of Sk−n, S+
k−n, ŵk−n|k−m−1, and ŵ+

k−n|k−m−1.
Before deriving the recursive form, we introduce the useful equality as follows:

Π̄−1
i+1,j =

(
Ḡi+1,jQ̃i,jḠT

i+1,j + R̃i,j

)−1

=

[Ck−iGk−i 0

C̄i,jGk−i Ḡi,j

]
Q̃i,j

[
Ck−iGk−i 0

C̄i,jGk−i Ḡi,j

]T

+ R̃i,j

−1

=

[Ck−iGk−i

C̄i,jGk−i

]
Q̃i,j

[
Ck−iGk−i

C̄i,jGk−i

]T

+

[
0

Ḡi,j

]
Q̃i,j

[
0

Ḡi,j

]T

+ R̃i,j

−1

=

[ Ck−i

C̄i,j

]
Gk−iQk−iGT

k−i

[
Cki

C̄i,j

]T

+

[
Rk−i 0

0 Π̄i,j

]−1

(82)

=

[
Rk−i 0

0 Π̄i,j

]−1

−
[

Rk−i 0

0 Π̄i,j

]−1[ Ck−i

C̄i,j

]
Gk−i

(
Q−1

k−i + GT
k−i

×
[

Ck−i

C̄i,j

]T[ Rk−i 0

0 Π̄i,j

]−1[ Ck−i

C̄i,j

]
Gk−i

)−1

GT
k−i

[
Ck−i

C̄i,j

]T

×
[

Rk−i 0

0 Π̄i,j

]−1

.
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Using (82), the recursive equations of S+
· and ŵ+

·|· can be obtained as follows:

S+
k−m−l−1 = C̄T

m+l+1,m+1Π̄−1
m+l+1,m+1C̄m+l+1,m+1

= AT
k−m−l−1

[
Ck−m−l

C̄m+l,m+1

]T(
Ḡm+l+1,m+1Q̃m+l,m+1ḠT

m+l+1,m+1

+R̃m+l,m+1

)−1
[

Ck−m−l
C̄m+l,m+1

]
Ak−m−l−1

= AT
k−m−l−1

(
CT

k−m−l R
−1
k−m−lCk−m−l + Sk−m−l

+
)

Ak−m−l−1

−AT
k−m−l−1

(
CT

k−m−l R
−1
k−m−lCk−m−l + Sk−m−l

+
)

Gk−m−l

{
Q−1

k−m−l (83)

+GT
k−m−l

(
CT

k−m−l R
−1
k−m−lCk−m−l + Sk−m−l

+
)

Gk−m−l

}−1
GT

k−m−l

×
(

CT
k−m−l R

−1
k−m−lCk−m−l + S+

k−m−l

)
Ak−m−l−1,

= AT
k−m−l−1Sk−m−l Ak−m−l−1 − AT

k−m−l−1Sk−m−lGk−m−l

(
Q−1

k−m−l

+GT
k−m−lSk−m−lGk−m−l

)−1
GT

k−m−lSk−m−l Ak−m−l−1,

and

ŵ+
k−m−l−1|k−m−1 = C̄T

m+l+1,m+1Π̄−1
m+l+1,m+1Yk−m−l,k−m−1,

= AT
k−m−l−1

[
Ck−m−l

C̄m+l,m+1

]T(
Ḡm+l+1,m+1Q̃m+l,m+1ḠT

m+l+1,m+1

+R̃m+l,m+1

)−1
[

yk−m−l
Yk−m−l+1,k−m−1

]
= AT

k−m−l−1CT
k−m−l R

−1
k−m−lyk−m−l + AT

k−m−l−1ŵ+
k−m−l|k−m−1

−AT
k−m−l−1

(
CT

k−m−l R
−1
k−m−lCk−m−l + Sk−m−l

+
)

Gk−m−l

{
Q−1

k−m−l (84)

+GT
k−m−l

(
CT

k−m−l R
−1
k−m−lCk−m−l + Sk−m−l

+
)

Gk−m−l

}−1

GT
k−m−l

×
(

CT
k−m−l R

−1
k−m−lyk−m−l + ŵ+

k−m−l|k−m−1

)
= AT

k−m−l−1ŵk−m−l|k−m−1 − AT
k−m−l−1Sk−m−lGk−m−l

(
Q−1

k−m−l

+GT
k−m−lSk−m−lGk−m−l

)−1
GT

k−m−lŵk−m−l|k−m−1,

where

Sk−m−l = CT
k−m−l R

−1
k−m−lCk−m−l + S+

k−m−l , (85)

ŵk−m−l|k−m−1 = CT
k−m−l R

−1
k−m−lyk−m−l + ŵ+

k−m−l|k−m−1. (86)

This completes the proof.
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Thus, the recursive form of the proposed UMVRHF smoother can be represented and
summarized by the following Algorithm 1.

The overview of the proposed RUMVRHF smoother is shown in Figure 1.
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Figure 1. Concept and timing diagram of the RUMVRHF smoother.

Algorithm 1 Recursion of UMVRHF smoother on the horizon [k− N k− 1].

Sub-horizon [k − N k − h − 1] :

1: Initialization : S+
k−h−1 ← 0 and ŵ+

k−h1|k−h−1 ← 0
2: for l ← 1 to N − h do

Sk−h−l ← CT
k−h−l R

−1
k−h−lCk−h−l + S+

k−h−l

S+
k−h−l−1 ← AT

k−h−l−1Sk−h−l Ak−h−l−1 − AT
k−h−l−1Sk−h−l

×Gk−h−l

(
Q−1

k−h−l + GT
k−h−lSk−h−lGk−h−l

)−1

×GT
k−h−lSk−h−l Ak−h−l−1

ŵk−h−l|k−h−1 ← CT
k−h−l R

−1
k−h−lyk−h−l + ŵ+

k−h−l|k−h−1

ŵ+
k−h−l−1|k−h−1 ← AT

k−h−l−1ŵk−h−l|k−h−1 − AT
k−h−l−1Sk−h−l

×Gk−h−l

(
Q−1

k−h−l + GT
k−h−lSk−h−lGk−h−l

)−1

×GT
k−h−lŵk−h−l|k−h−1

3: end for
4: x̂1,k−N|k−1 ← S−1

k−Nŵk−N|k−h−1 and P̄1,k−N ← S−1
k−N

5: for i← 0 to N − h− 1 do

x̂1,k−N+i+1|k−1 ← Ak−N+i x̂1,k−N+i|k−1 − Ak−N+i P̄1,k−N+iCT
k−N+i

×
(

Ck−N+i P̄1,k−N+iCT
k−N+i + Rk−N+i

)−1

×
(

yk−N+i − Ck−N+i x̂1,k−N+i|k−1

)
P̄1,k−N+i+1 ← Ak−N+i P̄1,k−N+i AT

k−N+i − Ak−N+i P̄1,k−N+iCT
k−N+i

×
(

Ck−N+i P̄1,k−N+iCT
k−N+i + Rk−N+i

)−1
Ck−N+i

×P̄1,k−N+i AT
k−N+i + Gk−N+iQk−N+iGT

k−N+i

6: end for
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Algorithm 1 Cont.

Sub-horizon [k − h k − 1] :

7: Initialization : S+
k−1 ← 0 and ŵ+

k−1|k−1 ← 0
8: for l ← 1 to h do

Sk−l ← CT
k−l R

−1
k−lCk−l + S+

k−l

S+
k−l−1 ← AT

k−l−1Sk−l Ak−l−1 − AT
k−l−1Sk−lGk−l

(
Q−1

k−l

+GT
k−lSk−lGk−l

)−1
GT

k−lSk−l Ak−l−1,

ŵk−l|k−1 ← CT
k−l R

−1
k−lyk−l + ŵ+

k−l|k−1

ŵ+
k−l−1|k−1 ← AT

k−l−1ŵk−l|k−1 − AT
k−l−1Sk−lGk−l

(
Q−1

k−l

+GT
k−lSk−lGk−l

)−1
GT

k−lŵk−l|k−1

9: end for
10: x̂2,k−h|k−1 ← S−1

k−hŵk−h|k−1 and P2,k−h ← S−1
k−h

Overall horizon [k − h k − 1] (optimal smoothed estimate) :

11: U1,k−h ← P2,k−h(P1,k−h + P2,k−h)
−1 and U2,k−h ← P1,k−h(P1,k−h + P2,k−h)

−1

12: x̂k−h|k−1 ← U1,k−h x̂1,k−h|k−1 + U2,k−h x̂2,k−h|k−1 and Pk−h ←
(

P−1
1,k−h + P−1

2,k−h

)−1

4. Extensions of RUMVRHF Smoother

In this section, we introduce a method for extending the proposed RUMVRHF
smoother to a posteriori state estimation. In addition, additional RHF smoothers are
proposed based on the Rauch–Tung–Striebel smoothing algorithm and computational
complexity reduction strategy.

4.1. Extension to Posteriori State Estimation

We first introduce an approach for extending the proposed recursive algorithm to a
posteriori state estimation. By denoting the a posteriori estimates for the overall horizon
[k− N k], sub-horizon [k− N k− h] and separated sub-horizon [k− h + 1 k] as x̂k−h|k,
x̂+1,k−h|k and x̂+2,k−h|k, respectively, the a posteriori overall estimate and its error covariance
at time k− h can be represented as follows [1]:

x̂+k−h|k = Up1,k−h x̂+1,k−h|k + Up2,k−h x̂+2,k−h|k, (87)

P+
k−h =

{(
P+

1,k−h

)−1
+
(

P+
2,k−h

)−1
}−1

(88)

where P+
1,k−h and P+

2,k−h are denoted as the state error covariance matrices of the estimates
x̂+1,k−h|k and x̂+2,k−h|k, respectively, and Up1,k−h and Up2,k−h are obtained from

Up1,k−h = P+
2,k−h

(
P+

1,k−h + P+
2,k−h

)−1
, (89)

Up2,k−h = P+
1,k−h

(
P+

1,k−h + P+
2,k−h

)−1
. (90)

For the sub-horizon [k− N k− h], the a posteriori local estimate x̂+1,k−h|k and its error

covariance matrix P+
1,k−h can be updated from the predicted local estimates x̂1,k−h|k and its

error covariance matrix P1,k−h as [1]
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x̂+1,k−h|k = x̂1,k−h|k + P1,k−hCT
k−h

(
Ck−hP1,k−hCT

k−h + Rk−h

)−1

×
(

yk−h − Ck−h x̂1,k−h|k

)
, (91)

P+
1,k−h = P1,k−h − P1,k−hCT

k−h

(
Ck−hP1,k−hCT

k−h + Rk−h

)−1
Ck−hP1,k−h, (92)

respectively.
Because the recursive equations in Theorem 2 are equivalent to the conventional

information filter formulation in [1], the posteriori information estimate ŵ+
k−h|k and its

posteriori information matrix S+
k−h can be obtained as ŵ+

k−h|k = (P+
2,k−h)

−1 x̂+2,k−h|k and

S+
k−h = (P+

2,k−h)
−1, respectively. Thus, the a posteriori local estimate x̂+2,k−h|k and its error

covariance matrix P+
2,k−h can be computed from the predicted ŵ+

k−h|k and S+
k−h as follows:

x̂+2,k−h|k = P+
2,k−hŵ+

k−h|k =
(

S+
k−h

)−1
ŵ+

k−h|k, (93)

P+
2,k−h =

(
S+

k−h

)−1
, (94)

where S+
k−h and ŵ+

k−h|k are calculated from (83) and (84) with boundary conditions S+
k = 0

and ŵ+
k|k = 0.

4.2. Extension to Receding-Horizon Rauch-Tung-Striebel Fixed-Lag Smoother

Because the proposed RUMVRHF smoother is established based on two local optimal
estimators, three steps are required to obtain the overall estimate and its error covariance
matrix. Using the Rauch–Tung–Striebel (RTS) smoothing algorithm [25,26], the proposed
recursive smoothing process can be implemented in two steps: filtering for the current state
and smoothing for the fixed-lag state estimations. Although the estimation structure of RTS
smoothing is different from that of the proposed smoother, it can provide computational
efficiency and reliable results [27]. Thus, in this subsection, we propose a receding-horizon
Rauch–Tung–Striebel fixed-lag (RHRTSF) smoother as an extension and application of the
proposed recursive method.

First, the backward recursion of the overall posteriori covariance matrix P+
k−l on the

time-interval [k− h k] can be represented in terms of posteriori local covariance matrices
P̄+

1,k−l and P+
2,k−l as follows:

P+
k−l = P̄+

1,k−l − P̄+
1,k−l

(
P̄+

1,k−l + P+
2,k−l

)−1
P̄+

1,k−l

= P̄+
1,k−l − P̄+

1,k−l AT
k−l+1

(
P̄1,k−l+1 + P2,k−l+1

)−1
Ak−l+1 P̄+

1,k−l

= P̄+
1,k−l − P̄+

1,k−l AT
k−l+1

[
P̄1,k−l+1 +

{(
P+

2,k−l+1

)−1
+
(

P̄+
1,k−l+1

)−1

−P̄−1
1,k−l+1

}−1
]−1

Ak−l+1 P̄+
1,k−l

= P̄+
1,k−l − P̄+

1,k−l AT
k−l+1

[
P̄1,k−l+1 +

{(
P+

k−l+1

)−1
− P̄−1

1,k−l+1

}−1
]−1

(95)

×Ak−l+1 P̄+
1,k−l

= P̄+
1,k−l − P̄+

1,k−l AT
k−l+1 P̄−1

1,k−l+1

[
P̄−1

1,k−l+1 + P̄−1
1,k−l+1

{(
P+

k−l+1

)−1

−P̄−1
1,k−l+1

}−1

P̄−1
1,k−l+1

]−1

Ak−l+1 P̄+
1,k−l

= P̄+
1,k−l − Kk−l

(
P̄1,k−l+1 − P+

k−l+1

)
KT

k−l ,
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for 1 ≤ l ≤ h, where Kk−l = P̄+
1,k−l A

T
k−l+1P̄−1

1,k−l+1.
Involving the same derivation as (95), the backward recursion of the overall smoothed

estimates can be written as follows:

x̂+k−l|k = x̂+1,k−l|k + Kk−l

(
x̂+k−l+1|k − x̂1,k−l|k

)
, (96)

for 1 ≤ l ≤ h.
Thus, the RHRTSF smoother can be obtained by combining the receding horizon

optimal filter on the overall horizon [k− N k] and backward recursions (95) and (96) by
the following algorithm:

The concept of the proposed RHRTSF smoother is depicted in Figure 2.

…
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Figure 2. Concept of the RHRTSF smoother.

4.3. Extension to Reduced Computational Complexity Receding Horizon Fixed-Lag Smoother

Although the proposed RUMVRHF and RTSRHF smoothers can provide more compu-
tational efficiency than RH smoothers in batch form, the computational complexity can be
further improved by combining and sharing their estimates. In this section, we proposed
the reduced computational complexity RHF (RCCRHF) smoother that periodically switches
between RTSRHF and RUMVRHF smoothers to reduce the computational complexity of
the proposed recursive smoothing algorithms.

The concept of RCCRHF smoothing algorithm is shown in Figure 3. As can be seen in
the figure, the basic concept of the RCCRHF smoothing algorithm is a periodical switching
RTSRHF and RUMVRHF smoothing algorithms and sharing their estimates.

To illustrate the proposed RCCRHF smoothing algorithm, let us suppose that the
RTSRHF smoother is selected at time k− h and it estimates the lag state xk−2h by using
measurements in the horizon [k− N k− h]. The RCCRHF smoothing algorithm is started
from the RTSRHF smoother. The horizon initial state x̂+1,k−N|k−h and its error covariance

P+
1,k−N are estimated through steps 1–4 of Algorithm 2. If we define the mid estimate

and its error covariance as x̂+∗k−h|k−h = x̂+1,k−h|k−h and P̄+∗
k−h = P+

1,k−h, respectively, these are

obtained through the steps 5–9 in Algorithm 2. Thereafter, the final estimate x̂+k−2h|k−h and

its error covariance P+
k−2h are finally obtained through the steps 10–13 in Algorithm 2), with

boundary conditions x̂+∗k−h|k−h and P̄+∗
k−h. It is noted that this process is exactly same as the

RHRTS smoothing algorithm except that the overall horizon length is taken as N− h, not N.
Moreover, it is also noted that the mid estimate x̂+∗k−h|k−h and its error covariance P̄+∗

k−h are
the same as the estimation results of minimum variance RH (MVRH) filter for the horizon
[k− N k− h].
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Figure 3. The concept of RCCRHF smoothing.

Now, suppose that the smoothing mode is changed to RUMVRHF smoother at time k
and it estimates the lag state xk−h by using measurements on the horizon [k− N k]. In the
RUMVRHF smoothing process, the local estimate x̂+1,k−h|k and its error covariance P+

1,k−h for
the sub-horizon [k− N k− h] should be obtained through the MVRH filter. This estimation
process is equivalent to obtain the mid estimate and its error covariance of RTSRHF
smoother. This means that the mid estimate and its error covariance of RTSRHF smoother
at time k− h can be used as the local estimate and error covariance of RUMVRHF smoother
at time k for the sub-horizon [k − N k − h], i.e., x̂+1,k−h|k = x̂+∗k−h|k−h and P+

1,k−h = P+∗
k−h,

respectively. Thus, the overall smoothed estimate x̂+k−h|k and its error covariance P+
k−h of

RUMVRHF smoother are obtained as follows:

x̂+k−h|k = Up1,k−h x̂+∗k−h|k−h + Up2,k−h x̂+2,k−h|k, (97)

P+
k−h =

{(
P+∗

k−h

)−1
+
(

P+
2,k−h

)−1
}−1

, (98)

Up1,k−h = P+
2,k−h

(
P+∗

k−h + P+
2,k−h

)−1
, (99)

Up2,k−h = P+∗
k−h

(
P+∗

k−h + P+
2,k−h

)−1
, (100)

where x̂+2,k−h|k and P+
2,k−h are the local estimate and its error covariance matrix for the

sub-horizon [k− h k], respectively, and x̂+∗k−h|k−h and P∗+k−h are obtained from the RTSRHF
smoother on the overall horizon [k− N − h k− h], not [k− N k− h].

Therefore, RCCRHF smoother can be designed by switching the roles of RTSRHF
and RUMVRHF smoothers in every h time step periodically. The concept of periodical
switching scheme for RCCRHF smoother is depicted in Figure 4.

The process for obtaining the local estimate and its error covariance of RUMVRHF
smoother can be eliminated by sharing the mid estimate and its error covariance of RTSRHF
smoother at the h lag time. Thus, the RCCRHF smoother could have less computation time
than the proposed recursive RHF smoothers.
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Algorithm 2 RHRTSF smoothing algorithm on the horizon [k− N k].

Finite horizon Kalman filtering with estimated initial state

1: Initialization: S+
k ← 0 and ŵ+

k|k ← 0
2: for l ← 0 to N do

Sk−l ← CT
k−l R

−1
k−lCk−l + S+

k−l

S+
k−l−1 ← AT

k−l−1Sk−l Ak−l−1 − AT
k−l−1Sk−lGk−l

×
(

Q−1
k−l + GT

k−lSk−lGk−l

)−1
GT

k−lSk−l Ak−l−1

ŵk−l|k ← CT
k−l R

−1
k−lyk−l + ŵ+

k−l|k

ŵ+
k−l−1|k ← AT

k−l−1ŵk−l|k − AT
k−l−1Sk−lGk−l

×
(

Q−1
k−l + GT

k−lSk−lGk−l

)−1
GT

k−lŵk−l|k

3: end for
4: x̂1,k−N|k ← S−1

k−Nŵk−N|k and P̄1,k−N ← S−1
k−N

5: for i← 0 to N − h− 2 do

x̂1,k−N+i+1|k ← Ak−N+i x̂1,k−N+i|k−1 − Ak−N+i P̄1,k−N+iCT
k−N+i

×
(

Ck−N+i P̄1,k−N+iCT
k−N+i + Rk−N+i

)−1

×
(

yk−N+i − Ck−N+i x̂1,k−N+i|k−1

)
P̄1,k−N+i+1 ← Ak−N+i P̄1,k−N+i AT

k−N+i − Ak−N+i P̄1,k−N+iCT
k−N+i

×
(

Ck−N+i P̄1,k−N+iCT
k−N+i + Rk−N+i

)−1
Ck−N+i

×P̄1,k−N+i AT
k−N+i + Gk−N+iQk−N+iGT

k−N+i

6: end for
7:

x̂+1,k−h−1|k ← x̂1,k−h−1|k + P1,k−h−1CT
k−h−1

(
Ck−h−1P1,k−h−1CT

k−h−1

+Rk−h−1

)−1(
yk−h−1 − Ck−h−1 x̂1,k−h−1|k

)
,

P+
1,k−h−1 ← P1,k−h−1 − P1,k−h−1CT

k−h−1

(
Ck−h−1P1,k−h−1CT

k−h−1

+Rk−h−1

)−1
Ck−h−1P1,k−h−1,

8: for i← 0 to h do

x̂1,k−h+i|k ← Ak−h+i x̂+1,k−h+i−1|k

P̄1,k−h+i ← Ak−h+i P̄+
1,k−h+i−1 AT

k−h+i + Gk−h+iQk−h+iGT
k−h+i

x̂+1,k−h+i|k ← x̂1,k−h+i|k + P̄1,k−h+iCT
k−h+i

(
Ck−h+i P̄1,k−h+iCT

k−h+i

+Rk−h+i

)−1(
yk−h+i − Ck−h+i x̂1,k−h+i|k1

)
P̄+

1,k−h+i ← P̄1,k−h+i − P̄1,k−h+iCT
k−h+i

(
Ck−h+i P̄1,k−h+iCT

k−h+i

+Rk−h+i

)−1
Ck−h+i P̄1,k−h+i,

9: end for
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Backward recursion:

10: Initialization : P+
k ← P̄+

1,k and x̂+k|k ← x̂+1,k|k
11: for l ← 1 to h do

Kk−l ← P̄+
1,k−l A

T
k−l+1P̄−1

1,k−l+1

x̂+k−l|k ← x̂+1,k−l|k + Kk−l

(
x̂+k−l+1|k − x̂1,k−l|k

)
P+

k−l ← P̄+
1,k−l − Kk−l

(
P̄1,k−l+1 − P+

k−l+1

)
KT

k−l

12: end for
13: Return : x̂+k−h|k and P+

k−h

However, if the lag size h is greater than half of the horizon length N − h, the RSTRHF
smoother cannot be defined. In this situation, the overall horizon lengths of the RSTRHF
and RUMVRHF smoothers are taken as N and N + h, respectively. Although the horizon
length of the RTSRHF smoother is increased by h, the RCCRHF smoother has less computa-
tion time of other proposed recursive RHF smoothers because 2N iterations to obtain local
estimate and its covariance of RUMVRHF smoother is omitted.
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Figure 4. Concept of periodical swithcing scheme for RHCCRHF smoother.

5. Numerical Experiments and Discussion

In this section, numerical experimental results present the performance and effective-
ness of the proposed RHF smoothing algorithms.
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5.1. F-404 Gas Turbine Aircraft Engine System

We consider the following discrete time F-404 gas turbine aircraft engine model [21].

xk+1 =

 0.9305 + δk 0 0.1107
0.0077 0.9802 + δk −0.0173
0.0142 0 0.8953 + δk

xk +

 1
1
1

wk, (101)

y =

[
1 + 0.1δk 0 0

0 1 + 0.1δk 0

]
xk + vk, (102)

where the initial state x0 =
[
0 0 0

]T , initial error covariance matrix P0 = 103 I3×3, and the
actual process and measurement noise covariance matrices are considered as Q = 0.22 and
R = 0.012 I2×2, respectively.

To demonstrate the robustness against temporary modeling uncertainty of the pro-
posed smoothers upon the occurrence of a model mismatch, the model uncertain parameter
δk is considered as follows:

δk =

{
0.1, 200 ≤ k ≤ 250,
0, otherwise.

Smoothers are designed for the nominal state space models (101) and (102), considering
δk = 0; therefore, they are applied to the temporarily uncertain system. We set the process
covariance and measurement noise covariance matrices for smoothers as Q = 0.192 and
R = 0.0182 I2×2, respectively. Because the estimates of the nominal FMS smoother, i.e.,
forgetting factor λ = 1, diverge for the system model, the forgetting factor is considered as
λ = 0.9.

First, to verify the performance of the proposed algorithms, the proposed RHF
smoothers are compared with the Rauch–Tung–Striebel fixed-lag (RTSF) Kalman [1], the
previous optimal RHF [20], and the FMS smoothers [21]. The second state estimation errors
and time averaged values of the root-mean square estimation (RMSE) errors are shown for
various horizon lengths in Figure 5 and Tables 1–3, respectively.

As observed in these results, the proposed RHF smoothers successfully estimate
the real state and have better estimation performance than others. In comparison to the
RTSF Kalman smoother, the RMSE errors of the proposed smoothers with small horizon
lengths are a little bigger than that of the RTSF Kalman smoother when there are no
modeling uncertainties.

However, in the case of large horizon lengths, the RMSE errors of the proposed
smoothers are smaller than that of the RTSF Kalman smoother. Moreover, the estimation
errors of the proposed RHF smoothers are remarkably smaller than that of the RTSF
Kalman smoother for the cases of model mismatches. Furthermore, the estimated states
of the proposed RHF smoothers rapidly converge to the real state after the modeling
uncertainty disappears, whereas those of the RTSF Kalman smoother take a long time to
converge. Hence, it can be deduced that the proposed RHF smoothers are more robust
against temporary modeling uncertainty than the RTSF Kalman smoother.

In contrast to the previous optimal RHF smoother, the RMSE errors of the proposed
RHF smoothers are slightly larger; however, they are similar to those of the previous
optimal RHF smoother in the absence of modeling uncertainties. However, the estimation
performance of the proposed RCCRHF and RTSRHF smoothers is better than that of
the previous optimal RHF smoother when modeling uncertainties exist. Moreover, the
estimation errors of the proposed RCCRHF and RTSRHF smoothers are getting smaller
than that of the previous optimal RHF smoother, as well as increasing the horizon length
of RHF smoothers. Furthermore, we can observe that the RMS errors of the RUMVRHF
smoothers (a priori and a posteriori) are still slightly larger than those of the previous
optimal RHF smoother, although the horizon length is increased.
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By comparing the results for the RTSRHF and RUMVRHF smoothers, it can be stated
that the estimation performance is affected, albeit not severely, by the information state,
information matrix, and their initial conditions. Moreover, the structure of the RTSRHF
smoother is better than that of the RUMVRHF smoother.

100 150 200 250 300 350 400 450 500

Time

-5

-4

-3

-2

-1

0
E

s
ti
m

a
ti
o

n
 e

rr
o

r

RTSF Kalman

Prev. Optimal RHF

RUMVRHF (Priori)

RUMVRHF (Posteriori)

RTSRHF

RCCRHF

FMS

(a) N = 20, h = 5

160 180 200 220 240 260 280

Time

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

E
s
ti
m

a
ti
o

n
 e

rr
o

r

RTSF Kalman smoother

FMS smoother

RUMVRHF smoother (Posteriori)

RCCRHF smoother

RTSRHF smoother

RUMVRHF smoother (Priori)

Prev. optimal smoother

(b) N = 20, h = 5 (enlargement)

100 150 200 250 300 350 400 450 500

Time

-6

-5

-4

-3

-2

-1

0

E
s
ti
m

a
ti
o

n
 e

rr
o

r

RTSF Kalman

Prev. Optimal RHF

RUMVRHF (Priori)

RUMVRHF (Posteriori)

RTSRHF

RCCRHF

FMS

(c) N = 30, h = 5

160 180 200 220 240 260 280 300

Time

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

E
s
ti
m

a
ti
o

n
 e

rr
o

r

RTSF Kalman smoother

FMS smoother

RUMVRHF smoother (Priori)

Prev. optimal smoother

RUMVRHF smoother (Posteriori)

RCCRHF smoother

RTSRHF smoother

(d) N = 30, h = 5 (enlargement)

100 150 200 250 300 350 400 450 500

Time

-7

-6

-5

-4

-3

-2

-1

0

1

E
s
ti
m

a
ti
o

n
 e

rr
o

r

RTSF Kalman

Prev. Optimal RHF

RUMVRHF (Priori)

RUMVRHF (Posteriori)

RTSRHF

RCCRHF

FMS

(e) N = 40, h = 5

180 200 220 240 260 280

Time

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

E
s
ti
m

a
ti
o

n
 e

rr
o

r

RTSRHF smoother

Prev. optimal smoother

RUMVRHF smoother (Posteriori)

RUMVRHF smoother (Priori)

FMS smoother

RTSF Kalman smoother

RCCRHF smoother

(f) N = 40, h = 5 (enlargement)

Figure 5. Estimation errors with respect to various horizon lengths (h = 5).

Table 1. RMSE errors for the time interval [50 500].

Horizon Length and Lag Size N = 20, h = 5 N = 30, h = 5 N = 40, h = 5

RTSF Kalman smoother 1.386 1.386 1.386
Prev. optimal RHF smoother 0.135 0.437 0.709
RUMVRHF smoother (Priori) 0.186 0.482 0.740

RUMVRHF smoother (Posteriori) 0.166 0.469 0.735
RTSRHF smoother 0.140 0.417 0.661
RCCRHF smoother 0.113 0.384 0.647
FMS smoother 0.674 0.977 1.125
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Table 2. RMSE errors for the time interval [50 200] (×10−3).

Horizon Length and Lag Size N = 20, h = 5 N = 30, h = 5 N = 40, h = 5

RTSF Kalman smoother 7.386 7.386 7.386
Prev. optimal RHF smoother 7.848 7.321 7.341
RUMVRHF smoother (Priori) 8.031 7.355 7.357

RUMVRHF smoother (Posteriori) 7.968 7.345 7.352
RTSRHF smoother 7.892 7.323 7.345
RCCRHF smoother 7.956 7.393 7.378
FMS smoother 324.983 342.122 343.178

Table 3. RMSE errors for the time interval [201 350].

Horizon Length and Lag Size N = 20, h = 5 N = 30, h = 5 N = 40, h = 5

RTSF Kalman smoother 2.312 2.312 2.312
Prev. optimal RHF smoother 0.225 0.729 1.184
RUMVRHF smoother (Priori) 0.310 0.805 1.235

RUMVRHF smoother (Posteriori) 0.276 0.784 1.228
RTSRHF smoother 0.233 0.695 1.104
RCCRHF smoother 0.189 0.642 1.080
FMS smoother 1.051 15.677 1.817

Second, to highlight the effects of the horizon length and delay size on the proposed
RHF smoothers, we compare the RMSE errors of the smoothers with respect to various
horizon lengths and lag sizes, as shown in Figure 6.

In contrast to all RMSE errors, it can be observed that the proposed RCCRHF and
RTSRHF smoothers and the previous optimal RHF smoother can be optimal choices for
short lag sizes. In particular, in Figure 6c,e, it can be observed that RHF smoothers with
long horizon lengths and short delay sizes perform better than RTSF Kalman smoother,
even in the absence of modeling uncertainties. In addition, the RHF smoothers with large
horizon lengths yield better estimation results than those with small horizon lengths in the
case of an accurate system model.

However, other proposed smoothers are also acceptable for use. From Figure 6b,d,f, it
is observed that the proposed RCCRHF smoother with a short delay size provides better
estimation performance than others in the case of a model mismatch because its averaged
horizon length is shorter than other RHF smoothers. However, the RCCRHF smoother with
a long delay size (longer than half of the horizon length) demonstrates poor estimation
results owing to its increased horizon length. Thus, it can be stated, in the case of a model
mismatch, a short lag size should be adopted for the proposed RCCRHF smoother.

As observed in Figure 6a,c,e, the estimation performance of the previous optimal RHF
smoother is better than the other proposed RHF smoothers. On the contrary, observing
the results in Figure 6b,d,f, it can easily noticed that the proposed smoothers demonstrate
better estimation performance than the previous optimal RHF smoother except for small
lag size intervals. In particular, the proposed RTSRHF smoother guarantees its estimation
performance for most lag sizes. Thus, we can infer that the proposed smoothers are robust
and provide more exact estimate than the previous optimal RHF smoother. Furthermore,
we can observe that there is best lag size, and it is close to half of the horizon length.

Third, to demonstrate the computational efficiency of the proposed approaches, the
time-averaged computation times of RHF smoothers are compared, as presented in Table 4
and Figure 7. For fair comparisons, the matrix gains of the batch RHF smoothers are calcu-
lated at every iteration, although the smoothers are designed for time-invariant systems.
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Table 4. Average computation time of RHF smoothers (msec).

Horizon Length and Lag Size N = 20, h = 5 N = 30, h = 5 N = 40, h = 5 N = 50, h = 5

Prev. optimal RHF smoother 1.548 2.257 3.611 6.026
UMVRHF smoother (Batch) 1.426 2.196 3.367 5.425

RUMVRHF smoother (Posteriori) 0.596 0.631 0.821 1.037
RTSRHF smoother 0.532 0.587 0.777 0.992
RCCRHF smoother 0.325 0.341 0.458 0.552
FMS smoother 0.452 0.523 0.764 1.095

As observed from these results, the proposed UMVRHF smoothers in a separated batch-
form have better computational performance than the previous optimal RHF smoothers in
batch form. In Figure 7, we can observe that the computational efficiency of the proposed
UMVRHF smoothers in a separated batch form can be improved by selecting the lag
size near the half of the horizon length. Moreover, the proposed RHF smoothers in a
recursive-form have much smaller computation times than RHF smoothers in a batch-form.
It is clearly noticeable that the proposed RCCRHF smoothers involving short lag sizes
(shorter than half of horizon length) have much smaller averaged computation times than
other smoothers.

In addition, for a long lag size (larger than the half of the horizon length), the compu-
tation time is still smaller than that of the other proposed RHF smoothers, although their
horizon sizes are longer than the others. Furthermore, the proposed RTSRHF smoothers
have better computational performance than the proposed RUMVRHF smoothers.

5.2. Direct Current Motor System

In this subsection, numerical experiment results are given for direct current (DC) motor
system to verify the applicability of the proposed methods for more practical application.

The discrete-time DC motor model with model uncertainty is given as follows [28,29]:

xk+1 =

[
0.8178 + δk −0.0011

0.0563 0.3678 + δk

]
xk +

[
0.0006 0

0 0.0057

]
wk, (103)

yk =
[

1 + 0.1δk 0
]
xk + vk, (104)

where the DC motor is assumed to be operated without any payload and drive voltage is
assumed to be encountered as an external unit step source. Covariances for system and
measurement noises are taken as Q = 0.012 I and R = 0.012, respectively, and the system
parameters of DC motor system are shown in Table 5.

Table 5. Parameters of DC motor.

Description Units Value

Armature Current A state variable (x1)
Rotational Speed rad/s state variable (x2)

Armature Resistance Ω 1
Armature Inductance H 0.5

Motor Torque Constant Nm/A 0.01
Motor Inertial Coefficient Nm/(rad/s2) 0.01

Motor Viscous Friction Coefficient Nm/(rad/s) 0.1

The model uncertain parameter δk for model mismatch is considered as

δk =

{
0.05, 200 ≤ k ≤ 350,

0, otherwise.
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For RH smoothers, the horizon length and fixed-lag size are taken as N = 35 and
h = 3, respectively. As shown in the previous experiment, the estimation performance
of RUMVRHF smoother for posteriori priori state and batch form are similar to that of
the RUMVRHF smoother for posteriori. Thus, in this section, we compare the estimation
results of the RUMVRHF smoother (posteriori), RCCRHF smoother, RTSRHF smoother,
FMS smoother, and RTSF Kalman smoother.
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(d) horizon length = 30 (with model uncertainty)
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Figure 6. RMSE errors with respect to the various horizon lengths and lag sizes.
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Figure 7. Time-averaged computation time with respect to the horizon lengths and lag sizes.

Figure 8 and Table 6 present estimation errors and time averaged values of RMSE
errors of smoothers for 200 ≤ k ≤ 350. In addition, the average computation times of RHF
smoothers are presented in Table 7.

As shown in these results, the proposed RHF smoothers estimate the real state well and
provide more exact estimates than RTSF Kalman smoother for the modeling uncertainty.
Moreover, the proposed RHF smoothers have faster convergence speed than RTSF Kalman
smoother as we expected. Furthermore, the proposed RCCRHF smoother has better
computational performance than other compared RHF smoothers. These observations show
that the proposed RHF smoothers can work well and have robustness against temporarily
modeling uncertainty for practical application.

Table 6. RMSE errors of smoothers for the time interval [200 350].

Smoothers RMSE Error (x1) RMSE Error (x2)

RTSF Kalman smoother 0.0540 6.3353
Prev. optimal RHF smoother 0.0044 3.1536

RUMVRHF smoother (Posteriori) 0.0051 3.2190
RTSRHF smoother 0.0034 3.0504
RCCRHF smoother 0.0040 3.0770
FMS smoother 0.0282 4.8560
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Figure 8. Estimation errors of smoothers.

Table 7. Average computation times of RHF smoothers.

Smoothers Average Computation Time (msec)

Prev. optimal RHF smoother 3.0829
RUMVRHF smoother (Posteriori) 1.1896

RTSRHF smoother 1.0909
RCCRHF smoother 0.4852
FMS smoother 0.6780

6. Conclusions

In this paper, novel optimal RHF smoothers have been proposed in batch and recursive
forms for linear discrete time-varying state space models. The proposed RHF smoothers
were obtained by optimally combining local optimal receding horizon filters and smoothers
for the separated sub-horizons. The proposed recursive RHF smoothing algorithm was
formulated as a finite horizon Kalman filtering and information smoothing. Additionally, as
an extension of the proposed recursive RHF smoothing algorithm, a Rauch–Tung–Striebel
type RHF smoothing algorithm and reduced computational complexity RHF smoother
were also proposed to improve the computational efficiency. The proposed RHF smoothers
could provide optimality, unbiasedness, and bounded-input bounded-output stability.
Moreover, the proposed RHF smoothers are independent of any a priori information of the
initial state and assumption of a non-singular transition system matrix. Furthermore, the
proposed RHF smoothers could significantly improve the computational efficiency, which
is major disadvantage of RHF smoothers. Finally, it has been demonstrated via numerical
experiments that the RHF smoothers proposed in this paper can provide better estimation
results than fixed-lag Kalman smoothers in the case of a model mismatch. Furthermore,
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it was also shown that the proposed methods are more computational efficient than the
existing RHF smoothers and applicable for practical application.

However, it is possible to improve the estimation perforamance of the RH smoothing
algorithms by choosing the appropriate fixed lag size and horizon length. Thus, we plan
to investigate the horizon length adjustment method and how to find optimal fixed-lag
size for further improvement of the proposed RH smoothers as future work. Moreover, in
the future, it would be meaningful to extend and evaluate the proposed RH smoothing
algorithms for more practical applications.
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RHF Receding Horizon Fixed-lag
FK Fixed-lag Kalman
BIBO Bounded Input Bounded Output
FIR Finite Impulse Response
IIR Infinite Impulse Response
UMVRHF Unbiased Minimum Variance Receding Horizon Fixed-lag
RUMVRHF Recursive Unbiased Minimum Variance Receding Horizon Fixed-lag
RTS Rauch–Tung–Striebel
RTSF Rauch–Tung–Striebel Fixed-lag
RTSRHF Rauch–Tung–Striebel Receding Horizon Fixed-lag
RCCRHF Reduced Computational Complexity Receding Horizon Fixed-lag
FMS Finite Memory Structure

References
1. Lewis, F.L. Optimal Estimation: With An Introduction to Stochastic Control Theory; John Wiley and Sons: Hoboken, NJ, USA, 1986.
2. Martino, L.; Read, J. A joint introduction to Gaussian Processes and Relevance Vector Machines with connections to Kalman

filtering and other kernel smoothers. Inf. Fusion 2021, 74, 17–38. [CrossRef]
3. Eilers, P.H.C.; Marx, B.D. Practical Smoothing: The Joys of P-Splines; Cambridge University Press: Cambridge, UK, 2021.
4. Poddar, S.; Crassidis, J.L. Adaptive Lag Smoother for State Estimation. Sensors 2022, 22, 5310. [CrossRef] [PubMed]
5. Lastre-Domínguez, C.; Ibarra-Manzano, O.; Andrade-Lucio, J.A.; Shmaliy, Y.S. Denoising ECG Signals Using Unbiased FIR

Smoother and Harmonic State-Space Model. In Proceedings of the 28th European Signal Processing Conference (EUSIPCO),
Amsterdam, The Netherlands, 18–21 January 2021; pp. 1279–1283.

6. Si, Y. LPPCNN: A Laplacian Pyramid-based Pulse Coupled Neural Network Method for Medical Image Fusion. J. Appl. Sci. Eng.
2021, 24, 299–305.

7. Ullah, I.; Qureshi, M.B.; Khan, U.; Memon, S.A.; Shi, Y.; Peng, D. Multisensor-Based Target-Tracking Algorithm with Out-of-
Sequence-Measurements in Cluttered Environments. Sensors 2018, 18, 4043. [CrossRef] [PubMed]

8. Tao, H.; Yanzhang, Z.; Hongxia, N.; Mingxi, C.; Shan, W. Research on Tracking Foreign Objects in Railway Tracks Based on
Hidden Markov Kalman Filter. J. Appl. Sci. Eng. 2022, 25, 893–903.

9. Kim, P.S. Finite Memory Structure Filtering and Smoothing for Target Tracking in Wireless Network Environments. Appl. Sci.
2019, 9, 2872. [CrossRef]

10. Rau, J.C.; Wu, P.H.; Li, W.L. Test Slice Difference Technique for Low-Transition Test Data Compression. J. Appl. Sci. Eng. 2012,
15, 157–166.

http://doi.org/10.1016/j.inffus.2021.03.002
http://dx.doi.org/10.3390/s22145310
http://www.ncbi.nlm.nih.gov/pubmed/35890989
http://dx.doi.org/10.3390/s18114043
http://www.ncbi.nlm.nih.gov/pubmed/30463320
http://dx.doi.org/10.3390/app9142872


Appl. Sci. 2022, 12, 7832 29 of 29

11. Lagerblad, U.; Wentzel, H.; Kulachenko, A. Dynamic response identification based on state estimation and operational modal
analysis. Mech. Syst. Signal Process 2019, 129, 37–53. [CrossRef]

12. Maes, K.; Gillijns, S.; Lombaert, G. A smoothing algorithm for joint input–state estimation in structural dynamics. Mech. Syst.
Signal Process 2018, 98, 292–309. [CrossRef]

13. Lagerblad, U.; Wentzel, H.; Kulachenko, A. Study of a fixed-lag Kalman smoother for input and state estimation in vibrating
structures. Inverse Probl. Sci. Eng. 2021, 29, 1260–1281. [CrossRef]

14. Vauhkonen, P.J.; Vauhkonen, M.; Kaipio, J.P. Fixed-lag smoothing and state estimation in dynamic electrical impedance
tomography. Int. J. Numer. Meth. Eng. 2001, 50, 2195–2209. [CrossRef]

15. Hsieh, C.S. Unbiased minimum-variance input and state estimation for systems with unknown inputs: A system reformation
approach. Automatica 2017, 84, 236–240. [CrossRef]

16. Kwon, B.; Han, S.; Han, S. Improved Receding Horizon Fourier Analysis for Quasiperiodic Signals. J. Electr. Eng. Technol. 2017,
12, 378–384. [CrossRef]

17. Kim, P.S. A computationally efficient fixed-lag smoother using recent finite measurements. Measurement 2013, 46, 846–850.
[CrossRef]

18. Shmaliy, Y.S.; Morales-Mendoza, L.J. FIR smoothing of discrete-time polynomial signals in state space. IEEE Trans. Signal Process.
2010, 58, 2544–2555. [CrossRef]

19. Simon, D.; Shmaliy, Y.S. Unified forms for Kalman and finite impulse response filtering and smoothing. Automatica 2013,
49, 1892–1899. [CrossRef]

20. Kwon, B.K.; Han, S.; Kwon, O.K.; Kwon, W.H. Minimum variance FIR Smoother for Discrete-time systems. IEEE Signal Process.
Lett. 2007, 14, 557–560. [CrossRef]

21. Kim, P.S. A finite memory structure smoother with recursive form using forgetting factor. Math. Probl. Eng. 2017, 2017, 8192053.
[CrossRef]

22. Xu, Y.; Shmaliy, Y.S.; Ahn, C.K.; Shen, T.; Zhuang, Y. Tightly Coupled Integration of INS and UWB Using Fixed-Lag Extended
UFIR Smoothing for Quadrotor Localization. IEEE Internet Things J. 2021, 8, 1716–1727. [CrossRef]

23. Shin, V.; Lee, Y.; Choi, T. Generalized Millman’s formula and its application for estimation problems. Signal Process. 2006,
86, 257–266. [CrossRef]

24. Kwon, B.; Kim, S.-I. Recursive Optimal Finite Impulse Response Filter and Its Application to Adaptive Estimation. Appl. Sci.
2022, 12, 2757. [CrossRef]

25. Rauch, H.E. Solutions to the Linear Smoothing Problem. IEEE Trans. Automat. Contr. 1963, 8, 371–372. [CrossRef]
26. Rauch, H.E.; Tung, F.; Streibel, C.T. Maximum Likelihood Estimation of Linear Dynamic Systems. J. AIAA 1965, 3, 1445–1450.

[CrossRef]
27. Zhou, Q.; Zhang, H.; Li, Y.; Li, Z. An Adaptive Low-Cost GNSS/MEMS-IMU Tightly-Coupled Integration System with Aiding

Measurement in a GNSS Signal Challenged Environment. Sensors 2015, 15, 23953–23982. [CrossRef]
28. Pal, D. Modeling, analysis and design of a DC motor based on state space approach. Int. J. Eng. Res. Technol. 2016, 5, 293–296.
29. Abut, T. Modeling and optimal control for a DC motor. Int. J. Eng. Trends Technol. 2016, 32, 146–150. [CrossRef]

http://dx.doi.org/10.1016/j.ymssp.2019.04.019
http://dx.doi.org/10.1016/j.ymssp.2017.04.047
http://dx.doi.org/10.1080/17415977.2020.1845669
http://dx.doi.org/10.1002/nme.120
http://dx.doi.org/10.1016/j.automatica.2017.06.037
http://dx.doi.org/10.5370/JEET.2017.12.1.378
http://dx.doi.org/10.1016/j.measurement.2012.09.021
http://dx.doi.org/10.1109/TSP.2010.2041595
http://dx.doi.org/10.1016/j.automatica.2013.02.026
http://dx.doi.org/10.1109/LSP.2007.891840
http://dx.doi.org/10.1155/2017/8192053
http://dx.doi.org/10.1109/JIOT.2020.3015351
http://dx.doi.org/10.1016/j.sigpro.2005.05.015
http://dx.doi.org/10.3390/app12052757
http://dx.doi.org/10.1109/TAC.1963.1105600
http://dx.doi.org/10.2514/3.3166
http://dx.doi.org/10.3390/s150923953
http://dx.doi.org/10.14445/22315381/IJETT-V32P227

	Introduction
	 Unbiased Minimum Variance Receding-Horizon Fixed-Lag Smoother in Batch Form
	Unbiased Minimum Variance Estimation on the Sub-Horizon [k-N  k-h-1]
	Unbiased Minimum Variance Estimation on Sub-Horizon [k-h  k-1]

	Unbiased Minimum Variance Receding-Horizon Fixed-Lag Smoother in Recursive Form
	Extensions of RUMVRHF Smoother
	Extension to Posteriori State Estimation
	Extension to Receding-Horizon Rauch-Tung-Striebel Fixed-Lag Smoother
	Extension to Reduced Computational Complexity Receding Horizon Fixed-Lag Smoother

	Numerical Experiments and Discussion
	F-404 Gas Turbine Aircraft Engine System
	Direct Current Motor System

	Conclusions
	References

