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Abstract: The modern urban environment is becoming more and more complex. In helping us
identify surrounding objects, vehicle vision sensors rely more on the semantic segmentation ability of
deep learning networks. The performance of a semantic segmentation network is essential. This factor
will directly affect the comprehensive level of driving assistance technology in road environment
perception. However, the existing semantic segmentation network has a redundant structure, many
parameters, and low operational efficiency. Therefore, to reduce the complexity of the network and
reduce the number of parameters to improve the network efficiency, based on the deep learning
(DL) theory, a method for efficient image semantic segmentation using Deep Convolutional Neural
Network (DCNN) is deeply studied. First, the theoretical basis of the convolutional neural network
(CNN) is briefly introduced, and the real-time semantic segmentation technology of urban scenes
based on DCNN is recommended in detail. Second, the atrous convolution algorithm and the
multi-scale parallel atrous spatial pyramid model are introduced. On the basis of this, an Efficient
Symmetric Network (ESNet) of real-time semantic segmentation model for autonomous driving
scenarios is proposed. The experimental results show that: (1) On the Cityscapes dataset, the ESNet
structure achieves 70.7% segmentation accuracy for the 19 semantic categories set, and 87.4% for
the seven large grouping categories. Compared with other algorithms, the accuracy has increased
to varying degrees. (2) On the CamVid dataset, compared with segmentation networks of multiple
lightweight real-time images, the parameters of the ESNet model are around 1.2 m, the highest FPS
value is around 90 Hz, and the highest mIOU value is around 70%. In seven semantic categories,
the segmentation accuracy of the ESNet model is the highest at around 98%. From this, we found
that the ESNet significantly improves segmentation accuracy while maintaining faster forward
inference speed. Overall, the research not only provides technical support for the development of
real-time semantic understanding and segmentation of DCNN algorithms but also contributes to the
development of artificial intelligence technology.

Keywords: deep learning; image semantic segmentation; deep convolutional neural networks;
efficient symmetric network; segmentation method

1. Introduction

In recent years, with the rapid development of high-speed mobile communication
technology and computer software and hardware technology, autonomous unmanned
systems represented by unmanned driving and mobile robots have attracted a new wave of
development. Compared with the unmanned driving technology at the end of the 20th cen-
tury, the existing unmanned driving has made great progress. However, there is still a
certain gap compared with the standards stipulated by the Society of Automotive Engineers
(SAE). When faced with a variety of driving environments, unmanned systems can adapt
as human beings [1,2]. Humans mainly obtain information through vision. Therefore, the
core task of realizing universal unmanned driving is to enable the unmanned system to
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understand the traffic scene similarly to a human. Computer vision (CV), a technology
focused on making computers understand images similarly to humans, has received a
lot of attention. Limited by the theoretical level and computing resources, the early CV
technology only tried low-level image understanding such as image segmentation and edge
detection, and there is no obvious boundary between it and classical image processing [3].
However, with the rapid expansion of society, especially in the construction of smart cities,
the requirements for intelligent image recognition technology are becoming higher and
higher. Although the application of intelligent image recognition technology in the current
society is not mature enough, many studies have provided technical support for it.

CV is gradually subdivided into various sub-tasks such as semantic segmentation,
object detection, and image classification according to the needs of understanding in
different scenarios. In recent years, with the rise of deep learning (DL), the use of Deep
Convolutional Neural Networks (DCNN) to achieve automatic learning of image features
has become a consensus in the field of CV, and the field of semantic segmentation has
also entered the fast lane of development [4,5]. However, large labeled datasets such
as multispectral imagery (MSI) for other sensor modalities cannot be obtained due to
the large cost and labor required. Kemker et al. (2018) [6] adopted the most advanced
DCNN framework in CV for semantic segmentation of MSI. To overcome the label scarcity
of MSI data, the generated synthetic MSI was replaced with real MSI to initialize the
DCNN framework. Zhang et al. (2020) [7] designed a complete symmetric network
structure including a pool index and a convolution for fusing semantic information and
image features. The bottleneck layer is constructed with 1 × 1 convolution to extract
details, reduce the number of parameters, deepen the filtering depth, build an end-to-end
semantic segmentation network, and improve the activation function to further improve
the network performance. Garg et al. (2021) [8] proposed an automatic machine learning
(ML) method and system for semantic segmentation of remote sensing images, which
belongs to the field of artificial intelligence (AI). The semantic segmentation algorithm
of remote sensing images based on multiple remote sensing imaging indices improves
the segmentation accuracy through background loss optimization and imaging index
calculation. Through self-migration fine-tuning training method and hyperparameter
optimization method, the hyperparameter optimization of the DCNN for a single machine
with multiple image processors can improve the segmentation accuracy and optimization
efficiency at the same time. The search space for parameter sharing is set, and the multi-
scale information of the DCNN is extracted through the spatial pyramid pooling module
with the search strategy based on the policy gradient to search for the optimal internal
network structure of the DCNN and improve the efficiency of semantic segmentation
and classification accuracy of remote sensing images. Sharifi (2020) [9] briefly analyzed
the application of ML in CV processing, introduced the application progress of ML in
the field of image detection and semantic segmentation, and emphatically analyzed the
algorithm principle of the typical classification algorithm-random forest. At the end, the
application prospect of ML in CV has been prospected. Sharifi (2021) [10] designed an
end-to-end depth-supervised fully convolutional network based on convolutional neural
networks (CNN) to solve the problem of automatic segmentation of brain tissue in brain
images. For 3D brain images, the data are first cut into 2D image slices. On the basis of
supervising the fully convolutional network structure, a deep supervision mechanism is
added; that is, the loss value feedback is obtained in advance in the multi-level structure
of feature extraction. By introducing a deep supervision structure, the improved model
achieves a more accurate segmentation effect in the segmentation task of brain tissue. There
are six most commonly used segmentation networks, which are semantic Segmentation
Network (SegNet), Efficient Segmentation Network (ENet), Efficient Spatial Pyramid
Network (ESPNet), Cross Guidance Network (CGNet), Efficient Residual Factorized Conv
Network (ERFNet), and Image Cascade Network (ICNet). In addition, the accuracy of
the above semantic segmentation is also high [11–13]. To sum up, there is still a certain
gap between the accuracy of real-time semantic segmentation models and high-precision
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models. Among them, the most obvious gap is the segmentation of small objects. In
urban traffic scenes, small objects such as signs and traffic lights are significant for the
understanding of traffic scenes. Therefore, how to ensure segmentation accuracy is still the
main challenge facing the current semantic segmentation.

Based on the existing deep learning network, this study proposes a more efficient
and accurate semantic segmentation network, which can better deal with the problem of
semantic segmentation in urban environment. We have carried out experimental tests on a
variety of common ground objects in the city and found that the ESNet can better complete
the task of semantic segmentation. As the modern urban environment becomes more
and more complex, in the process of helping us accurately understand the surrounding
environment and identify surrounding objects, mobile terminals on vehicles also rely more
on the semantic segmentation ability of deep learning networks. The network structure
proposed in ESNet not only considers accuracy and efficiency, but also completes the
semantic segmentation of scene elements in the city, which will play an important role in
the research of urban environment perception and automatic driving.

The content structure of the article is as follows. First, introducing the atrous spatial
pyramid model and atrous convolution algorithm, an Efficient Symmetric Network (ESNet)
of semantic segmentation model for autonomous driving scenes is constructed. Then, the
segmentation performance of the model is evaluated on the urban scene dataset. On account
of this, the technical principle of an efficient symmetric real-time semantic segmentation
network based on DCNN is first expounded. After that, its application design concept
in urban traffic is discussed. In the end, the simulation test is carried out by a computer,
which comprehensively evaluates the designed ESNet model. The innovation is to apply
DL-based image semantic segmentation technology to the smart transportation system to
promote the development of urban traffic management. The research not only provides
technical support for the development of semantic segmentation but also contributes to the
development of intelligent transportation.

2. An ESNet of Real-Time Semantic Segmentation Based on DCNN
2.1. Basic Principles of CNN

The LeNet-5 network proposed by LeChen can effectively recognize handwritten
digits, bring the CNN back into people’s view, and lay the basic structure of the CNN.
Additionally, CNN is a branch of deep neural network (DNN). The diagram of the network
is shown in Figure 1.
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Figure 1. Architecture of LeNet.

(1) Convolutional layer

The core layer in CNN is the convolutional layer, which contains multiple convolution
kernels. Different convolution kernels can extract the local features of the images in the
input network. In general, low-level convolutional layers can only extract low-level local
features such as corners and edges. In contrast, the extraction of high-level feature repre-
sentations requires high-level convolutional layers [14–16]. The number of convolution
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kernels, the step size of convolution, the size of the convolution kernel, and the padding
are the main parameters of the convolutional layer. The size of the convolution kernel is set
to K × K, the step size of convolution is set to 1, and no padding. The obtained convolution
calculation is shown in Equation (1).

cs
i, j = ∑K

m=0 ∑K
n=0 ∑K

m=0 Ws
m,nXs

m+i,n+j + bs (1)

In Equation (1):
X is the single-channel feature map of the input network.
C (i, j) is the element of the i-th row and the j-th column of the feature map output

from the network structure.
W is the weight value.
b is the bias value.
S is the different biases and weights of different convolution kernels.
The process of convolution operation is shown in Figure 2.
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(2) Pooling layer

The pooling layer, also known as the down-sampled layer, reduces the dimension of
the feature image by down-sampling. The redundant feature information is reduced, and
the dimension reduction of the data is realized. In this process, the quality of the picture
will not be affected. The pooling layer can be divided into average pooling and maximum
pooling. Average pooling refers to dividing the input feature image into multiple regions
and calculating the average value as the output. Max pooling takes the maximum value in
each region as the output [17,18]. The diagram of the two pooling operations is shown in
Figure 3.

(3) Fully connected layer

The fully connected layer is composed of neurons on a single layer, and its neuron
nodes are connected to the neuron nodes of the previous layer. The fully connected layer is
usually stacked behind the convolutional layer in the CNN, and the neural network (NN)
can contain multiple fully connected layers to integrate the extracted feature information.
Suppose the role of the pooling layer and the convolutional layer is to map the original
data to the feature space of the hidden layer. In that case, the role of the fully connected
layer is to map the learned feature representation to the sample label space. It is equivalent
to the “classifier” in the entire CNN [19,20].

(4) Activation function

The activation function plays a vital role in the composition of the NN. If there is no
activation function in the NN, it is no different from a single-layer network and can only
perform some simple linear calculations. The activation function can make the network
more flexible to adjust the mapping function, and the function is often nonlinear such
that the DNN can fit any complex function [21–23]. Common activation functions are
Sigmoid activation function, Tanh activation function, Relu activation function, Leaky Relu
activation function. The plot of these activation functions is shown in Figure 4.
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The most commonly used activation function in the early classification network is the
Sigmoid activation function, and its expression is shown in Equation (2).

f(x) =
1

1 + e−x (2)
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The Sigmoid function maps the input data between 0 and 1. When the input data are
less than 0 and the value is small, the output will be close to 0; when the input data are
greater than 0 and the value is large, the output will be close to 1.

The image curve structure of the Tanh activation function is similar to that of the Sig-
moid function. However, the Tanh function will map the input data between −1 and 1, and
the average of the output results is 0, which can speed up the convergence of the network to
a certain extent. When the input value is small or large, the vanishing gradient problem still
occurs, resulting in stagnation of training. The expression of the Tanh activation function is
shown in Equation (3).

f(x) =
ex − e−x

ex+e−x (3)

In recent years, the Sigmoid activation function has been gradually replaced by the
Relu function and has been widely used in various networks. The Relu activation function
has two main advantages. One is to effectively solve the vanishing gradient of the network
caused by the Tanh and Sigmoid functions. When the input data are positive, the gradient
can always be guaranteed to be 1. The other is compared with the Sigmoid and Tanh
function, the convergence efficiency of the Relu activation function has been significantly
improved [24,25]. The expression of this function is shown in Equation (4).

f(x) =
{

x, x ≥ 0
0, x < 0

(4)

It can also be expressed by Equation (5).

f(x)= max(0, x) (5)

The Leaky Relu function image structure is the same as that of the Relu function. This
function can effectively solve the problem of vanishing gradient while speeding up the
training efficiency of the network. The expression of the Leaky Relu function is shown in
Equation (6).

f(x) =
{

x, x ≥ 0
αx, x < 0

(α > 0) (6)

It can also be expressed by Equation (7).

f(x)= max(αx, x) (7)

2.2. Evaluation Indicators of Semantic Segmentation

As one of the most critical topics in CV, semantic segmentation aims to segment differ-
ent objects in pictures and identify their semantic categories. Early semantic segmentation
mostly follows a segmentation-first-classification scheme. With the development of DL,
semantic segmentation is mainly transformed into a pixel-level classification task, semantic
classification of pixels based on image patches around them. To measure the accuracy
of semantic segmentation, commonly used evaluation indicators include Pixel Accuary
(PACC) and Intersection over Union (IoU).

The calculation of the accuracy of pixel classification is the proportion of correctly
identified pixels to all pixels, and its mathematical expression is shown in Equation (8).

P−ACC =
∑N

i δ
(

l̂l , li

)
N

(8)

N is the total number of pixels in the test set, l̂l , li refers to the predicted label and true
value of pixel i, respectively, and δ is the indicator function shown in Equation (9).

δ(x, y) =
{

1 if x = y
0 otherwise

(9)
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The most commonly used evaluation criterion for semantic segmentation is the IoU.
The IoU is a common criterion for evaluating the similarity of sets A and B in statistics.
This criterion calculates the ratio of the number of elements in the intersection of A and
B to the number of elements in the union. The higher the value, the more similar the two
sets are. When it is extended to the field of semantic segmentation, the set involved in
the calculation of the IoU of a certain class (k) is the set of pixels predicted to be this class
and the set whose true value is this class, and its mathematical expression is shown in
Equation (10).

IoU(k) =

(
∑N

i δ(li, k) & δ
(

l̂l , k
))

(
∑N

i δ(li, k) | δ
(

l̂l , k
)) (10)

In Equation (10), the meaning of each symbol is consistent with that of Equation (8).
Frequency-weighted Intersection over Union (FwIoU) is an extension of the average IoU.
The pixel categories of the predicted target are weighted separately, and the weight is
determined by the frequency of each pixel in all target pixels. Its calculation equation is
shown in Equation (11).

FwIoU =
1

∑k
i=0 ∑k

j=0 pij
∑k

j=0

∑k
j=0 pij pii

∑k
j=0 pij + ∑k

j=0 pji − pii
(11)

Computational complexity is usually assessed using two main indicators, one is used
to measure the speed of the model’s forward prediction, and the other is considered from
the perspective of the model’s computational memory or storage.

Forward inference time calculates the entire processing time of a single image input
into an algorithm or the output result of pixel-level semantic segmentation from the system
to the network. This indicator is affected mainly by the hardware used; thus, an evaluation
of this indicator for any algorithm should specify the hardware used.

Memory usage is important for semantic segmentation tasks, especially when de-
ploying semantic segmentation algorithms on some resource-constrained devices, such
as mobile phones, digital cameras, or safety systems in autonomous driving; they need
to be carefully evaluated. Memory usage may change significantly during its operation
for a complex semantic segmentation network. Therefore, peak memory is generally used,
which demonstrates the maximum memory required for a single image when the model
is running.

2.3. Analysis of the Principle of Atrous Convolution

(1) Receptive field

The receptive field refers to the area of the original input image perceived by the
pixels on the output feature image of a particular convolutional layer. It plays a significant
role in the structure of DCNN. The larger the receptive field, the more global information
contained in the NN features. The receptive field of DCNN can be enlarged in two ways:

One is to expand the receptive field of the entire network structure through down-
sampled strategies such as the confluence layer with step size and convolutional layer;
the other is to use the atrous convolution to expand the receptive field NN. This method
can keep the image’s resolution unchanged [26,27]. The specific analysis of the calculation
process of the receptive field is shown in Figure 5.
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The specific analysis of the calculation process of the receptive field is shown in
Figure 5, the size of the image in the input network is 7 × 7, and the feature image of
1 × 1 is output after three convolutions, the step size of the convolution is 1, the padding
is 0, and the size of the convolution kernel is 3 × 3. After n convolutions, the size of the
receptive field of each unit in the feature image in the original image of the input network
is recorded as rn, the step size of the convolution is recorded as sn, and the size of the
convolution kernel is recorded as kn. As shown in Figure 5, the size of the receptive field
of the image after the first convolution on the original image is the same as the size of the
convolution kernel; that is, r1 = 3, and then the maximum receptive field of the image after
the second convolution is 3 × 3 = 9 [28–30]. Since the step size of the first convolution is 1,
the convolution kernels overlap during the moving process; thus, it is necessary to subtract
the overlapping part (k2 − 1) from the feature image after the second convolution. The
size of the receptive field of the overlapping part is r1 − s1, from which Equation (12) can
be obtained:

r2= r1 × k2 − (r1 − s1) × (k2 − 1)= 3 × 3 − (3 − 1) × (3 − 1) = 5 (12)

Since the size of the convolutional receptive field is cumulatively affected by the step
size of the previous convolution, Equation (13) can be obtained:

r3= r2 × k3 − (r2 − s1 × s2) × (k3 − 1)= 5 × 3 − (5 − 1 × 1) × (3 − 1) = 7 (13)

By analogy, Equation (14) can be obtained:

rn = rn−1 × kn −
(

rn−1 −∏n−1
i=1 si

)
× (kn − 1), n ≥ 2 (14)

After simplifying the above equation, the specific calculation of the receptive field is
obtained as shown in Equation (15).

rn = rn−1 + (kn − 1)∏n−1
i=1 si, n ≥ 2 (15)
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(2) Dilated Convolutions

When making predictions on dense images, it is necessary to perform extensive
reasoning on the context, and it is necessary to ensure that the obtained prediction results
have high resolution. To solve the above problems, a dilated convolution algorithm is
proposed, which can expand the size of the network’s receptive field, and the image’s
resolution will not change during this process [31,32]. The one-dimensional calculation of
dilated convolution is shown in Equation (16).

g[i] = ∑L
l=1 f [i + r.l]h[l] (16)

In Equation (16), g[i], f [i] denote output and input signal; h[l] refers to the convolution
kernel of length l; r means the dilated convolution coefficient used to sample the input
signal f [i]. In the general convolution process, the dilated convolution coefficient is set to 1.

The expansion of the size of the receptive field of the convolution kernel in the
semantic segmentation system can be achieved through dilated convolution of a two-
dimensional form. The specific way is to insert a “hole” between two adjacent pixels of
a common convolution kernel. In recent years, dilated convolutions have been widely
used in semantic segmentation systems, which have effectively improved the accuracy of
semantic segmentation [33,34].

2.4. An ESNet for Semantic Segmentation

To improve the accuracy of semantic segmentation, an ESNet for real-time semantic
segmentation for autonomous unmanned system in traffic scenes is proposed. The results
of the specific network are shown in Figure 6.
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The difference between the ESNet network in this paper and the existing methods is
mainly reflected in the network design [11–13]. As discussed in the introduction of this
article, the basic framework of SegNet, a classical semantic segmentation network, adopts
VGG16 deep learning network as an end-to-end network, which finally classifies images at
the pixel level. ENet adopts an asymmetric encoder-decoder structure, effectively reducing
the number of parameters. ESPNet uses an efficient spatial pyramid convolution module
to improve the operation speed, but the accuracy and semantic segmentation effect need to
be optimized. CGNet mainly relies on the context-guided (CG) block structure to improve
the detection accuracy, which belongs to the network proposed after optimizing the local
structure. ERFNet is similar to ENet, which is improved under the framework of the ResNet
network. The operation of low-rank approximation significantly improves the calculation
accuracy and leads to many parameter settings required by the network. ICNet adopts the
structure of multi-scale prediction fusion and improves the classification accuracy by inte-
grating the low-level semantic information and high-level detail information. Although the
above networks are optimized in terms of detection accuracy and efficiency, most semantic



Appl. Sci. 2022, 12, 7811 10 of 21

segmentation networks are challenging to achieve. Most optimization methods used by
semantic segmentation networks mainly include designing high-performance processing
structures, using the encoder–decoder structure, and multi-scale prediction fusion. It is not
easy to achieve efficient and accurate semantic segmentation by focusing on only one of
the optimization methods. Based on this, we propose an ESNet semantic segmentation
network by integrating various optimization methods. The ESNet network adopts the
above optimization methods, and the independently designed PFCU structure further
improves the network’s robustness and detection accuracy. Through some optimization
design, the network has apparent advantages in the semantic segmentation of the urban
environment. The structural design of ESNet network is introduced in detail below.

ESNet is an efficient symmetrical encoder–decoder structure consisting of four units:
up-sampling, Parallel Factorized Convolution Unit (PFCU), Factorized Convolution Unit
(FCU), and down-sampled. Among them, the residual module of the FCU adopts 1D
factorized convolution with different sizes of convolution kernel, which enables it to
capture object instances of different sizes. In order to effectively improve the feature
expression ability of the network, the residual module of the PFCU adopts the strategy of
“transform-split-transform-fusion”. It uses convolution with different atrous coefficients to
expand the receptive field of the convolutional layer. The ESNet structure is constructed by
symmetrically stacking the residual modules of PFCU and FCU. The encoder generates
the deep semantic feature image of the down-sampled unit. In contrast, the decoder up-
samples the deep feature image to match the resolution of the input image so that the
spatial information of the image is recovered and mapped to the segmentation category. The
semantic segmentation prediction results are finally generated, and the obtained prediction
results are consistent with the resolution of the input image [35,36]. The structure level of
ESNet is shown in Figure 7.
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(1) Hybrid residual block of atrous factorized convolutional encode

The PFCU is the core component of the designed ESNet structure, and its specific
structure is shown in Figure 8. The residual module of the PFCU adopts the strategy
of “transform-split-transform-fusion”. First, the data are processed from the 3 × 1 conv
layer to the 1 × 3 conv layer through the Relu activation function. This process is the first
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transform operation. Then, after the data pass through the BN layer, they are processed
into three concurrent channels through the Relu activation function, which is the split
operation. On this basis, the data of the three channels are processed by the Relu activation
function respectively and then transferred from the 3 × 1 conv layer to the 1 × 3 conv
layer. This process is the second transform operation. Finally, afterward, the data of the
three channels are merged through the BN layer and processed by the Relu activation
function for the last time, this process is the fusion operation. Considering the complexity
of the actual urban environment, we try to adopt some robust means in designing the core
processing structure of the ESNet network proposed in this paper. For example, using the
BN layer here stabilizes the training and reduces the extreme distribution of input data
caused by instability.
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The specific structures of the bottleneck residual block, non-bottleneck residual block,
one-dimensional non-bottleneck residual block and FCU in ResNet are shown in Figure 9.
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Figure 9. Structure diagram of the residual module of the PFCU: (a) non-bottleneck residual block;
(b) bottleneck residual block; (c) one-dimensional non-bottleneck residual block; (d) FCU.

The size of the convolutional layer in the main branch structure of the bottleneck
residual block is 1 × 1, 3 × 3, and 1 × 1. The function of two convolutional structures
is to increase or decrease the channel dimension, and an activation function is added
between the convolutional layers to realize batch processing of the normalization layer.
Shortcuts connect the side branches, and the output of the main branch is directly added
pixel by pixel.

The main branch structure of the non-bottleneck residual block consists of two con-
volutional layers with a size of 3 × 3; a Batch Normalization (BN), and a Rectified Linear
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Unit (Relu) activation function are added between the two convolutional layers. Shortcuts
connect the side branches, and the residual block’s input and the main branch’s output are
directly added pixel by pixel. Problems such as gradient exploding and vanishing in the
parameter update of CNN can be avoided by shortcut connection, and a deeper network
can be trained.

(2) Up-sampling module and down-sampled module

The specific structure of the up-sampling and down-sampled modules used is shown
in Figure 10.
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Figure 10. Structure of up-sampling module and down-sampled module: (a) up-sampling module;
(b) down-sampled module.

The specific structure of the up-sampling and down-sampled modules used is shown
in Figure 10, the size of the convolution kernel in the up-sampling module is 3 × 3, the step
size is 2, and the input and output tensors are (N, Cin, Hin, Win) and (N, Cout, Hout, Wout),
respectively. The number of channels of the convolution kernel is Cout and deconvolution
with padding, so that the resolution of the image can be recovered. The number of input and
output channels of the down-sampled module is Cin and Cout, respectively. The structure
adopted is a parallel branch design. The size of the convolution kernel in the main branch
structure is 3 × 3, the step size is 2, and the number of channels is Cout − Cin. The number
of branch output channels is the same as the number of channels of convolution kernel.
The maximum confluence layer size in the side branch structure is 2 × 2 and the step size
is 2. Then, the number of output channels of this layer structure is Cin. The feature image
obtained by the branch are connected and used as the output feature image of the entire
down-sampled module, and the number of channels is Cout.

3. Experiment and Results Analysis
3.1. Experimental Configurations

Pytorch is a Python ML library based on the Torch language. Torch is an open-source
ML library based on the Lua programming language. Therefore, Pytorch has an automatic
differentiation mechanism that can build and train neural networks. Moreover, it has
tensor computing supported by potent Graphics Processing Unit (GPU) acceleration such
as NumPy.

The Pytorch framework has been widely used in recent years because of its significant
advantages. The Pytorch framework is different from DL libraries such as Tensorflow.
Tensorflow requires that the complete calculation graph be defined before the user-defined



Appl. Sci. 2022, 12, 7811 13 of 21

model can be run. However, the Pytorch framework supports the dynamic graph mech-
anism, and the Pytorch framework effectively improves the speed and flexibility of DL-
related research.

Therefore, the Pytorch framework is used to analyze the performance of the proposed
algorithm. The experimental configurations are shown in Figure 11.
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Figure 11. The experimental configurations.

The datasets used in this experiment are Cityscapes and CamVid autonomous driving
scene datasets:

(1) Cityscapes dataset: This dataset collects 50 different urban scene data, including
vehicles, pedestrians, roads, etc. It contains an image set with 20,000 rough annotations
and an image set with 5000 good annotations. The 5000 dataset finely labeled image sets
are subdivided during the experiment to form 2975 training sets, 1525 testing sets, and
500 validation sets, with 19 target categories and 1 additional background category. After
the segmentation is over, the semantic segmentation results are further improved using a set
of images with rough annotations [37]. An example of image annotation in the Cityscapes
dataset is shown in Figure 12.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 22 
 

Software and 

hardware 

environment

configuration

operating system

Ubuntu 16.04

GPU

NVIDIA 

GeForce GTX 

1080 Ti

GPU processor

Intel Xeon W-

2133(3.60GHz)

CUDA

CUDA 9.0

cuDNN

cuDNN7.14

Deep learning 

framework

Pytorch 1.1

 

Figure 11. The experimental configurations. 

The datasets used in this experiment are Cityscapes and CamVid autonomous 

driving scene datasets: 

(1) Cityscapes dataset: This dataset collects 50 different urban scene data, including 

vehicles, pedestrians, roads, etc. It contains an image set with 20,000 rough annotations 

and an image set with 5000 good annotations. The 5000 dataset finely labeled image sets 

are subdivided during the experiment to form 2975 training sets, 1525 testing sets, and 

500 validation sets, with 19 target categories and 1 additional background category. Af-

ter the segmentation is over, the semantic segmentation results are further improved 

using a set of images with rough annotations [37]. An example of image annotation in 

the Cityscapes dataset is shown in Figure 12. 

(2) CamVid dataset: This dataset contains 710 low-resolution images with 11 seg-

mentation categories. During training, the 710 low-resolution images are further divided 

into training, validation, and test sets with 376/101/233 images, respectively [38]. 

 

Figure 12. An example of image annotation from the Cityscapes dataset: (a) training set/test 

set—fine annotation; (b) training set—rough annotation; (c) test set—fine annotation. 

  

(a)

(b)

(c)

(a)

(b)

(c)

Figure 12. An example of image annotation from the Cityscapes dataset: (a) training set/test set—fine
annotation; (b) training set—rough annotation; (c) test set—fine annotation.
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(2) CamVid dataset: This dataset contains 710 low-resolution images with 11 segmen-
tation categories. During training, the 710 low-resolution images are further divided into
training, validation, and test sets with 376/101/233 images, respectively [38].

3.2. Experimental Configurations

The training process of the specific model is as follows:
First, the data are preprocessed, and the effectiveness of the proposed algorithm

is verified by using the Cityscapes scene segmentation dataset. The dataset contains
5000 finely labeled images with a resolution of 1024 × 2048, including 2975 images in the
training set and 1525 images in the test set, and 500 images in the validation set. Moreover,
20,000 roughly annotated images are used to improve the generalization performance of
the designed segmentation network. The model is first trained with roughly labeled images.
After 20–30 epochs of training, the model is continued to be trained with finely labeled
images. Afterward, the images in the dataset are cropped to a size of 512 × 1024 and then
input into the network. During the experiment, the data are enhanced using overall image
translation and random horizontal flipping.

In the model training phase, the Adam optimizer is used to update the model parame-
ters first. During the training process, the relationship between the training set Loss of the
model, the learning rate, and the number of training rounds is shown in Figure 13.
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Figure 13. Curve graph of the training set Loss and the learning rate and the number of train-
ing epochs.

3.3. Comparison of Model Experiments
3.3.1. Experimental Results and Analysis on the Cityscapes Dataset

To verify the performance of the proposed ESNet for segmentation, six real-time
semantic segmentation models with higher accuracy are selected for comparison with the
proposed network model, namely SegNet, ENet, ESPNet, CGNet, ERFNet, and ICNet, etc.
The experimental results obtained are shown in Figure 14.
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The experimental results obtained are shown in Figure 14. The Cla accuracy refers to
the average IoU of seven segmentation methods in 19 semantic categories, such as bicycle,
motorcycle, train, bus, truck, car, rider, person, sky, terrain, vegetation, traffic signs, traffic
lights, poles, fences, walls, buildings, sidewalks, roads, etc. Cat accuracy is the average IoU
of seven segmentation methods under seven large grouping categories: people, objects, sky,
vehicles, natural, buildings, planes, etc.

In Figure 14, on the Cityscapes dataset, the ESNet structure achieves a segmentation
accuracy of 70.7% for the 19 semantic categories set and 87.4% for the seven large grouping
categories. Compared with other algorithms, all have different degrees of increase. Com-
pared with a complex ICNet, the segmentation accuracy of the proposed ESNet structure is
only 0.4% lower than it in each semantic category. However, its segmentation accuracy is
improved by 0.4% under large grouping categories. The recognition results of the seven
segmentation models for semantic categories such as roads, sidewalks, buildings, walls,
fences, and poles are shown in Figure 15.

Comparing the recognition results of the above 13 categories by different segmentation
models indicates that the constructed ESNet structures have achieved better segmentation
results. Compared with the ENet structure, the ESNet structure improves the segmentation
accuracy of trucks by 22.9% and the segmentation accuracy of cars by 29.6%, which has
obvious advantages. High recognition accuracy is still achieved for pixel categories that are
difficult to identify, such as fences, poles, and traffic facilities. This demonstrates that the
recognition accuracy of different network structures for small target objects such as traffic
lights and traffic signs is different, but the ESNet network proposed in this paper can still
better complete the task of semantic segmentation.
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Figure 15. Comparison of recognition results of various segmentation models: (a) recognition results
of various buildings; (b) recognition results of various traffic facilities; (c) recognition results of
various traffic signs.

3.3.2. Experimental Results and Analysis on the CamVid Dataset

To verify the efficiency of the proposed ESNet, this section trains and evaluates the
ESNet on the CamVid scene segmentation dataset and compares and analyzes it with
several current fast segmentation methods. The evaluation indicators used include: Mean
Intersection over Union (MIoU), model parameters, and Frames Per Second (FPS).

Compared with some current lightweight real-time semantic segmentation methods,
the overall segmentation performance of the proposed ESNet structure on the CamVid test
set is shown in Figure 16.
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In Figure 16, the experimental results reveal that compared with segmentation net-
works of multiple lightweight real-time images, the parameters of the ESNet model are
around 1.2 m, the highest FPS value is around 90 Hz, and the highest mIOU value is
around 70%. It can be seen that ESNet significantly improves segmentation accuracy while
maintaining faster forward inference speed.

To further analyze the prediction accuracy of the ESNet structure on each category,
the prediction accuracy of ESNet on the CamVid test set for each category is shown in
Figure 17.
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Figure 17 demonstrates that in the seven semantic categories of the sky, buildings,
pillars, roads, sidewalks, trees and traffic signs, the segmentation accuracy of the ESNet
model is the highest at around 98% and the lowest at around 40%. In the segmentation test
of each category, the ESNet model has the highest segmentation accuracy. This means that
the performance of the ESNet model is better than other models.

3.3.3. Efficiency of Scene Semantic Segmentation in Different Networks

In order to better test the processing ability of the method proposed in this paper in
the actual urban scene, we use the real image collected by the front camera of the vehicle
to test. Three pieces of test data in three different scenarios are mainly used. Finally, the
average value of the shortest time taken to obtain reliable test results is counted. The test
results are shown in Table 1 in milliseconds.

Table 1. Efficiency comparison table of different methods (ms).

SegNet ENet ESPNet CGNet ERFNet ICNet EDANet ESNet

Daytime scene 67.5 38.6 9.6 25.1 25.7 40.0 21.2 20.8
Night scene 43.2 30.0 9.1 21.6 24.5 37.2 20.8 19.6

In rainy weather 60.0 33.8 9.4 24.5 23.5 38.6 21.6 20.4
Average value 56.9 34.1 9.3 23.8 24.6 38.6 21.2 20.3

From the experimental results, the method in this paper performs well in the actual
tests in many scenarios. Although ESNet’s average detection speed ranks second, its detec-
tion accuracy is more than 15% higher than that of the fastest ESPNet network. In general,
this method has apparent efficiency and accuracy advantages in dealing with semantic
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segmentation in the complex urban environment. In other words, the ESNet network
considers these two aspects simultaneously and has excellent practical application value.

3.4. Discussion

According to DL theory, the method for efficient image semantic segmentation using
DCNN is deeply studied. This is mainly achieved by optimizing DCNN for efficient
semantic segmentation of images and applying it to vehicle visual sensors to improve its
recognition performance for urban scenes, thereby promoting the development of urban
traffic. In the experiment of feature semantic segmentation using the Cityscapes dataset,
ESNet has the highest Cla and Cat accuracy compared with other networks and is at a
high level in indicators such as forward inference time and inference speed. At the same
time, the training of the model requires the fewest parameters. Moreover, the IOU of
ESNet in extracting static objects, moving objects, and small targets is basically at a high
level in each network, and some projects are better than all other networks, which also
show the advantages proposed by ESNet. It mainly studies the semantic segmentation
of multi-class objects in complex urban environments. In experiments using the CamVid
dataset, ESNet achieves the highest mIOU index compared to the other four existing
semantic segmentation networks. Except for the Cityscapes dataset, the network still
maintains competitive performance. In particular, whether using the Cityscapes dataset or
the CamVid dataset, the semantic segmentation effect of the ESNet on small objects such as
traffic signs is better than all other networks participating in the comparative experiments.
This indicates that ESNet has a better semantic segmentation effect for small objects in the
urban environment.

To sum up, ESNet has shown excellent results in both the accuracy and computational
efficiency of semantic segmentation. Tested on different urban datasets, ESNet performs
well on the task of semantic segmentation with various urban feature elements compared
to other similar networks. The limitations of the research include the following two points:
(1) Although DCNN is deeply optimized for efficient image semantic segmentation, it has
not been practically applied; thus, there is a lack of evaluation results in practical traffic
applications. (2) The reference factors for the optimization of semantic segmentation are
not comprehensive enough; thus, more comprehensive optimization of this technology is
needed in future research.

4. Conclusions

With the progress of AI technology, DL networks and optimization strategies for
semantic segmentation have also been proposed in various industries. However, this
technology has not been applied in urban traffic management. Therefore, based on DL
theory, methods for efficient semantic segmentation of images using DCNN have been
intensively studied. First, the theoretical basis of CNN is briefly stated, and the real-
time semantic segmentation technology of urban scenes based on DCNN is introduced in
detail. Then, the atrous convolution algorithm and the multi-scale parallel atrous spatial
pyramid model are expounded, and an ESNet of real-time semantic segmentation model
for autonomous driving scenarios is proposed. The overall network adopts an encoder–
decoder structure. The encoder uses a designed hybrid atrous convolution module to
extract dense image features and uses convolution kernels of diverse sizes at various levels
of the network to extract multi-scale features. A large number of comparative experiments
are designed to verify the effectiveness of the network, and the segmentation performance of
the model is evaluated on the urban scene dataset Cityscapes. The proposed ESNet structure
achieves a segmentation accuracy of 70.7% for the 19 semantic categories and 87.4% for
the seven large grouping categories, which are increased to varying degrees compared
with other algorithms, and this structure improves the segmentation accuracy of trucks
by 22.9% and the segmentation accuracy of cars by 29.6%, which has obvious advantages.
Although the proposed method achieves a balance between segmentation accuracy and
forward reasoning speed to a certain extent, there are still many shortcomings that need to
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be further studied and improved. The proposed efficient real-time semantic segmentation
method based on DCNN faces huge challenges. Especially with the development of DL
technology, many efficient methods have emerged. For example, the Generative Adversarial
Networks can be used to learn more discriminative features, Graph network models are
used to perform better relational reasoning on the data, NN architecture search is used to
reduce manual operations in the design of the model, and the optimal network structure
for fitting the data are adaptively selected. The network structure further reduces the
memory consumption, storage overhead, and energy overhead of the model. These can
further reduce the memory consumption, storage overhead, and energy costs of the model.
Compared with the study of Wen et al. (2019) [39], the designed method covers a wider
range of fields, and the degree of method optimization is deeper. Therefore, the research
will play a more vital role in future social development.
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