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Abstract: The constant increases in electricity tax costs and the mandatory contracting of power
demand in advance by companies connected to the high-voltage electrical system drive organizations
to improve energy planning in their production processes. In addition, market uncertainties make
only stochastic methods insufficient for forecasting future production demand. To fill this gap, this
study proposes a model that integrates the cost with electricity consumption and power demand into
the aggregate production planning, considering the market uncertainties. The model was empirically
applied in the food industry, considering a family of potato chips products. From the collected
data, a demand forecast was carried out for a later realization of the aggregate planning, using the
Holt–Winters forecast model. Before modeling, the new energy demand was calculated, and finally,
the model solution verification was performed. In the case study, after application, it was possible
to reduce two workers and a cost reduction of R$ 14,288.00. Moreover, the proposal managed to
define a power demand that minimized the costs of electric energy and the total costs of the aggregate
production planning.

Keywords: planning and production control; aggregate production planning; electricity; power
demand; production engineering

1. Introduction

The industrial sector is the largest energy consumer, representing more than a third
of primary energy consumption worldwide [1]. With the increasing electricity costs in
the recent years, it has become crucial to consider them during production planning [2].
From the producer’s point of view, reducing the production process cost can make the
product more competitive in the market. Furthermore, within a social context, reducing
electricity costs in the productive sector makes it possible to offer more accessible products
to the population.

Moreover, the increase in electricity consumption in developing countries follows the
population growth and economic progress. In general, it is observed that the population
needs to increase the energy use to sustain a better quality of life [3]. Thus, the increase
in electricity consumption is one of the results of the economic recovery of emerging
countries, but scientists also point it out as one of the factors with the greatest climatic
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and environmental impact [4]. It is estimated that if consumption in developing countries
continues to follow the current trend, it may surpass that of developed countries [5].

The current challenge for developing countries is to ensure more efficient and sus-
tainable resource management to minimize climate and environmental impacts related to
energy production [6]. Unfortunately, Brazil’s energy consumption data indicate that the
country follows the same line as other developing countries, with increasing consumption
over time.

Since the Brazilian energy matrix is heavily dependent on water resources, the low
rainfall due to the seasons can become a bottleneck for the Brazilian society and its pro-
duction chain. In the country, some seasons are systematically characterized by a low
amount of rainfall, which influences water resources [5,7]. Given this, decision-makers in
Brazil must know how to manage energy consumption better, reducing dependence on
thermoelectric plants since they burn fossil fuel, pollute, and have higher generated energy
costs, unlike hydroelectric plants.

In this scenario, it is essential that companies efficiently manage their energy con-
sumption, minimize the impact that bad weather has on energy supply, guarantee the
efficiency of their operations, and optimize their electricity costs. The efficient use of electri-
cal energy is a way for companies to reduce operating costs and increase their economic
performance [8,9].

Several studies in the literature present predictions about energy consumption. Chou
et al. [10] employed Machine Learning models and Artificial Neural Networks to predict the
demand and ensure the supply to customers of energy supply networks. Hu et al. [8] used
prediction models to predict energy consumption; the application case was implemented
in energy pipelines to meet the needs and optimize the management. Maaouane et al. [11]
used regression models to predict industrial energy demand in Morocco. Mourtzis et al. [12]
developed a model to manage energy demand and predicted prices in a way that allows
companies to reduce energy costs. On the other hand, no works are found in the literature
which differentiates demand forecasting and aggregate production planning.

Aggregate production planning is a way of managing production capacity. Usually, it
is carried out considering a period of 2 to 18 months to meet the fluctuation in demand [13].
The aim is to determine the optimal amount of raw material, production, workforce, and
inventory levels for each planning period considering limited resource capacities [14,15].
Given the identified gap, this study proposes and applies a model that integrates the cost
of electricity consumption and power demand to aggregate production planning. The
proposed model allows production planning to consider medium-term energy demand
forecasts to reduce waste in procurement in a food production company in Brazil.

This study can assist in the energy planning of companies from different industrial
segments since ANEEL (National Electric Energy Agency) Resolution 414/2010 determines
that consumers of high voltage electricity must previously contract a power demand to be
used throughout the contract period [16]. This requires companies to plan production to
meet, as accurately as possible, the amount of demand needed.

To meet the demands of companies, this study aims to answer the research question:
how can electric energy and power demand be considered for cost reduction in aggregate
production planning? To fill this question, this study aims to propose a model that integrates
the cost with electricity consumption and power demand into the aggregate production
planning, considering the market uncertainties.

2. Theoretical Background

Traditional PAP problem models can be classified into six categories: (i) linear pro-
gramming (LP); (ii) linear decision rule (RDL); (iii) method of transport; (iv) management
coefficient approach; (v) search decision rule (RDB); and (vi) simulation [17]. Feng et al. [18]
complemented with three more methods: (i) dynamic programming; (ii) transport tables,
and (iii) fuzzy logic mathematical programming. When using any of the planning models,
the objectives and inputs of the model are generally considered to be deterministic, and
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problems can only be solved if they have the sole objective of minimizing the cost during
the planning period [15].

According to Arruda Junior [19], studies have been using models to support aggregate
planning in natural systems since the 1980s. For example, Mehdizadeh et al. [20] developed
a bi-objective optimization model for an aggregate planning problem with work learning
effect and machine deterioration. The first objective maximizes profit, and the second
minimizes costs associated with machine repairs and deterioration. The objective was
to obtain the appropriate production rates at regular and overtime levels, inventory, and
shortages, hiring and firing of workers, and the quantities of subcontractors. To validate the
mathematical formulation of the model, it was converted into a single-objective model using
the fuzzy objective programming method, based on which computational experiments are
performed on a set of small-sized random instances solved by the software LINGO.

Izadpanahi and Modarres [21] performed a linear programming model with three
objective functions, which minimize operational cost, energy cost, and carbon emission. It
is assumed that several types of energy can be used. They differ in the amount of pollution,
calorific value, and cost. The model was applied to the foundry factory, which produced a
wide range of products such as aluminum, copper, and lead, and used different machines
and manufacturing equipment capable of consuming different types of fossil fuels with
different carbon emissions. The objective was to determine the most effective means of
satisfying anticipated aggregate demand by adjusting production rates, inventory levels,
backlogs, and other controllable variables. The model was solved as a single-objective
model, applying a goal-setting technique, and to overcome the effects of uncertain input
data, a robust optimization approach was applied to the model. These objective functions
sought to minimize operating costs, energy, and carbon footprints. The authors concluded
that by increasing the budget level of uncertainty, the amount of increase for electricity cost
is much greater than other objective function costs.

Latifoglu et al. [22] presented an optimization model for aggregate production plan-
ning under the assumption that electricity supply is subject to uncertain interruptions
caused by participation in uninterruptible load contracts. The objective was to minimize
the cost of electricity used in production by providing a robust production plan to guarantee
demand satisfaction in all possible outage scenarios. The model considered the operational
level problem, aggregate production, and inventory planning with the electricity supply
uncertainty and deterministic demand. Production decisions were separated from interrup-
tion decisions, as the former belonged to the industrial company, while the latter related to
the electricity retailer. A heuristic was developed to find a viable solution to the model, in
which it found an optimal solution for each instance in 7 periods. The outage uncertainty
framework allows different contract and operational rules to be incorporated into the
production planning problem simultaneously, such as limiting production in post-outage
recovery or prohibiting production level increases in specific periods.

Zhang et al. [2] proposed a new mathematical model to determine efficient scheduling
to minimize energy and electricity consumption for the flexible workshop scheduling
problem in a time-of-use policy. In addition, a speed selection option has been added to the
model, which represents the selection of variable operating speeds. It can be applied to
industry and help decision-makers develop production schedules that can reduce time and
electricity costs.

Choi and Xirouchakis [23] proposed a definition with a holistic approach to produc-
tion planning in a reconfiguration manufacturing system with energy consumption and
environmental effects. A methodology was defined based on reconfigurable manufacturing.
The considered model was developed in linear programming with multiobjective functions
to minimize energy consumption and maximize throughput, subject to linear constraints
related to various resources and constraints for customer demands. The results showed the
developed approach’s efficient and practical applicability.
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3. Materials and Methods

Figure 1 presents the model proposed in this work to integrate energy demand forecast-
ing and aggregate planning, which is composed of four steps: (i) Data collection; (ii) Power
Demand Definition; (iii) Production Demand Forecast; and (iv) Aggregate Planning Model-
ing and Solution.
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Figure 1. Stages of the proposed model.

The development and application of the model were based on a study carried out
in a cooperative in the agro-industrial sector, located in southern Brazil, which produces
a family of products, namely: straw potato; wavy potato chips; and plain potato chips
(traditional and bacon with cheddar). In addition, the cooperative produces an average of
90 tons/month of French fries in a make-to-order environment.

3.1. Stage 1—Data Collection

Initially, the product family was identified based on data provided by the studied
cooperative. Regarding electricity, it is necessary to collect: the type of contract (blue or
green modes); the consumption and demand of power on and off the peak; the energy
consumption taxes (R$/kWh), and the power demand (R$/kW) on and off-peak; and the
demand for contracted and consumed power.

The peak time, defined by ANEEL—National Electric Energy Agency—in its Reso-
lution 414/2010, occurs between 6 pm and 9 pm when electricity consumption is higher,
except on Saturdays, Sundays, and national holidays. The off-peak time is the period
composed of the set of consecutive daily hours and complementary to those defined during
peak hours.

To discourage the use of electricity at peak hours by high voltage consumers, higher
tariffs are imposed at that time. For this reason, the electricity bill has two modalities: blue
and green. Consumers powered by 69 kV or more are charged only in the blue mode, while
the others can choose blue or green, whichever is more convenient for the consumer. In the
blue mode, there is a tariff differentiated by the contracted power demand at the peak and
off-peak, and in the green mode, the power demand tariff is unique and can be consumed
both at the peak and off [16].

Concerning production, the production demand forecast must be identified; the
productive capacity of production; the cost of production; the cost of labor; the cost of
hiring employees; the cost of dismissing employees; the forecast of energy consumption;
the cost of electricity; the cost of power demand; the number of employees available in the
period; and the cost of overtime.
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3.2. Stage 2—Definition of Electric Power Demand

The charging of the electricity demand taxes, according to Normative Resolution
No. 414, of 9 September 2010 [16], is calculated by Equation (1).

CDP = TDPC × DPM (1)

where CDP is the monthly cost of power demand (R$), TDPC is the contracted power
demand taxes (R$/kW), and DPM is the Measured Power Demand (kW).

Overshoot occurs when an amount above the power demand contracted by the com-
pany is consumed. In this way, a different charge is made, obtained from Equation (2) [16].

CUDP = (DPM − DPC)× (2 × TDPC) (2)

CUDP is the cost of exceeding power demand; DPC is the Contracted Power Demand;
TDPC is the Contracted Power Demand Taxes.

For example, during the contract period of one year, the company pays monthly for
the previously contracted power demand, even if it is not used. Overshoot occurs when
the electric power utility measures a value above the power demand contracted by the unit.
This tax is stipulated by ANEEL and costs twice as much as contracted. In this condition,
the company pays the contracted value plus the value of exceeding demand.

As the company must contract only one demand value charged monthly during the
contract period, the proposed model considers each value observed in recent years as a
possible power demand to be contracted (DECj). This is compared with the other measured
electrical demands (DEMi) to check for overshoot.

The power demand to be contracted is mandatory and continuously made available
by the distributor, at the point of delivery, according to the value and period of validity
previously established in the contract, and which must be paid in full, whether or not used
during the billing period, expressed in kilowatts (kW). During the entire contract period,
for example, one year, the company pays monthly for the previously contracted power
demand, even if it is not used. Overshoot occurs when the electric power utility measures
a value above the power demand contracted by the unit. The rate for exceeding demand
stipulated by ANEEL is double the contracted rate. In this condition, the company pays
the contracted value plus the value of exceeding demand. In practice, companies usually
contract the highest power demand value measured between the months of the previous
year to avoid exceeding demand during the next contract period.

A contracted tax (TCi) is applied to the contracted demand; if consumption is greater
than the contracted demand, an overtaking tax (TUi) is also applied. TCi and TUi are
defined by ANEEL [17]. The cost during the period is the sum of the costs of the ‘n’ months
of the contract. The power demand to be contracted, then, is the one that results in the
lowest cost of the period to be contracted (minCDEj), obtained by Equation (3).

CDPj =
n

∑
i=1

((
DPCj × TDPCi

)
+ k ×

(
DPMi − DPCj

)
·(2 × TDPCi)

)
(3)

where

k =

{
1, DPMi > DPCj
0, otherwise

3.3. Stage 3—Production Demand Forecasting

This step consists of performing the production demand forecast. The Holt–Winters
model was used because it has many uses in demands that present variations, seasonality,
and trends. It contains triple exponential smoothing without recalculating seasonal factors
from scratch [24,25]. The software R Project x64 (version 3.2.4, R Core Team, Vienna, Austria)
and Excel developed the models. The R Core Team [26] developed the R Cran software
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to read and model the demand data. The TSA, MASS, tseries, and forecast packages were
used for the modeling.

The first manipulation step is plotting the correlogram and performing an initial
analysis to identify the components of randomness, trend, and seasonality. When the series
is random, autocorrelations close to zero are observed. However, there are drops or positive
peaks in the values when there is a trend or seasonality. Therefore, if the data show a trend,
it is necessary to carry out the differentiation process to remove this component and then
repeat the initial analysis of the differentiated series.

This repetition can take place until the trend component is removed. To prove the
assumption of the removal of the trend component, it is necessary to carry out a hypothesis
test at 0.05 of significance (Augmented Dickkey–Fuller) [27]. This test is based on the
following hypotheses: H0: non-stationary process (null hypothesis); H1: stationary process
(alternative hypothesis).

The series is broken down into trend and seasonality in the second step, and the graph
is displayed for verification. After this procedure, the database is divided into testing and
training, in which 87% train (fit) the model and 13% test the model’s prediction quality.

The training process involves a series of steps. First, there is the adjustment of the
Holt–Winters model, which can be additive or multiplicative, and, after that, an eight-step
forward prediction is performed with these two approaches. Next, the forecasted models
must be analyzed to choose the best among them. This analysis is performed from the
calculation of forecast errors. Finally, with the results in hand, the prediction made by the
model that presents the best performance is chosen.

Then, it is necessary to carry out graphical tests of normality and autocorrelation. The
most commonly used test is the Shapiro–Wilk test [28]. The model’s simplifying hypotheses
are H0: residuals are not normal (null hypothesis); H1: residuals are normal (alternative
hypothesis). If the p-value of the test is less than 5%, the null hypothesis is rejected so that
the model meets the normality assumption.

3.4. Step 4—Aggregate Planning Modeling and Solution

The model developed to solve the Aggregate Production Planning (APP) consists of a
linear programming model. The model equation was elaborated involving two dimensions,
labor and financial. The first case involves hiring and subcontracting personnel. As for
production, to carry out aggregate planning, it is necessary to collect the data presented in
Section 3.1.

It is necessary to define its horizon to prepare the planning model, denoted in this
equation by H. For aggregate production planning problems, the horizon usually varies
from three to fifteen months (3 ≤ H ≤ 15). Thus, the H can be changed according to the
problem. In this study, H is equal to 12 months since the idea is to develop an annual
production plan.

After defining the horizon, it is necessary to determine the main variables and param-
eters that describe the problem. At this stage, the new reduced electric energy cost and
power demand are allocated as variables and have their restrictions. With the literature
support, it was possible to define those that will be used in the mathematical equation of the
proposed model according to the nomenclature table presented in the Nomenclature list.

To obtain the cost of electricity, consider the electricity taxes (TE) in R$/kWh and
an energy performance indicator (I) [29] that measures the relationship between energy
consumption electricity by the amount produced (kWh/kg). This represents the average
value from January monthly indicators 2014 to December 2018. Thus, the cost of electricity
(R$) is obtained by: Cee

t = I × TE.
As this study focuses on integrating this power demand to reduce costs, the power

demand cost in the period was considered a parameter, and the contracted power demand
was considered a decision variable. In this way, from such definitions, it is possible to build
the cost minimization function (Equation (4)) [30]:
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Min ∑T
t=1(C

u
t · Ut + Cee

t ·Ut + Ce
t ·Ue

t + Cm
t · Tt + Cc

t · Tc
t + CD

t · TD
t + CHe

t ·He
t + CS

t ·US
t + C f

t · U f
t . + Cde

t ·De
t ) (4)

This function has the following restrictions, based on the nomenclature presented in
the “Nomenclature list”, such as the conservation of workforce, the limitation of production
in the period, the limits of overtime, the limit of stock, the limits of backorders, the power
limitation, and non-negativity constraints.

In the first constraint (Equation (5)), the number of workers in the current period (Tt)
must be equal to the number of workers in the previous period (Tt−1) added to the hirings
in the current period (Tc

t ) and subtracted from layoffs in the current period (TD
t ), being [30]:

Tt= Tt−1 + Tc
t − TD

t para 1 ≤ t ≤ H (5)

The second constraint (Equation (6)) is characterized by the limitation of production
in period t, in which the produced capacity cannot exceed the available capacity. This is
internally defined based on available labor hours, regular or extra. Thus, it is determined
by the amount that the company can produce in normal hours per month (HN

t ) and in
overtime (HH

t ) [30]:
Cat = HN

t + HH
t para 1 ≤ t ≤ H (6)

In the third constraint (Equation (7)), there is a limit for overtime (established by
the company itself); that is, if it is not desired that overtime production exceeds 25% of
production capacity in each period (Ht), the constraint appears to be [30]:

Ht ≤ 0.25 to 1 ≤ t ≤ H (7)

This variable is balanced at the end of each period in the stock restriction. The net
demand is obtained from the sum of the demand Dt and the number of units missing
U f−1 from the previous period. Thus, this can be met by current production (in normal Ut,
subcontracting US

t , extra hour UH
t and by previous stock E f−1), or part of it is accumulated.

This relationship is represented by Equation (8) [30]:

Ue
t= Ei+Hn

t +UHe
t +US

t −Dt−U f−1, para 1 ≤ t ≤ H (8)

The backorder restriction (Equation (9)) is limited to the number of products allowed
by the company that will be out of stock, being [30]:

U f
t ≤ X to 1 ≤ t ≤ T (9)

The power limitation constraint (Equation (10)) is limited to contracted demand
power [30].

Dpe
t = X, to 1 ≤ t ≤ H (10)

The non-negativity constraints indicate that the number of units produced (Ut), in
final stock (Ue

t ), of available workers (Tt), hired (Tc
t ), and fired (TD

t ), must be greater than
or equal to zero, according to Equation (11) [30].

Ut ; Ue
t ; Tt ; Tc

t ; TD
t ; Us

t ; U f
t ; Ht ≥ 0 to 1 ≤ t ≤ H (11)

All parameters and variables that involve the production process were considered.
However, according to the company’s characteristics, they can be removed from the equa-
tion during the application or reset to zero. Thus, the resulting model determines the most
effective means of satisfying the expected aggregate demand, adjusting production rates,
the amount of electrical energy, and other controllable variables.

To solve the model, the equation is solved with the help of the Solver tool of the Excel
software. Then, as planned, the production plan for the next 12 months was drawn up.
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After this procedure, the current scenario of the cooperative is compared with the proposed
scenario using the new power demand.

3.5. Model Verification (Sensitivity Analysis)

Sensitivity analysis consists of verifying the stability of the solution from possible
variations of the parameters used in linear programming; that is, it determines how the
solution can be modified from changes in its parameters [31]. For Butler et al. [32], it is the
one who determines the robustness of the solutions obtained. In this analysis, some points
are verified, in which Bazaraa et al. [33] reported that the shadow price is associated with
the constraints of Linear Programming; if it increases, the objective function also changes in
the same proportion, such as, for example, each more unit of raw material that is available
for production also increases the profit in the objective function.

The reduced cost of variables measures the impact on the objective function caused by
the entry of a variable unit in the solution. Thus, when a variable presents positive values,
it does not participate in the optimal solution, and a penalty is to be paid if used. Sensitivity
analysis was performed using the Solver tool of the Excel Software (version 3, Microsoft,
Seatle, WA, USA).

4. Results

This section is separated into five subsections: (i) Overview of the collected data; (ii)
Definition of New Power Demand; (iii) Production Demand Forecast; (iv) Modeling and
Solution of Aggregate Planning in the Cooperative; (v) Production plan for the case studied;
and (vi) Model Verification from Sensitivity Analysis. This research is also delimited in
the economic sector based on the objectives outlined. It was developed in a company in a
financial segment geographically located in the southern region of Brazil. As for the branch
of activity, it is agro-industrial. The type of activity fits into a single family of products,
with a specific profile to produce French fries.

Due to the cooperative opening and interest in the proposed study, the model was
applied in an agro-industrial cooperative in southern Brazil. It comprises 877 members
and 3153 employees, with a turnover of 2.91 billion reais, with business units divided
into operations (agricultural, meat, milk, potato, beans, and administration) and industrial
(meat, milk, potato, and beer). For example, the French fries unit has 36 employees (17 in
the potato production line and the rest in administration and other sectors), producing an
average of 90 tons/month of French fries in packages ranging from 80 g to 380 g.

This study was carried out in a make-to-order-rated environment. This system is
dynamic and has flaws, such as a lack of operators and materials and low adherence to
production orders due to pre-established delivery times [34,35].

The cooperative produces only a single family of products: potato straw (traditional,
extra-fine, and very fine), wavy potato chips (traditional, meat, cheese and onion, and salsa),
and smooth potato chips (traditional and bacon with cheddar). Its production process is
represented in Figure 2.

Initially, the raw material arrives at the unit already processed (cleaned and peeled).
Afterward, the potatoes are washed and directed by an infinite conveyor for a selection, in
which the employees cut the defects presented. Next, they follow the conveyor belt and go
through the slicing stage, utilizing a cutter according to the model of the potato produced
(straw potatoes, wave potato chips, and plain potato chips). Then, the sliced potatoes are
washed to remove the starch.

In the next step, the excess water is removed, and they go on to the oil frying step by
submersion using mats. Afterward, the potatoes are cooled and seasoned, and a selection is
made to remove those outside standards. Finally, the ready-made potatoes go to packaging,
filling them into the packages together with nitrogen; the packages are placed in cardboard
boxes and sent to the shipment as a finished product.
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Figure 2. Potato production process.

4.1. Overview of the Collected Data

The power demand contracted by the industry in the last contract period was 255 kW.
The consumer unit pays the exceeding part if more than 5% of the contracted demand
is consumed. Because of this, the contracted power demand taxes have a value of R$
13.14/kW, and the overtake taxes, R$ 26.28/kW.

From the history of electric power consumption over the last five years, available in
Appendix A (Table A1), it was possible to plot a graph to analyze the behavior of this
consumption, as shown in Figure 3.
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Figure 3. Demand for contracted and consumed electrical power over time.

From Figure 3, it is possible to see that, over the last five years, the consumer unit
exceeded the contracted power demand in some months, and in most of them, it did not
use the contracted value of 255 kW. In 2014 and 2016, consumption was exceeded in just
two months, while in the other months, there was a loss of contracted power demand. In
2015, there were three overtaking. It was in 2017 when most overtaking occurred, totaling
five months. On the other hand, during 2018, the consumer unit paid for a much higher
demand than used. This shows a lack of reconciliation between production planning and
energy planning. Two overruns in the contracted demand generated a fine, causing losses
to the company, highlighting the need to carry out this study.

4.2. Definition of New Power Demand

From the data collected, all the power demands measured from January 2014 to
December 2018 were organized in a table (Appendix A, Table A2). From this, and with the
help of Equation (3), it was possible to obtain the total costs of each value and, consequently,
define the best among them, as shown in Figure 4.
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Figure 4. Power demand costs.

As shown in Figure 4, it is noted that the 240 W and 235 W demands had the exact
value of R$ 67,881.24. Thus, the demand to be contracted by the cooperative is 235 W.

4.3. Production Demand Forecast

To perform aggregate planning, it is needed to identify demand forecast data. As
the studied company did not have its demand forecast, it was necessary to perform it.
Otherwise, only data would be collected.

To prepare the production demand forecast, the historical data of the production of kg
of potato were considered in the period of 60 months, from January 2014 to December 2018,
given in Appendix A (Table A3). Therefore, the first step was to analyze the data profile
surveyed to identify the components present, as shown in Figure 5.
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Figure 5. Potato production history from January 2014 to December 2018.

From Figure 5, it is possible to notice that potato production is a series that shows
a slight downward trend with high and low peaks. However, it is also observed that
it does not present a well-defined pattern of seasonality and cyclicality. Therefore, the
correlogram was plotted to understand if the series was random or if it had any tendency
or seasonality, as seen in Figure 6. When the series is random, it has autocorrelations close
to zero. However, when there is a trend or a seasonality, the series shows a downward
trend or positive peaks in the values.
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Figure 6. Correlogram of the potato production time series with normalized data.

In Figure 6, the vertical axis indicates autocorrelation, and the horizontal axis indicates
lag. The blue dashed line indicates where it is significantly different from zero. Note that all
values except the first are within the blue dashed line limit. This means zero autocorrelation,
indicating that potato production can be random and supposedly stationary. On the other
hand, if the values were above the dashed line, the series would not be random and would
have to be treated with a moving average, which is not the case. However, to be sure of the
statements, it was necessary to carry out a test to prove the assumptions.

The Augmented Dickey–Fuller (ADF) test resulted in −3.5467, Lag order = 3, and
p-value = 0.0453, confirming the alternative hypothesis that the process is stationary. In
this case, potato production can be random and stationary. From the ADF test, the series
decomposition into trend and seasonality was performed, as shown in the graph in Figure 7.
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After differentiating the actual demand, the components’ performance and behavior
show seasonality in the production of potatoes, always in the same period over five years.
As for the trend, it is possible to observe a slight growth in 2014; from 2015, it started to
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decrease. This can be explained by the crisis in mid-2014, with the drop in the Brazilian
Gross Domestic Product (GDP) [36], which directly affected the cooperative’s sales.

The STL algorithm performs time series smoothing using the LOESS algorithm [37] in
two loops; the inner loop iterates between seasonal and trend smoothing, and the outer loop
minimizes the effect of outliers. During the inner loop, the seasonal component is calculated
first and removed to calculate the trend component. Then, the remainder is calculated
by subtracting the seasonal and trend components from the time series. Decomposing
seasonal trends using LOESS (STL) is a robust time-series decomposition method often used
in economic and environmental analyses. The STL method uses locally adjusted regression
models to decompose a time series into trend, seasonal, and remainder components [38–40].

The series was divided into two sets of data, the first consisting of samples from 1 to
52 and the second from 53 to 60, to check the quality and to plot the profile of the additive
and multiplicative Holt–Winters models, as shown in Figure 8.
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It can be noticed from Figure 8 that the profile behavior of the two models is close
to the profile of the original data. However, this visual analysis does not define the best
model to represent the demand forecast. For this reason, forecast errors were calculated.
The calculation results are shown in Table 1, where REQM is the root mean square error,
MAE is the mean absolute error, and MAPE is the mean percentage of the absolute error.

Table 1. Model performance measures.

Models REQM MAE MAPE

Additive 18,928.18 14,549.97 62.30

Multiplicative 15,047.58 13,076.68 28.61

From Table 2, it is possible to verify that the multiplicative model has the lowest error
considering all metrics; that is, its performance is better for forecasting production demand.
Therefore, the errors of the multiplicative model were statistically tested in order to identify
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normalities. The Shapiro–Wilk test resulted in W = 0.929 and p-value = 0.0152, thus rejecting
the null hypothesis. This indicates that the multiplicative model is normal. Afterward, the
production demand forecast was carried out for the next 12 months, as shown in Table 2.

Table 2. Production demand forecast.

Month Production Demand Forecast (kg)

January 69,579.00

February 45,862.00

March 84,995.00

April 74,710.46

May 69,592.76

June 71,464.08

July 82,127.11

August 97,713.42

September 84,283.04

October 66,475.00

November 77,758.62

December 79,578.84

It is noted that the production forecast presents a variation between 45,862.00 kg and
97,713.00 kg, representing 46.9%.

The demand forecast performed will be used in aggregate production planning. Be-
cause to do it, it is necessary to know the demand forecast.

4.4. Modeling and Solution of Aggregate Planning in the Cooperative

The strategy used to develop aggregate planning monitored demand with constant
labor and overtime. This strategy provides continuity of labor and avoids emotional and
tangible costs of hiring and firing personnel. The data used for the chosen strategy, as
shown in Table 3, were collected with the cooperative understudy and calculated.

Table 3. Cooperative Costs.

Costs Price (R$)

Production unit 15.00/Kg

Labor 2153.25/month

Regular time 13.45/hour

Extra hour 23.53/hour

Hiring 2100.00/worker

Resignation 18,120.48/worker

Electricity taxes 0.30/R$/kWh

Power demand 13.14/Watts

The company calculates the unit cost of production, encompassing all costs involved
in the process. As for labor, during regular hours, the workers receive a salary of R$ 1485.00,
but the real value that the company has with this cost is R$ 2153.25 (R$ 13.45 × 8 h/day ×
20 days/month) due to charges (R$ 668.25) paid every month. As for the cost of overtime,
75% of regular hours is added.

As for the hiring and firing costs, the high value of both justifies why the cooperative
does not use the hiring and firing strategy. The cost of hiring comprises recruitment,
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medical costs (doctor and nurse), registration and integration, and training costs. The
dismissal involves even more costs, with a 40% fine on taxes (R$ 640.00), termination (R$
475.00), prior notice (R$ 1485.00), vacation (R$ 1485.00), 1/3 vacation (R$ 495.00), 13th
salary (R$ 1485.00), salary (R$ 1485.00), and charges (R$ 10,570.28). It is worth mentioning
that these values are variable, depending on the employee’s working time, which is at least
one year of work in the cooperative.

To obtain the cost of electricity, the tax value (TE = 0.30 R$/kWh) from the contract
with the concessionaire (Table 3) was multiplied by the value of the energy performance
index (I), obtained by the average of the last five years. Correlation analysis of electricity
consumption as a production function showed a coefficient of determination R2 = 0.64. Some
values of atypical months were then excluded (mainly as a result of the economic crisis in
the country from 2014 onwards) as they are extreme values or values that are further away
from the straight line (outliers), and R2 = 0.77 was obtained. Thus, the average value of the
energy performance indicator was I = 0.80 kWh/kg, with a Standard Deviation = 0.126 and
error = ±0.017. Thus, the unit cost of electricity was Cee

t = 0.24 R$/kg.
The cost of production, electricity, and demand for electricity is proportional to the

production volume. In each period, demand must be satisfied, as orders are made to order
over time can be used to fulfill the plan. Physical resources are considered fixed during the
12-month planning horizon. The total cost verified during the planning horizon is the sum
of all the mentioned costs, given by Equation (4), being presented with the data replaced
by Equation (12).

Min ∑T
t=1(18.37 × Ut + 0.24 × Ut + 2153.00 × Tt + 2100.00 × Tc

t + 18, 120.48 × TD
t + 3.14 × Dpe

t + 23.53 × He
t ) (12)

The study aims to find an aggregate plan that minimizes the total cost incurred during
the planning horizon. Therefore, the values are subject to a series of restrictions linked to
the decision variables presented in Section 3.4.

As for the workforce restriction, hiring, and firing (Equation (5)), the cooperative does
not carry out the hiring and firing strategy, so the number of workers in the current period
will always be the same. As for the production limitation constraint (Equation (6)), the
capacity is determined by the company’s normal hours per month and overtime. According
to information provided by the cooperative, the production capacity is 88,000.00 kg per
month, and it is possible to produce 550 kg/h or 88,000.00 kg/month at normal hours
(8 h/day).

The overtime (Equation (7)) is carried out with all workers on the line. The cooperative
works with the minimum number of people necessary to meet demand, with only two
overtime hours allowed per day. The cooperative is limited to 40 monthly overtime
hours/worker in this case. For the power demand constraint (Equation 10), the power
demand value that minimizes the total costs was found, so it must be maintained for all
planning periods, 235 W.

4.5. Production Plan for the Case Studied

With the tool used in the research work, it was possible to prepare the production plan
for the next 12 months and, subsequently, compare the current scenario with the proposed
one, considering the new power demand.

4.5.1. Current Scenario

The company’s current scenario is to keep the workforce constant, using overtime
when necessary and contracting 255 watts of power demand (Table 4).
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Table 4. Aggregate plan of the current scenario with the contracted power demand.

Period
(month)

Contractors
(Number of

People)

Fired
(Number of

People)

Workforce
(Number of

People)

Production
in Overtime

(Hours)

Production
(kg)

Power
Demand

(kW)

Production
Demand

(kg)
0 0 0 17 0 0 255 0
1 0 0 17 0 73,058.02 255 73,058.02

2 0 0 17 0 48,155.40 255 48,155.40

3 0 0 17 0 80,745.51 255 80,745.51

4 0 0 17 0 70,974.94 255 70,974.94

5 0 0 17 0 73,072.40 255 73,072.40

6 0 0 17 0 75,037.28 255 75,037.28

7 0 0 17 0 78,020.75 255 78,020.75

8 0 0 17 9 92,827.75 255 92,827.75

9 0 0 17 0 80,068.89 255 80,068.89

10 0 0 17 0 69,798.75 255 69,798.75

11 0 0 17 0 81,646.55 255 81,646.55

12 0 0 17 0 83,557.78 255 83,557.78

Total cost 14,301,554.61

It can be seen from Table 4 that the production demand (maximum 88,000.00 kg/month)
is met, except in the eighth period (in bold), in which it will be necessary to perform nine
overtime hours to meet the production demand.

4.5.2. Innovative Scenario with the Proposed Power Demand

Keeping the strategy used by the company of constant workforce, it was possible to
define a new plan with the new defined electric power demand, as shown in Table 5.

Table 5. Aggregate plan with the proposed power demand.

Period
(Month)

Contractors
(Number of

People)

Fired
(Number of

People)

Workforce
(Number of

People)

Production
in Overtime

(Hours)

Production
(kg)

Power
Demand

(kW)

Production
Demand

(kg)
0 0 0 17 0 0 235 0
1 0 0 17 0 73,058.02 235 73,058.02

2 0 0 17 0 48,155.40 235 48,155.40

3 0 0 17 0 80,745.51 235 80,745.51

4 0 0 17 0 70,974.94 235 70,974.94

5 0 0 17 0 73,072.40 235 73,072.40

6 0 0 17 0 75,037.28 235 75,037.28

7 0 0 17 0 78,020.75 235 78,020.75

8 0 0 17 9 92,827.75 235 92,827.75

9 0 0 17 0 80,068.89 235 80,068.89

10 0 0 17 0 69,798.75 235 69,798.75

11 0 0 17 0 81,646.55 235 81,646.55

12 0 0 17 0 83,557.78 235 83,557.78

Total cost 14,298,401.01



Appl. Sci. 2022, 12, 7577 16 of 22

Keeping the strategy, what differentiates this plan (Table 5) from the previous one
(Table 4) is the reduced cost of R$ 3153.60 reais due to the new power demand contracted
for this year. However, even with this reduction, another plan was prepared to minimize
total costs if the company allowed the hiring and firing of employees, if necessary. The
result is shown in Table 6.

Table 6. Aggregate plan as a proposed scenario considering power demand.

Period
(Month)

Contractors
(Number of

People)

Fired
(Number of

People)

Workforce
(Number of

People)

Production
in Overtime

(Hours)

Production
(kg)

Power
Demand

(kW)

Production
Demand

(kg)
0 0 0 17 0 0 235 0
1 0 2 15 0 73,058.02 235 73,058.02

2 0 0 15 0 48,155.40 235 48,155.40

3 0 0 15 0 80,745.51 235 80,745.51

4 0 0 15 0 70,974.94 235 70,974.94

5 0 0 15 0 73,072.40 235 73,072.40

6 0 0 15 0 75,037.28 235 75,037.28

7 0 0 15 1 78,020.75 235 78,020.75

8 0 0 15 28 92,827.75 235 92,827.75

9 0 0 15 4 80,068.89 235 80,068.89

10 0 0 15 0 69,798.75 235 69,798.75

11 0 0 15 7 81,646.55 235 81,646.55

12 0 0 15 11 83,557.78 235 83,557.78

Total cost 14,284,113.02

Note that this plan (Table 6) allows for dismissal and hiring and presents a lower cost
for the cooperative than the previous plan (Table 5). However, it is worth mentioning that
it was only allowed to fire two people because the production line could not operate with
less than 15 workers. Thus, in the months in which demand was not satisfied, only with
the staff, it would be necessary to work overtime, as shown in Table 6. In this way, there
would be a cost reduction of R$ 14,288.00.

4.6. Model Verification from Sensitivity Analysis

The sensitivity analysis is divided into sensitivity analysis on variable cells and sensi-
tivity analysis on constraints; the results presented were collected from the report issued by
Solver in the resolution of the aggregate planning.

The first scenario, with a constant workforce and new power demand, shows that the
reduced cost of the variables is either positive or equal to zero; that is, the variables are
part of the solution, and there is no slack. The exception is the dismissed workers variable,
which has a negative reduced cost; it shows that it has extra workers for production due to
the cooperative’s capacity. As for the permission to increase or reduce, without modifying
the optimal solution, the only variable that allows an increase in its cost is that of the
workforce, presenting a different increase in each period, and the variables that enable the
reduction are the production of hours overtime, production, and laid-off workers. The one
for dismissed workers allows a different value for each period, while the others present
the same value for all. Variables with a value equal to zero cannot be changed because the
optimal solution is also changed.

As for restrictions, contractors, production, and overtime have a favorable shadow
price; the objective function will increase when they are increased. For example, if the
number of overtime hours increases, the cost of the objective function will also increase.
The workforce, in turn, has a negative shadow price; if the workforce increases, the optimal
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solution is not changed since the Solver interprets the surplus of workers due to production
capacity. This is because 17 workers have been fixed as a restriction of the cooperative. As
for the permission to increase, it is possible to increase the cost of the workforce by up to
R$ 0.85 in all periods, those hired by up to R$ 0.93 in the first eight periods, overtime by
671.22 h in the eighth period, and in all others in 680 h, the maximum limit that can be
accomplished. The production constraint has a different increase limit for each period. As
for the permission to reduce, the restriction of contractors does not allow reduction due to
the limit set by the cooperative. The workforce can be reduced by 0.93 kg in the first eight
periods, while it cannot be reduced in the others. Production can only be reduced in the
eighth period by 4827.76 kg.

In the second scenario, allowing hiring and firing with the new power demand in the
variables, the reduced cost remains the same as in the previous scenario. It can be noted
that the dismissed workers, in this scenario, have zero cost, different from the last scenario,
because now the restriction allowed to keep at least 15 workers, no more than necessary.
As for the permission to increase or reduce, without modifying the optimal solution, the
only variable that allows an increase in its cost is laid-off workers, as two of them are laid
off at the beginning of the period. In the other periods, it is allowed to increase the cost in
the variable workforce in all and the variable overtime in periods 3, 7, 8, 9, 11, and 12. All
variables allow a reduction limit.

As for the restrictions and the workforce continue to have a negative price shadow
in the first nine periods and the 12th period, the Solver continues to consider production
less than capacity concerning workers. However, according to the cooperative manager,
15 workers present the minimum framework for the show. On the other hand, periods 10
and 11 have a positive price shadow; if there is an increase in the workforce in this period,
the optimal solution may change. The other constraints also have a positive or zero value.

5. Discussion

The planning horizon defined for this study was 12 months. Entezaminia et al. [41]
stated that it is usually performed from 3 to 18 months. Filho et al. [42], and Feng et al. [19]
also planned with a horizon of 12 months. On the other hand, Kopanos et al. [43] used a
horizon of only five days and, Bilgen and Dogan [44] of 7 days and three weeks.

The formulated model addressed the demand monitoring strategy, using overtime,
hiring, and firing. The strategy depends on the reality of the place, as is the case of studies
that considered the stock (i.e., [27–31]), subcontracting [25,29,32], and missing orders [21].

This work is similar to that of Mehdizadeh et al. [21] regarding aggregate planning
since it determined the number of items to be produced in regular and overtime and the
need to keep the workforce constant or not, as well as Kopanos et al. [43] and Bilgen and
Dogan [44]. They also determined a regular production plan. In contrast, Feng et al. [19]
used APP also to obtain the production lead time.

This presented model was formulated with linear programming, following Rajaram
and Karmarkar [45], who stated that APP models are generally designed as linear pro-
gramming that minimizes costs. The model formulated in this study sought to minimize
production costs as demand was met. Therefore, it is possible to affirm that, in the literature
discussed here, the planning models usually seek to minimize costs through strategies
according to the reality of the study site. For example, Filho et al. [42] considered inventory
levels, production rates, overtime, regular labor, and subcontracting. On the other hand,
Feng et al. [18] used minimum inventory costs, ideal production rate, and production
balance load rate, seeking minimization.

Kopanos et al. [43] focused on minimizing inventory, operating, batch recipe prepara-
tion, unit usage, family moving, and external production costs. On the other hand, Bilgen
and Dogan [44] sought to maximize their production, as did Kadambur and Kotecha [46],
who also aimed to maximize profit while determining the amount and type of product
that should be produced. In this way, these authors go in the opposite direction to Wang
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and Liang [15], who claimed that the problems of any of the planning models can only be
solved if they have the sole objective of minimizing the cost.

A similar work to this study is that of Izadpanahi and Modarres [21], which included
energy cost and carbon emission in the model. The authors used three objective functions
seeking to minimize such costs simultaneously. The main point was to find the ideal
power demand value before including it in the aggregate planning. This contributes
to the literature since even some studies considering electric energy in their costs do not
consider the demand for power and, consequently, did not seek to reduce it before adding it.
Mehdizadeh et al. [20] reported that aggregate planning costs involve inventory, ordering,
and production costs, and yet, Stevenson [47] complemented with unit costs related to
regular hours, overtime, subcontracting, layoffs, or other factors that affect the costs in a
relevant way, that is, it does not consider the cost of electricity.

Choi and Xirouchakis [1] minimized energy consumption while maximizing produc-
tion based on a multiobjective function. Mouzon et al. [48] sought to reduce the energy
used by production equipment based on mathematical programming, similar to the study
by Rager et al. [49], who reduced energy use in production by minimizing the final en-
ergy demand of the machines involved in the process. Finally, Santiago et al. [50] and
Chaturvedi [31] aimed to reduce energy in the process facilities and shared resources of
aggregate planning.

In contrast to these studies, this paper sought to include the power demand in the
planning, considering minimizing its cost from an equation before adding it to the other
existing ones. By having the cost of electricity in the aggregate planning, the proposed
model contributes to the literature and companies connected to the high-voltage electrical
system that need to contract power demand in advance. It is essential to highlight that the
models found in the literature present a production schedule based on stochastic data.

6. Conclusions

This study aimed to propose an aggregate planning model integrating the cost with
electrical energy and power demand. The model is innovative in three aspects: the cost
of contracted power demand in aggregate planning, defining the power demand to be
contracted based on the least cost principle, and the treatment of uncertainties in the
production demand forecast with the participation of the decision-maker.

The application of the model was carried out in a cooperative of the small agro-
industrial sector. However, this study provides insights for a company of any size that
needs to contract power demand in advance and presents a high degree of uncertainty in
the market. After application, it was possible to reduce two workers and a cost reduction
of R$ 14,288.00. The main limitation of the proposed model is the single case study.
Furthermore, although it has been applied in a make-to-order business, it can also be used
in make-to-stock or project-to-order businesses.

A characteristic of the company used in the case study is that customers usually
confirm their orders a few days before shipment; such orders can be changed. Thus, the
suggestion for future study would be to generate a production plan at the end of the
month, but as the power demand must be contracted in advance for an extended period,
this can be considered impossible. Thus, for these cases, the suggestion is that the power
demand forecast is revised, if the contract allows, to reduce the period and generate a plan
with a smaller number of months, or even to integrate the power demand equation in the
resolution of the aggregated planning so that, when solving it, the best option is presented.
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Nomenclature

(DECj) power to be contracted
(DEMi) Other measured demands
(TCi) Contracted taxes
(TUi) Overtaking taxes
PARAMETERS
H Planning horizon in periods
t Period index
Dt Expected demand for period t
Cu

t Unit cost of production in period t
Cee

t Unit cost of electricity in period t
Cde

t Power demand cost in period t
Ce

t Inventory cost of one unit in period t
Cm

t Unit cost of labor in period t
Cc

t cost of hiring an employee in period t
CD

t cost of dismissing an employee in period t
CS

t Subcontracting cost in period t
C f

t Out-of-stock cost in the period t
CHe

t Overtime cost in period t
DECISION VARIABLES
Ut number of units produced in period t
US

t number of units produced under subcontracting in period t
Ue

t number of units in stock at the end of period t
U f

t number of units missing in the period t
Tt number of workers available in the period t
Tc

t number of workers hired in period t
TD

t number of workers laid off in period t
Cat Production production capacity in period t
De

t Contracted power demand in period t
E f inventory at the end of the total period
Hn

t number of normal hours worked in period t
He

t number of overtime hours worked in period t

Appendix A

Table A1. Power demand consumption history.

Month Potency
(kw) Month Potency

(kw) Month Potency
(kw) Month Potency

(kw) Month Potency
(kw)

Jan/2014 204 Jan/2015 240 Jan/2016 252 Jan/2017 259 Jan/2018 221

Feb/2014 216 Feb/2015 252 Feb/2016 252 Feb/2017 245 Feb/2018 201

Mar/2014 264 Mar/2015 240 Mar/2016 252 Mar/2017 235 Mar/2018 211

Apr/2014 240 Apr/2015 240 Apr/2016 252 Apr/2017 245 Apr/2018 202

May/2014 216 May/2015 252 May/2016 264 May/2017 250 May/2018 202
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Table A1. Cont.

Month Potency
(kw) Month Potency

(kw) Month Potency
(kw) Month Potency

(kw) Month Potency
(kw)

Jun/2014 216 Jun/2015 264 Jun/2016 252 Jun/2017 264 Jun/2018 206

Jul/2014 228 Jul/2015 252 Jul/2016 252 Jul/2017 250 Jul/2018 216

Aug/2014 252 Aug/2015 240 Aug/2016 250 Aug/2017 259 Aug/2018 226

Sep/2014 252 Sep/2015 240 Sep/2016 235 Sep/2017 264 Sep/2018 221

Oct/2014 252 Oct/2015 264 Oct/2016 245 Oct/2017 259 Oct/2018 206

Nov/2014 240 Nov/2015 276 Nov/2016 259 Nov/2017 254 Nov/2018 216

Dec/2014 288 Dec/2015 252 Dec/2016 254 Dec/2017 226 Dec/2018 221

Table A2. Electricity consumption history.

Month Energy
(kwh) Month Energy

(kwh) Month Energy
(kwh) Month Energy

(kwh) Month Energy
(kwh)

Jan/2014 66,203 Jan/2015 83,532 Jan/2016 70,272 Jan/2017 86,027 Jan/2018 79,529

Feb/2014 75,792 Feb/2015 100,980 Feb/2016 89,592 Feb/2017 82,935 Feb/2018 34,769

Mar/2014 59,220 Mar/2015 89,136 Mar/2016 88,008 Mar/2017 68,050 Mar/2018 69,184

Apr/2014 74,364 Apr/2015 78,108 Apr/2016 85,044 Apr/2017 82,784 Apr/2018 76,301

May/2014 59,832 May/2015 75,420 May/2016 87,216 May/2017 75,050 May/2018 71,020

Jun/2014 65,304 Jun/2015 92,784 Jun/2016 87,636 Jun/2017 89,838 Jun/2018 70,393

Jul/2014 94,164 Jul/2015 91,308 Jul/2016 53,832 Jul/2017 93,682 Jul/2018 79,856

Aug/2014 102,504 Aug/2015 84,912 Aug/2016 89,736 Aug/2017 102,359 Aug/2018 73,906

Sep/2014 99,948 Sep/2015 70,188 Sep/2016 66,703 Sep/2017 102,745 Sep/2018 73,524

Oct/2014 52,356 Oct/2015 95,364 Oct/2016 77,791 Oct/2017 69,419 Oct/2018 72,326

Nov/2014 84,516 Nov/2015 81,852 Nov/2016 95,322 Nov/2017 88,272 Nov/2018 72,262

Dec/2014 107,928 Dec/2015 96,444 Dec/2016 88,956 Dec/2017 80,510 Dec/2018 72,413

Table A3. Potato production history.

Month Production
(kg) Month Production

(kg) Month Production
(kg) Month Production

(kg) Month Production
(kg)

Jan/2014 71,449.80 Jan/2015 163,406.92 Jan/2016 94,561.22 Jan/2017 108,315.34 Jan/2018 52,178.56

Feb/2014 98,108.06 Feb/2015 122,309.88 Feb/2016 102,871.56 Feb/2017 67,618.20 Feb/2018 15,807.6

Mar/2014 75,186.06 Mar/2015 160,586.38 Mar/2016 145,226.16 Mar/2017 85,486.90 Mar/2018 90,957.72

Apr/2014 89,184.04 Apr/2015 101,419.64 Apr/2016 112,505.82 Apr/2017 91,313.48 Apr/2018 94,088.215

May/2014 51,441.18 May/2015 97,440.4 May/2016 120,193.48 May/2017 91,153.62 May/2018 62,223.9

Jun/2014 73,104.84 Jun/2015 110,822.38 Jun/2016 104,055.4 Jun/2017 95,449.86 Jun/2018 99,377.09

Jul/2014 172,998.24 Jul/2015 123,069.82 Jul/2016 50,575.16 Jul/2017 130,865.92 Jul/2018 95,340.575

Aug/2014 170,871.62 Aug/2015 99,924.98 Aug/2016 132,796.44 Aug/2017 154,074.48 Aug/2018 83,872.86

Sep/2014 195,048.08 Sep/2015 77,072.10 Sep/2016 84,820.46 Sep/2017 136,504.22 Sep/2018 75,521.85
Oct/2014 98,406.44 Oct/2015 127,472.06 Oct/2016 98,265.96 Oct/2017 97,858.3 Oct/2018 78,968.54

Nov/2014 15,5987.16 Nov/2015 100,275.86 Nov/2016 121,060.3 Nov/2017 112,327.76 Nov/2018 78,199.93

Dec/2014 185,057.78 Dec/2015 127,309.30 Dec/2016 124,903.44 Dec/2017 98,389.48 Dec/2018 96,792.86
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