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Abstract: The semiconductor etch cluster facility is the most used facility platform in the semiconduc-
tor manufacturing process. Optimizing cluster facilities can depend on production schedules and
can have a direct impact on productivity. According to the diversity of semiconductor processes, the
complexity of optimization is also increasing. Various optimization methods have been studied in
many papers for optimizing such a complex cluster facility. However, there is a lack of discussion
of how these methods can apply to practical semiconductor manufacturing fabs and the actual
performance results. Even now, data analysis and optimal parameter derivation for maximizing
the productivity of cluster manufacturing in semiconductor manufacturing fabs are continuing. In
this study, we propose an automated method for data collection and analysis of the cluster, which
used to be done manually. In addition, the derivation of optimization parameters and application
to facilities are addressed. This automated method could improve the manual analysis methods,
such as simulation through data analysis using machine learning algorithms. It could also solve
the inefficiency caused by manual analysis performed within the network inside the semiconductor
manufacturing fabs.

Keywords: cluster tool; semiconductor manufacturing; throughput optimization; scheduling: ML-
based data analysis; throughput prediction

1. Introduction

Research on the productivity of semiconductor cluster tools is being actively conducted
in the increasingly diversified production environment of semiconductor manufacturing
companies [1]. In semiconductor manufacturing, the single wafer processing method pro-
cesses each wafer within a single facility and is widely used in cluster tools suitable for
producing products that meet the various market requirements; it includes the lithography
process, etching process, and deposition. It is also used in processes such as display man-
ufacturing [2]. In particular, the quantity of semiconductor wafers produced per unit of
time has become a field requiring more research. The importance of a foundry fab, a multi-
variety environment, is becoming more prominent. Therefore, it is time to find a strategy to
identify an optimization method for on-demand, up-to-date processes in existing cluster
tools [3]. Technologies that can support services, through artificial intelligence, automation,
optimization, and so on, will enable a direct or indirect effect not only on the production
optimization of the already installed semiconductor manufacturing fabs but also on the
optimization of semiconductor tools to be introduced in the future [4].

The scheduling of equipment units can be divided into deterministic and unstable en-
vironments. A deterministic environment mathematically performs the scheduling without
considering arbitrary elements inside the equipment [3]. In a variable environment, a math-
ematical approach is not easy to perform, and an approach considering various situations
and conditions inside and outside the facility is required. The research method under a
deterministic environment must explain the productivity results of cluster tools that are
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changed by various variables in the real world, so there are limitations in the practicality of
studies [5]. Field engineers are also trying to analyze and improve the throughput affected
by these various variables [6]. Recently, different situations have been examined, such as
when several types of wafers are processed in parallel, when a failure occurs during the
process, or when the chamber schedule is unstable [4,7].

To date, when throughput problems occur, the cause of the problem has been found in
the following way. First, correlation analysis has been done between the measured values of
equipment and throughput. Second, throughput correlation analysis has been done through
abnormal operation analysis of the facility controller. Third, data comparison analysis has
been performed through simulations. Recently, throughput modeling through data analysis
using various ML methods has been proposed, but several points should be considered
as follows. Scheduling strategies differ because data analysis based on real-time data is
not stable. Therefore, an integrated schedule model, analysis method, and real-time facility
optimization method has not been presented [4,7]. The use of unoptimized equipment may
not result in optimal throughput results [8]. To simultaneously solve these two problems,
some researchers have modeled the initial transition state schedule with Petri net and used
operational research methodologies such as linear algebra or MIP (mixed-integer program).
A study was conducted to determine the work’s starting point [9,10]. Other researchers
have tried to show that the best method is to use a strategy in which a possible task starts
late in the start-up transient period and a strategy in which a possible task starts in a short
end period. In addition, a PERT chart has been used. However, since these studies proposed
a scheduling strategy considering the constant working hours of robots and PMs within
the initial transition period, it is not clear whether the constraint can be satisfied even if
there is time fluctuation [4,7,11].

In this study, we present an ML-based JIT1 optimization strategy using real-time data,
robust to real-time fluctuations on cluster equipment. To date, various strategies have been
studied to improve semiconductor tools’ efficiency [12]. In other words, there have been
studies to improve throughput using simulation and compare strategies’ performance with
changed schedules [11]. This study is based on the schedule change of the current initial
transition period. We propose a strategy to respond to the time fluctuation of the optimal
initial transition in the stable state so that it can be connected to the schedule of the ideal
stable state. In addition, simulations are performed to verify these strategies and collect
data. The real-time collected data allowed optimization modeling of cluster tools suitable
for a specific process through ML analysis, and simulations were performed to verify these
strategies. The main contents of this paper are as follows.

• To understand the structural characteristics of cluster tools, ML-based analysis of JIT1
is proposed to maximize throughput, and an automation system is used to predict
and apply optimal JIT1 to facilities. Lam Research’s cluster facility simulation was
used to obtain cluster facility data, and Lam Research’s host simulation was used for
automation modeling. The simulation configuration cited the SECS/GEM procedure
of semiconductor manufacturing fabs.

• Various data analyses were performed to maximize throughput in the semiconduc-
tor equipment field, but the efficiency was lowered because the analysis was not
automated. In order to solve this problem, an automated technique was used to ob-
tain the optimal JIT1 with an ML-based analysis method. This process shortened the
time-consuming data analysis process and, at the same time, guaranteed maximum
throughput while sensitively responding to changes in the production environment in
real time by applying an automation system.

The structure of this paper is as follows. First, in Section 2, cluster equipment is in-
troduced. After discussing the operation method of cluster equipment, various factors
affecting the throughput of cluster equipment are explained. Moreover, the research re-
lated to throughput maximization that has been conducted so far is addressed. Moreover,
in Section 3, JIT1 optimization and real-time cluster facility optimization process methods
through ML-based analysis for maximizing throughput based on real-time data of cluster
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tools are described. Section 4 compares and evaluates the strategies proposed through the
automated simulation proposed in Section 3. Section 5 discusses the results, implications,
and future tasks of this research.

2. Related Work
2.1. Structure and Operation of Cluster Tools

The cluster facility is a single wafer processing automation system widely used in
semiconductor wafer processes. It is used not only for the etch facility, which is the research
topic of this paper, but also for the deposition and exposure tools [13]. It comprises one
cluster or several process modules (PM), and wafer processes can be executed in parallel.
Figure 1 shows a cluster facility consisting of three process modules, two airlocks, a transfer
robot with two arms, and three FOUPs [14].

Figure 1. Cluster facilities including three PM, two AL, and three FOUP.

The initial wafer is stored in the FOUP, and the OHT of the semiconductor fab trans-
ports the FOUP and moves it to the load port of the facility. For the wafer that has finished
mapping at the load port, the ATM arm returns it from the load port to the AL, and the
transfer chamber arm selects one of the processable PMs from the AL and returns the wafer.
The wafer arrives at the PM and proceeds with the pre-programmed recipe process [15].
When the wafer’s recipe process is completed, through the transfer chamber arm again,
it moves from PM to AL. Then, the ATM arm transfers it from AL to FOUP, and OHT
retrieves the FOUP. After completing the process, the PM proceeds with the WAC process,
and a chamber-cleaning process maintains the quality required for the next process in
the recipe [7]. Suppose the cluster facility uses the clean recipe. In that case, the PM must
proceed with the removal process of residual chemicals and impurities formed inside the
PM for the subsequent wafer processes, a process called WAC time. After this WAC time,
subsequent wafers can move to the PM [5]. The schedule of the cluster facility is determined
according to recipe time, robot transmission time, and availability of PM and AL [16], as
well as the above OHT return and wafer map verification process recipe download and
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other parameters. These are carried out through communication based on the SECS/GEM
communication protocol with the host of the semiconductor fab.

2.2. Productivity Parameters of Cluster Tools

JIT1 is one of the scheduling variables of cluster facilities, referring to the time when
the wafer moves from the FOUP. For example, if JIT1 is N, the scheduler starts moving
the wafer from the FOUP to airlock N seconds before. Depending on this time point,
the total moving time of the wafer may change. The PM is chamber space in which the
semiconductor wafer recipe operates as a process module. Process time is the processing
time of wafers. WAC time is an abbreviation for waferless auto-clean, referring to the
cleaning time of the chamber space for the following wafer process.

Wafers stored in the FOUP are in the initial status, and the OHT of the semiconductor
fab transports the FOUP and moves it to the facility’s load port. After wafer mapping on
the loadport, the ATM arm returns it from the loadport to the AL, and the transfer chamber
arm selects one of the processable PMs from the AL and returns the wafer [17]. The wafer
arriving at the PM proceeds with the pre-programmed recipe process. When the wafer’s
recipe process is completed, again through the transfer chamber arm, it moves from PM
to AL. Then, the ATM arm transfers it from the AL to FOUP, and the OHT retrieves the
FOUP. After completing the process, the PM proceeds with the WAC process, a chamber-
cleaning process to maintain the quality required for the following process in the recipe [18].
Suppose the cluster facility uses the clean recipe; in this case, the PM must proceed with
removing residual chemicals and impurities formed inside the PM for the subsequent
wafer processes, a process called WAC time. After this WAC time, subsequent wafers can
move to PM. According to the recipe time, the schedule of the cluster facility, the robot’s
transmission time, and the availability of the PM and AL are determined. The above OHT
return and wafer map verification process download and upload the recipe. These are
carried out through communication based on the SECS/GEM communication protocol
with the host of the semiconductor fab.

2.3. Maximizing the Throughput of the Cluster Tool

Because the number of chambers and robots in the cluster facility is limited and
repetitive tasks are performed, depending on the scheduling problem, throughput can
be variable, which seems to be simple in a limited environment due to the characteristics
of cluster tools. Based on facility variables, throughput has a non-linear relationship, so
optimization to perform optimal scheduling is not simple [19–22]. The throughput of the
cluster tool is determined according to the throughput of the number of wafers that have
completed the specified process recipe for a unit of time (1 h). Throughput is the most
important variable to obtain maximum productivity of cluster tools because the scheduling
is changed according to the production plan of the semiconductor fab and the setting value
of JIT1. In addition, throughput determines the production system quality, which must
satisfy the user’s needs [23,24]. However, it is not easy to predict the sustainable throughput
of cluster tools due to the complex scheduling and unexpected real-time problems. To
date, extensive research has been conducted on the scheduling and throughput of cluster
tools [13,25,26]. Various throughput models have been studied according to various cluster
facility configurations and under conditions such as sequential or parallel PM process or
WAC [1,21,27]. However, this model has a limitation in providing the theoretical throughput
of a specific cluster facility. In reality, cluster tool modeling may not follow theoretical
modeling due to various real-time problems. Therefore, an optimization method using
a more practical throughput model is needed [21]. Although this timing-based model is
easy to understand, it has a limitation since it cannot effectively consider the theoretical
throughput of the cluster facility, that is, the real-time scheduling problem. Therefore,
a more realistic Petri net modeling study was conducted [28].

Throughput (WPH—wafer per hour), which indicates the number of wafers produced
per unit time of the cluster facility, depends on JIT1 and the number of PMs, recipe time,
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and WAC time. Collecting the throughput results measured under various parameter
conditions is essential to obtain modeling for accurate throughput by understanding the
relationship between each variable and throughput. This operation is very time consuming,
but using big data, it can be possible in semiconductor fabs. However, this study used
different values for the four main parameters, such as the number of PMs, recipe time,
WAC time, and process time, while 23 values were used for JIT1. In addition, since the data
of the semiconductor fab cannot be used for security reasons, as in Figure 2, the throughput
result data by simulation of Lam Research were used. Lam Research is a cluster facility
based on the Petri net model. Petri net configuration simultaneously processes the loops of
PM, AL, and FOUP [29,30].

Figure 2. Petri net model of cluster tool simulation.

The data of the cluster facility is standardized and stores each robot’s controller action
execution event. WPH is calculated through wafer movement time, wafer process time,
wafer WAC time, and waiting time. After the production of the unit, the lot is finished,
and the result is saved as an event. This can be expressed as Equation (1) for the calculation
of WPH [30].

Equation for maximum productivity of cluster facilities:

Throughput =
(Number_o f _Chamber_ × 3600 s/h)

(Process_Time + WAC_Time + Wa f er_Swap_Time)
(1)

Here, the wafer swap time is a variable that calculates the process rate from when
the wafers starting from the load port are out of load in all chambers until all wafers are
returned to the load port. Throughput calculated in this way is immediately saved as
event data after the entire lot process is finished. Therefore, it is possible to find direct and
indirect influence factors by analyzing variables related to throughput through event data
analysis [31].

Figure 3 shows the relations between process time, WAC time, JIT1, throughput, PM,
and target. PM means how many process modules are used. Target refers to calculated result
data from the equation for maximum productivity of cluster tools. There is a significant
correlation that could not be observed between throughput and JIT1.
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Figure 3. Correlation between throughput and process time, WAC time, and JIT1.

Figure 4 shows that the following steps should be followed to optimize JIT1 for the
current cluster facility. A data collection process is required for data analysis, but the data
has to be processed due to security concerns in the semiconductor manufacturing fab. It
takes significant time to analyze and simulate the processed data [7]. Manual simulation
implementation can be inefficient because it takes a similar amount of time as the primary
setting of the cluster facility. In addition, application through simulation is also conducted
passively, so the above analysis method is a continuous inefficient work method under the
multi-variety production system.

Figure 4. JIT1 optimization of semiconductor cluster tool (current).

3. JIT1 Optimization for Throughput Maximization

The throughput maximization method of semiconductor etch cluster facilities pro-
posed in this paper analyzes the current performance of the cluster through ML-based
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algorithms, predicting the optimal JIT1, and reflecting real-time optimization parameters
for the cluster. The semiconductor etch cluster facility can be changed according to mechan-
ical factors such as load port performance, transfer robot performance, airlock pump/vent
performance, VTM robot performance, and various door performances. In addition, char-
acteristics of the semiconductor etching process and the process of the chamber may be
changed depending on the process time, when the wafer performs the process in the
chamber, and the WAC time, when the wafer proceeds without the wafer in the chamber.
However, the method to obtain maximum productivity considering the constant mechani-
cal performance, process time, and WAC time of this etch cluster lies in the optimization of
JIT1 parameters related to scheduling that affect the start time of wafer movement [19]. The
optimization of JIT1 can be obtained through simulation modeling of various parameters
by analyzing the data of the cluster. However, this modeling simulation method is very
inefficient in terms of time. The method proposed in this study is shown in Figure 5. We
designed an architecture to optimize productivity by combining the optimal algorithms for
data analysis of a semiconductor cluster through data generated from the cluster. KNN is
the optimal ML algorithm for a semiconductor etch cluster [4]. The facilities of the semicon-
ductor manufacturing fab are ready for daily 24-h production, and data generated from the
facility can be collected in real time as standardized data. The content in the standardized
data includes information such as process time, WAC time, and wafer transfer time of the
wafer being processed in the facility. WPH can be analyzed through this.

Figure 5. JIT1 optimization of semiconductor cluster tool (proposal).

Throughput Optimization through ML

Studies on data analysis and prediction methods using ML VM, as shown in Figure 5,
are already in progress in various fields. However, this paper studied an efficient method
of using ML systems in a semi-standard environment. This study confirmed the possibility
of real-time data analysis and productivity improvement. Throughput data generated by
a cluster tool is transfer to the VM and analyzed using ML. As a result of analysis and
prediction using ML, the optimal JIT1 value is reported to the host, and the host commands
a change in the JIT1 parameter of the cluster tool when producing the following production
lot. This is a way to maximize productivity through more efficient work by presenting cases
in which optimal parameters can be predicted and applied through data analysis using
ML-based algorithms in the fab, considering the characteristics of a semiconductor fab
with strict security. The productivity analysis of the cluster includes the data collection and
analysis described in Section 3. The analyzed data manually create a test scenario including
process time, WAC time, swap time, and JIT1.
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In Table 1, you can see a process scenario and the simulation result. In this paper,
we will present an automated method through ML analysis based on the dataset of the
cluster facility through simulation and a method to obtain the maximum productivity of
the semiconductor etch cluster facility through a real-time analysis and application process.

The following methods are used to improve the throughput of the etch cluster facility
of the semiconductor manufacturing fab. The first method classifies and analyzes the
motion data of various components generated in the cluster to create and reproduce
simulation scenarios or compare and analyze scenario simulation data and field data to
find parameters that need improvement and apply them to facilities to identify problems
and solve them. The second method calculates the maximum throughput under the current
facility configuration and sets it as a target, compares it with the facility’s data, finds the
problem, finds the variable to be improved, and applies it to the facility. Such comparative
analysis requires significant time and effort through copying and moving data, replicating
simulators, and post-comparison. In addition, the application of variables in the cluster is a
manual variable adjustment method used by engineers. It is possible to first analyze the
log generated in the equipment to change the JIT1 to obtain the maximum productivity of
the equipment in the current semiconductor manufacturing fab. Through this, it is possible
to obtain maximum efficiency with the existing method.

Table 1. Cluster tool throughput simulation data.

Process Time WAC Time Tput (JIT = 10) Tput (JIT = 15) . . . . . .

120.00 40.00 47.51 46.92 . . . . . .
120.00 50.00 44.48 46.87 . . . . . .
120.00 60.00 44.85 44.59 . . . . . .
120.00 70.00 41.62 42.38 . . . . . .
120.00 80.00 40.14 41.50 . . . . . .
120.00 90.00 35.29 34.37 . . . . . .
135.00 40.00 44.91 45.78 . . . . . .
135.00 50.00 42.24 42.69 . . . . . .
135.00 60.00 40.81 40.12 . . . . . .
135.00 70.00 39.13 39.97 . . . . . .
135.00 80.00 38.04 39.09 . . . . . .
135.00 90.00 37.39 36.76 . . . . . .
150.00 40.00 41.88 42.95 . . . . . .
150.00 50.00 39.61 40.08 . . . . . .
150.00 60.00 37.24 37.51 . . . . . .
150.00 70.00 37.88 37.89 . . . . . .
150.00 80.00 35.94 37.10 . . . . . .
150.00 90.00 26.81 35.11 . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The method proposed in this paper is to automate the data collection, data analysis,
and deduction of variables, to obtain maximum productivity and reflection in JOB produc-
tion planning. The data collection uses the event-based file transfer system to transfer files
to the VM when they are created. In addition, data analysis uses an ML-based analysis
algorithm based on the accumulated data. Figure 6 shows the data analysis result based on
the KNN algorithm as a graph. Based on this, it is possible to obtain the optimal JIT1 value
under various production environments. JIT1 derived in this way is applied to the facility
through the host.
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Figure 6. Throughput prediction through KNN regression (process_time = 135, WAC_time = 40).

4. Simulation and Results

This paper used a simulation of Lam Research to propose a more efficient data analy-
sis method in an environment under an increasingly strengthened security system in the
semiconductor industry. Lam Research manufactures various facilities for the semiconduc-
tor process, including for deposition, cleaning, and etching. Herein, we aimed to study
the productivity optimization method based on mutual communication of SECS/GEM
protocol between the etch cluster facility and the fab host based on the actual scenario used
in the etch cluster semiconductor production facility. Figure 7 is a schematic diagram of
the simulated layout of Lam Research. The simulation of Lam Research made it possible
to build an environment similar to the existing facility by simulating all IO and setting
values of the existing facility. Based on the experience of actual facility operation, the user
can build the communication environment of PMC and TM as well as CTC and TMC
internally and externally with the factory host. The CTC acts as central control, collecting
and generating data. Through communication between the factory host and CTC, process
progress and real-time commands transmitted from the host are executed.

Figure 7. Lam Research simulation architecture.
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4.1. Simulation Environment

Due to the nature of the semiconductor manufacturing fab, the export of internal
data is extremely limited per regulations, such as those regarding data security. Therefore,
the study of this paper used a simulation of Lam Research, a semiconductor manufacturing
equipment company. The simulation of Lam Research can create an environment similar to
the existing facilities by using a variety of changeable parameters. Since each component can
set the allowable interval for temperature, pressure, and other parameters, the simulation
settings were set similarly to the environment of the facilities in the semiconductor fab. It
can be said that it is functional, as shown in Figure 7, and it was possible to change the
DIOs, AIOs, and characteristics according to the SW version of the facility. In addition,
it was possible to change not only the process time and WAC time of the wafer process
but also the transfer time of the ATM robot and VTM robot and the pump/vent time of
the airlock. Therefore, it was possible to reproduce the performance of the existing facility
by setting it similarly to the environment of the etch cluster facility in the semiconductor
manufacturing fab. Additionally, the SECS/GEM communication environment between
host and cluster equipment can be simulated. This simulation scenario can be applied to
various settings of process time and WAC time by predicting the optimal JIT1 according to
process time and WAC time using the ML-based KNN algorithm suggested in the previous
study and applying it to the real-time etch cluster facility. This simulation environment
provides a highly reliable test environment in which the throughput result is kept constant
if no parameter changes. Therefore, the optimal JIT1 value is determined according to the
throughput result. Various commands of factory host can be executed, and it is possible not
only to collect/transmit real-time data but also to check and verify recipes.

4.2. Cluster Tool Control in Semiconductor Manufacturing Fab

Etch clusters are operated based on various parameters. This paper proposes two
strategies: the ML modeling method that could obtain the optimal JIT1 based on process
time and WAC time, and the modeling that could obtain the maximized throughput by
applying the optimal JIT1 to the real-time cluster facility. In general, in the case of the
cluster, it was difficult to optimize throughput according to the real-time changing process
time and WAC time because JIT1, to obtain maximum throughput, was used as a fixed
value instead of being variable in real time. Therefore, modeling to obtain optimal JIT1
through the ML analysis was proposed. A strategy was presented to apply JIT1 to a cluster
in semiconductor factories along with lot allocation through the SECS/GEM protocol.
The productivity optimization process proposed in Section 3 consisted of simulations.
Figure 8 shows the simulations of the cluster facility being controlled by the host. The two
on the right give various commands to the equipment through the host and receive real-
time data. The one on the left is a cluster facility, and when it receives a command from the
host, it executes the command. These commands included the progress of the lot and the
change of parameters such as stop and recovery. In addition, real-time process parameters
could be changed, ensuring versatile plant control.

4.3. Result

As can be seen from the relationship between JIT1 and throughput in column 4 and
row 3 in Figure 3, a significant correlation could not be observed between throughput
and JIT1. However, as shown in Figure 9, it was confirmed that the throughput showed a
significant correlation with JIT1 when the processing time was fixed at 180 and the WAC
and other parameters of JIT1 were changed. In Figure 9, it can be seen that the throughput
had an S curve, but the point at which the throughput was stabilized differed depending
on the WAC time and JIT1. Therefore, it can be seen that for optimizing the cluster, it is
necessary to set the optimal JIT1 considering the processing time and WAC time. There
are several ways to find the optimal JIT1 under the variable environment of process time
and WAC time. We can determine whether the cluster facility operates efficiently through
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Equation (1). If the cluster facility’s throughput is smaller than the calculation result of
Figure 9, the facility is operating at a non-rate.

Figure 8. Etch cluster tool simulation connected to semiconductor fab host.

Figure 9. Throughput against JIT1 with different WAC time (recipe_time = 180).

Table 2 shows the Pearson coefficient and RMSE results of ML modeling. The Pearson
coefficient of linear modeling was 0.941, and RMSE was 6.8, so it can be said that it was
unsuitable for throughput analysis of the cluster. The optimal algorithm for ML modeling
of the cluster was KNN, which had a Pearson coefficient of 0.989 and an RMSE of 3.28.

Table 2. Pearson coefficient and RMSE.

Models Pearson Coefficient RMSE

Linear regression 0.941 6.80
Polynomial regression 0.949 6.32

SVM with rbf 0.974 4.76
KNN 0.989 3.28
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As a result of the study, it was possible to obtain a significant throughput improvement
result in the facility, in which JIT1 optimization through simulation was applied. It can
be assumed that similar results can be obtained in actual semiconductor fabs. This study
confirms that it is possible to predict and apply optimization parameters by analyzing the
data generated from the etch cluster facility in the semiconductor fab using the ML-based
algorithm in the fab.

Figure 10 is the result of working to achieve maximum productivity through the
methodology presented herein. You can check the error of the target by comparing it with
the engineer’s manual analysis and result derivation process. Through simulation, you
can check the throughput result. The host’s command to change the value of JIT1 to 58 is
accepted, and the simulator is shown in Figure 10. The simulation result of Table 3 can be
obtained. The value of JIT1, before being modified to 58, was set to 30, and without the
modification, it showed a throughput of 37.06. However, by modifying to 58, it showed a
throughput of 38.20, and it was confirmed that it would have better productivity than before.
The calculated maximum value is an idealized maximum throughput value calculated by
Equation (1).

Figure 10. Throughput comparison of JIT1, before (left) = 37.06 and after (right) = 38.20.

Table 3. Throughput comparison of optimization.

Process Time WAC Time Tput (Pre-Optimization: JIT1 = 30) Tput (Post-Optimization: JIT1 = 58) Tput (Caculated Maximum)

195.00 50.00 37.06 38.20 40.14

In this section, we propose the utility of JIT1 optimization using ML-based data
analysis using the KNN algorithm. When the user inputs process time and WAC time using
the chatbot, the optimal JIT1 value is given. Through this chatbot service, the user can know
the appropriate JIT1 according to the equipment’s various products, that is, the products of
variable process time and WAC time, and can apply it to the equipment. Figure 10 shows
the result of improving the productivity of the cluster facility by changing the optimal
JIT1 obtained by the user through the KNN ML analysis through the host. The chatbot
service is shown on the right side of Figure 11. Implementing the chatbot in the simulation
environment can inform users of the optimal JIT1 value according to various process times
and WAC times in real time and be an appropriate alternative to the increasingly diversified
production environment.
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Figure 11. Optimal JIT1 value using chatbot utility.

5. Conclusions

As a significant contribution of this paper, productivity analysis and a JIT1 optimiza-
tion progress flow model of a semiconductor cluster are proposed for data analysis and
optimization methods in semiconductor fabs where data security is essential. Partial au-
tomation is possible because there are many manual elements for each step in the existing
process model, but it was challenging to find an overall study of the process automation
model. This paper introduced machine learning to data analysis to derive the optimal JIT1
and report it to the host, and a simulation result of real-time optimization was obtained.
Therefore, fast real-time optimization of the semiconductor etch cluster can be guaranteed.
Low latency, high reliability, and high availability can be ensured as a system advantage at
the semiconductor manufacturing site. In the future, it will be necessary to analyze the op-
timal ML modeling of the extended various cluster tools’ configuration parameters, which
can expect maximum throughput in the configuration environment with various cluster
chambers, including deposition and ashing, as well as the etch cluster facility; and to study
the production method strategy. Furthermore, the optimal algorithm that analyzes various
data generated from the etch cluster facility can be a research subject. Data analysis in such
an unstable environment is meaningful in analyzing various parameters that directly affect
a semiconductor process’s productivity (i.e., yield).

Author Contributions: Conceptualization, Y.K.; software, G.L.; simulation, Y.K.; writing—original
draft preparation, G.L.; writing—review and editing, J.J.; simulation, G.L.; supervision, J.J.; project
administration, J.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the
ITRC (Information Technology Research Center) support program (IITP-2022-2018-0-01417) super-
vised by the IITP (Institute for Information & Communications Technology Planning & Evaluation).
Also, this work was supported by the National Research Foundation of Korea (NRF) grant funded by
the Korea government (MSIT) (No. 2021R1F1A1060054).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Appl. Sci. 2022, 12, 7519 14 of 15

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kim, J.H.; Lee, T.E.; Lee, H.Y.; Park, D.B. Scheduling analysis of time-constrained dual-armed cluster tools. IEEE Trans. Semicond.

Manuf. 2003, 16, 521–534. [CrossRef]
2. Zhu, Q.; Qiao, Y.; Wu, N.; Hou, Y. Post-processing time-aware optimal scheduling of single robotic cluster tools. IEEE/CAA J.

Autom. Sin. 2020, 7, 597–605. [CrossRef]
3. Tu, Y.M. Short-Term Scheduling Model of Cluster Tool in Wafer Fabrication. Mathematics 2021, 9, 1029. [CrossRef]
4. Jeong, T.; Prakash Kankalale, D.; Chau, R.; Jeon, H. Going Deeper or Wider: Throughput Prediction for Cluster Tools with

Machine Learning. In Proceedings of the 6th IEEE/ACM International Conference on Big Data Computing, Applications and
Technologies, Auckland, New Zealand, 2–5 December 2019; pp. 21–30.

5. Yu, T.S.; Lee, T.E. Scheduling dual-armed cluster tools with chamber cleaning operations. IEEE Trans. Autom. Sci. Eng.
2017, 16, 218–228. [CrossRef]

6. Cho, J.H.; Ryu, S.J.; Chae, S.K.; Hwasung-City, G.D.; Gyeonggi-Do, K.H.C. Throughput analysis for cluster tool under transfer
bound condition and its application to dry etch equipment. In Proceedings of the ISSM2003 (International Symposium on
Semiconductor Manufacturing), Tokyo, Japan, 12–13 December 2003; pp. 289–292.

7. Jeong, T.; Parikh, K.; Chau, R.; Huang, C.H.; Chan, H.; Jeon, H. Two-Stage Sequence Model for Maximum Throughput in Cluster
Tools. In Proceedings of the 2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI), Herl’any,
Slovakia, 21–23 January 2021; pp. 49–54.

8. Qiao, Y.; Wu, N.; Zhou, M. Petri net modeling and wafer sojourn time analysis of single-arm cluster tools with residency time
constraints and activity time variation. IEEE Trans. Semicond. Manuf. 2012, 25, 432–446. [CrossRef]

9. Zhu, Q.; Zhou, M.; Qiao, Y.; Wu, N. Petri net modeling and scheduling of a close-down process for time-constrained single-arm
cluster tools. IEEE Trans. Syst. Man Cybern. Syst. 2016, 48, 389–400. [CrossRef]

10. Zhou, M.; DiCesare, F. Parallel and sequential mutual exclusions for Petri net modeling of manufacturing systems with shared
resources. IEEE Trans. Robot. Autom. 1991, 7, 515–527. [CrossRef]

11. Paek, J.H.; Lee, T.E. Optimal scheduling of dual-armed cluster tools without swap restriction. In Proceedings of the 2008 IEEE
International Conference on Automation Science and Engineering, Arlington, VA, USA, 23–26 August 2008; pp. 103–108.

12. Suerich, D.; McIlroy, T. Artificial Intelligence for Real Time Cluster Tool Scheduling: EO: Equipment Optimization. In Proceedings
of the 2022 33rd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC), Saratoga Springs, NY, USA,
2–5 May 2022; pp. 1–3.

13. Havey, R.; Wang, L.; Kim, D. Application of tool science techniques to improve tool efficiency for a dry etch cluster tool.
In Proceedings of the 2011 Winter Simulation Conference (WSC), Phoenix, AZ, USA, 11–14 December 2011; pp. 1921–1926.

14. Rostami, S.; Hamidzadeh, B.; Camporese, D. An optimal periodic scheduler for dual-arm robots in cluster tools with residency
constraints. IEEE Trans. Robot. Autom. 2001, 17, 609–618. [CrossRef]

15. Venkatesh, S.; Davenport, R.; Foxhoven, P.; Nulman, J. A steady-state throughput analysis of cluster tools: Dual-blade versus
single-blade robots. IEEE Trans. Semicond. Manuf. 1997, 10, 418–424. [CrossRef]

16. López, M.J.; Wood, S.C. Systems of multiple cluster tools: Configuration, reliability, and performance. IEEE Trans. Semicond.
Manuf. 2003, 16, 170–178. [CrossRef]

17. Hong, J.P.; Lee, K.S. Throughput Analysis of the Twin Chamber Platform Equipment according to the Load-lock Configuration.
J. Semicond. Disp. Technol. 2008, 7, 39–43.

18. Aybar, M.; Potti, K.; LeBaron, T. Using simulation to understand capacity constraints and improve efficiency on process tools.
In Proceedings of the Winter Simulation Conference, San Diego, CA, USA, 8–11 December 2002; Volume 2, pp. 1431–1435.

19. Van Dongen, B.F.; Alves de Medeiros, A.; Wen, L. Process mining: Overview and outlook of petri net discovery algorithms.
In Transactions on Petri Nets and Other Models of Concurrency II; Springer: Berlin/Heidelberg, Germany, 2009; pp. 225–242.

20. Srinivasan, R. Modeling and performance analysis of cluster tools using Petri nets. IEEE Trans. Semicond. Manuf. 1998, 11, 394–403.
[CrossRef]

21. Perkinson, T.L.; McLarty, P.K.; Gyurcsik, R.S.; Cavin, R.K. Single-wafer cluster tool performance: An analysis of throughput.
IEEE Trans. Semicond. Manuf. 1994, 7, 369–373. [CrossRef]

22. Zuberek, W.M. Cluster tools with chamber revisiting-modeling and analysis using timed Petri nets. IEEE Trans. Semicond. Manuf.
2004, 17, 333–344. [CrossRef]

23. Hauser, J.R.; Rizvi, S.A. Cluster tool technology. In Process Module Metrology, Control and Clustering; International Society for
Optics and Photonics: Bellingham, WA, USA, 1992; Volume 1594, pp. 45–54.

24. Hansen, B. Benefits of cluster tool architecture for implementation of evolutionary equipment improvements and applications.
In Process Module Metrology, Control and Clustering; International Society for Optics and Photonics: Bellingham, WA, USA, 1992;
Volume 1594, pp. 83–91.

25. Sun, T.H.; Cheng, C.W.; Fu, L.C. A Petri net based approach to modeling and scheduling for an FMS and a case study. IEEE Trans.
Ind. Electron. 1994, 41, 593–601.

http://doi.org/10.1109/TSM.2003.815203
http://dx.doi.org/10.1109/JAS.2020.1003069
http://dx.doi.org/10.3390/math9091029
http://dx.doi.org/10.1109/TASE.2017.2764105
http://dx.doi.org/10.1109/TSM.2012.2199338
http://dx.doi.org/10.1109/TSMC.2016.2598303
http://dx.doi.org/10.1109/70.86081
http://dx.doi.org/10.1109/70.964662
http://dx.doi.org/10.1109/66.641483
http://dx.doi.org/10.1109/TSM.2003.810936
http://dx.doi.org/10.1109/66.705374
http://dx.doi.org/10.1109/66.311340
http://dx.doi.org/10.1109/TSM.2004.831524


Appl. Sci. 2022, 12, 7519 15 of 15

26. Wood, S.C.; Tripathi, S.; Moghadam, F. A generic model for cluster tool throughput time and capacity. In Proceedings
of 1994 IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop (ASMC), Cambridge, MA, USA,
14–16 November 1994; pp. 194–199.

27. Wood, S.C. Simple performance models for integrated processing tools. IEEE Trans. Semicond. Manuf. 1996, 9, 320–328. [CrossRef]
28. Zhou, M.; Wu, N. System Modeling and Control with Resource-Oriented Petri Nets; CRC Press: Boca Raton, FL, USA, 2009.
29. Odrey, N.G.; Green, J.D.; Appello, A. A generalized Petri net modeling approach for the control of re-entrant flow semiconductor

wafer fabrication. Robot. Comput.-Integr. Manuf. 2001, 17, 5–11. [CrossRef]
30. Hong, J.P.; Kim, J.K.; Han, J.H.; Chae, S.K. Throughput analysis and productivity enhancement for CVD equipment. In Proceedings

of the 2004 IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop (IEEE Cat. No. 04CH37530), Boston,
MA, USA, 4–6 May 2004; pp. 48–51.

31. Makanju, A.; Brooks, S.; Zincir-Heywood, A.N.; Milios, E.E. Logview: Visualizing event log clusters. In Proceedings of the 2008
Sixth Annual Conference on Privacy, Security and Trust, Fredericton, NB, Canada, 1–3 October 2008; pp. 99–108.

http://dx.doi.org/10.1109/66.536105
http://dx.doi.org/10.1016/S0736-5845(00)00031-4

	Introduction
	Related Work
	Structure and Operation of Cluster Tools
	Productivity Parameters of Cluster Tools
	Maximizing the Throughput of the Cluster Tool

	JIT1 Optimization for Throughput Maximization
	Simulation and Results
	Simulation Environment
	Cluster Tool Control in Semiconductor Manufacturing Fab
	Result

	Conclusions
	References

