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Abstract: Cyclic steam stimulation (CSS) is successfully applied to increase heavy oil recovery in
heavy oil reservoirs in Bohai Bay, China. However, during the CSS processes, hydrogen sulfide
(H2S) was detected in some heavy oil reservoirs. The existing literature mainly focused on the H2S
generation of onshore heavy oil. There is no concrete experimental data available, especially about
the level of H2S generation during CSS of offshore heavy oil. In addition, there is still a lack of
effective reaction kinetic models and numerical simulation methods to simulate H2S generation
during the CSS of offshore heavy oil. Therefore, this paper presents a case study from Bohai Bay,
China. First, the laboratory aquathermolysis tests were conducted to simulate the gases that are
produced during the CSS processes of heavy oil. The effects of the reaction temperature and time
on the H2S generation were studied. Then, a one-dimensional CSS experiment was performed
to predict H2S generation under reservoir conditions. A kinetic model for the prediction of H2S
generation during the CSS of heavy oil was presented. The developed model was calibrated with
the experimental data of the one-dimensional CSS experiment at a temperature of 300 ◦C. Finally, a
reservoir model was developed to predict H2S generation and investigate the effects of soaking time,
steam quality, and steam injection volume on H2S generation during CSS processes. The results show
that the H2S concentration increased from 0.77 ppm in the first cycle to 1.94 ppm in the eighth cycle
during the one-dimensional CSS experiment. The average absolute error between the measured and
simulated H2S production was 12.46%, indicating that the developed model can accurately predict
H2S production. The H2S production increase with soaking time, steam quality, and steam injection
volume due to the strengthened aquathermolysis reaction. Based on the reservoir simulation, the
H2S production was predicted in the range of 228 m3 to 2895 m3 within the parameters of this study.

Keywords: offshore heavy oil; cyclic steam stimulation; aquathermolysis; numerical simulation;
hydrogen sulfide

1. Introduction

Recently, due to the gradual depletion of onshore oil resources and the growing
global energy demand, the exploitation of offshore heavy oil resources has attracted much
attention [1–3]. Bohai Bay, China, has abundant heavy oil resources with approximately
4 billion tons [4,5]. Cyclic steam stimulation (CSS) is successfully applied to increase heavy
oil recovery in heavy oil reservoirs in Bohai Bay, China [6,7]. However, during the CSS
processes, hydrogen sulfide (H2S) was detected in some heavy oil reservoirs [8]. H2S
generation can even reach up to 0.044%. H2S generation from production operations is a
concern in CSS recovery of offshore heavy oil because H2S poses a hazard to health, affects
the integrity of wellbore tubulars, and impacts surface facility design considerations [9–11].
Therefore, it is necessary to predict H2S production prior to CSS implementation.
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The generation of H2S has attracted considerable attention because of its toxicity
and corrosiveness. Hyne and Greidanus defined the chemical reaction between oil sand
and steam as an aquathermolysis reaction and considered that the C–S bond cleavage of
S-containing organic compounds in oil sands was an important step in the aquathermolysis
reaction [12]. Clark et al. used tetrahydrothiophene as a model compound for aquather-
molysis reactions, revealing the reaction path of tetrahydrothiophene cracking to H2S [13].
Perez-Perez et al. proposed a kinetic model to predict the H2S generation and deduced
the evolution of H2S in resins and asphalt of heavy oil [14]. Kapadia et al. developed an
aquathermolysis kinetic model for Athabasca bitumen to predict H2S concentrations, and
the kinetic model was also validated against a wide range of laboratory and field data
(Assabaska Oilfield, Canada) [15]. Furthermore, Zhao et al. conducted aquathermolysis
experiments with minerals and concluded that the H2S concentration was higher when
minerals were present in the aquathermolysis reaction mixture. Besides, they also reported
that the reaction temperature of aquathermolysis could be reduced due to this catalytic
effect [16]. Na et al. carried out aquathermolysis experiments with bitumen samples in a
H2S corrosion-resistant autoclave and found that the amounts of H2S generated increased
with an increase in the reaction time and temperature [17]. Meanwhile, Ma et al. conducted
aquathermolysis experiments of LH residual oil and reported that the use of superheated
steam is effective in promoting H2S generation [18].

The aforementioned literature mainly focused on the H2S generation of onshore
heavy oil. There is no concrete experimental data available, especially about the level
of H2S generation during the CSS of offshore heavy oil. In addition, almost all of the
aforementioned aquathermolysis tests were performed under static conditions by the
reactors. The fluid displacement and the effects of reservoir rocks were not taken into
account. There is still a lack of effective reaction kinetic models and numerical simulation
methods to simulate H2S generation during the CSS of offshore heavy oil. In addition,
numerous experiments were conducted and found that the heavy oil quality (chemical
group composition, viscosity, and gas composition) was improved after aquathermolysis
processes [19,20]. However, the H2S generation during the experimental process was not
investigated. Therefore, this paper presents a case study from Bohai Bay, China. First, the
laboratory aquathermolysis tests were conducted to simulate the gases that are produced
during CSS recovery of heavy oil. The effects of the reaction temperature and time on the
H2S generation were studied. Then, a one-dimensional CSS experiment was conducted to
predict H2S generation. A kinetic model for the prediction of H2S generation during the
CSS of heavy oil was presented. The developed model was calibrated with the experimental
data of the one-dimensional CSS experiment at a temperature of 300 ◦C. Finally, a reservoir
model was developed to predict H2S generation and investigate the effects of soaking time,
steam quality, and steam injection volume on H2S production during CSS.

2. Experiment
2.1. Experimental Materials

The heavy oil was collected from an offshore heavy oil reservoir. The basic properties
and composition of the heavy oil are shown in Table 1. The water used in this study
was distilled water. Silica sand with a particle size of 200 µm was used as porous media
to prepare the sandpack model in the CSS experiment. N2 with a purity of 99.99% was
provided by Qingdao Xinkeyuan Technology Co., Ltd., Qingdao, China.

Table 1. Basic properties and composition of heavy oil.

Viscosity at 323 K
(mPa·s)

Density at 323 K
(kg/m3)

Molecular
Weight (g/mol)

Composition

S, % H, % N, % C, % Others, %

1232 955.977 600 0.368 11.07 0.723 80.649 7.19
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2.2. Experimental Setup
2.2.1. Aquathermolysis Experiments

The setup of the aquathermolysis experiments is detailed in Figure 1. The aquather-
molysis experiments were performed in a closed autoclave reactor (Anhui Kemi Machinery
Technology Co., Ltd., Hefei, China). The 300 mL reactor was made of Hastelloy C276,
and its maximum operating pressure and temperature can achieve 34.5 MPa and 500 ◦C,
respectively. A thermal control system was used to control the temperature of the autoclave
reactor by an electric furnace and displayed the temperature data transmitted by an internal
temperature probe in real time. A pressure gauge (Jasco 25-1009-SW-02L-400BR-X6W) with
a range of 0–40 MPa was used to monitor the pressure during each experiment. The top
of the reactor was equipped with a magnetic stirrer with stirring fluid, and a circulating
water bath was provided to prevent the magnetic stirrer from being damaged at high
temperatures. A vacuum pump was applied to empty the air in the system in advance
to improve the accuracy of the experiments. Before each experiment, a certain amount of
heavy oil and water were weighed by an electronic balance, and nitrogen was used as an
eluent gas. After each experiment, 500 mL gas bags were used to collect the gas products.
A gas chromatograph (7890A, Agilent CO., Ltd., Santa Clara, CA, USA) equipped with a
flame ionization detector (FID) and sulfur chemiluminescence detector (SCD) was used to
analyze the composition of gas products.
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Figure 1. Schematic illustration of the experimental setup for aquathermolysis experiments.

2.2.2. One-Dimensional CSS Experiment

The setup of the one-dimensional CSS experiment is shown in Figure 2. The CSS
experiment was performed in a one-dimensional sandpack model (3.8 cm in diameter and
48 cm in length) made of Hastelloy C276. Its maximum operating pressure and temperature
were 50 MPa and 450 ◦C, respectively. The pump was used to inject water and heavy
oil into the sandpack model. Its minimum injection rate can reach 0.01 mL/min. The
steam generator was used to heat the water provided by a pump to the specified injection
temperature, and its maximum working pressure and the temperature reached 35 MPa and
450 ◦C, respectively. A temperature control system was used to control the sandpack model
temperature by six belt heaters (power 3500 W) surrounded by the sandpack surface, and a
pressure probe together with a computer was used to monitor the sandpack pressure. The
products were cooled to 60 ◦C through the cooling system and condenser to avoid damage
to the back-pressure regulator (BPR). The BPR, together with a hand pump, was used to
adjust the sandpack model pressure. The gas–liquid separator separated the products into
the liquid and gas phases. An electronic balance and a gas meter were used to measure the
mass of the liquid and gas volume. The gas was collected in 500 mL gas bags and analyzed
by the gas chromatograph.
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2.3. Experimental Procedures
2.3.1. Aquathermolysis Experiments

The autoclave reactor with 50 g heavy oil and 25 g water was sealed. Inspection
for leakage was completed after N2 was used to evacuate the air in the autoclave reactor
(repeated three times). Then, the thermal control system controlled the electric furnace
to heat the reactor at a rate of 8 K/min. When the temperature reached 100 ◦C, the
magnetic stirrer started to stir the fluid in the reactor at a stirring rate of 600 rpm. After the
temperature in the reactor reached the predetermined experimental temperature, the reactor
was heated at a constant temperature for a certain reaction time. Once the aquathermolysis
reaction was completed, the reactor was rapidly cooled with forced air to avoid the influence
of steam on the experimental results. Finally, the gas products were collected in 500 mL
gas bags and analyzed by the gas chromatograph. According to the aforementioned
process, a series of aquathermolysis experiments were conducted to examine the effects of
temperature (270 ◦C and 300 ◦C) and time (0.5 d and 2 d) on gas products.

2.3.2. One-Dimensional CSS Experiment

The silica sand was filled in the clean one-dimensional sandpack model. After the ex-
perimental setups were connected, inspection for leakage and vacuuming were completed.
The temperature control system controlled the band heater to heat the sandpack model
to 46 ◦C (reservoir temperature). Then, the pump was used to inject water and heavy oil
into the sandpack model, and the porosity, permeability, and initial oil saturation of the
model were measured, which were 56.8%, 2748 mD, and 85.4%, respectively. After the
sandpack model preparation was finished, the steam generator heated the distilled water
to the predetermined temperature (300 ◦C), and the steam near 100% quality was injected
into the model at a rate of 10 mL/min until the reservoir pressure reached the desired
pressure. After steam injection, the model was soaked till pressure was stable. The time
of steam injection and soaking in each cycle was 2 h in total. During production, the BPR
was used to control the outlet pressure, and 1 MPa/h was applied as a pressure drop rate
in each cycle. The whole cycle finished when the model pressure was 1 MPa. The CSS
cycles were repeated until the end of the eighth cycle. The mass of liquid and gas volume
was measured by the electronic balance and the gas meter, and the gas products at the
end of cycle 1, cycle 4, and cycle 8 were collected in 500 mL bags, respectively. Finally, the
collected gas products were analyzed by the gas chromatograph.
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2.4. Experimental Results and Discussion
2.4.1. Aquathermolysis Experiments

Table 2 shows the results of gas chromatography for the gas products. It can be seen
from Table 2 that the concentrations of H2S, CO2, and H2 were 0.00013% (1.3 ppm), 24.487%,
and 38.52%, respectively, at 270 ◦C and 0.5 d.

Table 2. Results of gas chromatography for gas products at different reaction temperatures and times.

Gas
Composition

270 ◦C, 0.5 d 300 ◦C, 0.5 d 270 ◦C, 2 d 300 ◦C 2 d

Volume, % Volume, % Volume, % Volume, %

H2 38.52 39.437 39.519 40.265
CO2 24.487 26.935 27.192 30.861
CO 0.499 0.812 1.253 1.476

Methane 12.921 15.446 16.507 18.792
Ethane 2.381 3.419 2.861 3.906

Ethylene 3.22 2.795 2.184 0.237
Propane 2.516 2.824 3.11 3.618

Propylene 2.456 1.235 1.195 0.302
Isobutane 0.185 0.147 0.153 0.114
N-butane 0.73 0.577 0.458 0.159

Trans-2-butene 3.658 2.186 2.679 0.051
1-butene 1.964 1.225 0.763 0.012
Isobutene 0.928 0.254 0.278 0.035
Pentane 0.327 0.135 0.186 0.022

Isopentane 0.154 0.086 0.095 0.037
Pentene 1.256 0.14 0.507 0.008

C6+ 3.797 2.343 1.056 0.093
H2S 0.00013 0.003185 0.003029 0.01019

The possible reasons for the presence of H2S, CO2, and H2 in the gas products are
shown as follows [12]:

Organosulfur
Aquathermolysis−−−−−−−−−→ Alcohol + Mercaptan + H2S (1)

Alcohol
Aquathermolysis−−−−−−−−−→ Aldehydes (2)

Aldehydes
Aquathermolysis−−−−−−−−−→ Carbon Monoxide + Hydrocarbon (3)

Carbon monoxide + Steam WGSR−−−→ Carbon dioxide + Hydrogen (4)

Hydrogen + Organosulfur + Mercaptan
Hydrodesulfurization−−−−−−−−−−−−→ H2S (5)

According to Equations (1)–(5), it can be seen that the C–S bond of the S-containing
organic compound of heavy oil broke in the aquathermolysis reaction, resulting in the
presence of H2S, CO2, and H2 in the gas products.

Of course, many paraffin hydrocarbons and olefins were also detected in the gas
products. For example, the concentrations of methane, ethane, and propane were 12.921%,
2.381%, and 2.516%, respectively, while the concentrations of C6+, pentene, and trans-2-
butene were 3.797%, 1.256%, and 3.658%, respectively at 270 ◦C and 0.5 d. Similar results
were observed in the other three sets of experiments. The possible reasons are shown as
follows: (1) The C–C bond cleavage of asphalt chains and the β scission in the alkyl side
chain of aromatics of heavy oil lead to the formation of short olefins and low molecular light
hydrocarbon in the aquathermolysis reaction [21,22]. (2) The extraction of steam resulted in
the formation of long-chain hydrocarbons (such as C6+, trans-2-butene, pentene, and so on)
in the gas products [23].

Besides, it can be seen from Table 2 that the H2S concentration increases with the
increase in temperature. When the reaction time was 0.5 days, the H2S concentrations were
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0.00013% (1.3 ppm) and 0.003185% (31.85 ppm) at 270 ◦C and 300 ◦C, respectively. This is
due to the fact that with the increase in temperature, the reaction rate accelerated, and the C–
S bond was easier to break. In addition, the concentrations of CO2 and H2 also varied from
24.487% and 38.52% to 26.935% and 39.437%, respectively. Similar results were observed
when the reaction time was 2 d. The significant increase in the concentrations of CO2
and H2 also proves that an increasing temperature is beneficial for the aquathermolysis of
heavy oil. Due to the accelerated aquathermolysis reactions, light hydrocarbons (methane,
ethane, and propane) increased, and heavy hydrocarbons (pentene, trans-2-butene, and
C6+) decreased with the increase in temperature.

Table 2 also shows the results of the aquathermolysis reaction at different reaction
times. The H2S concentration increased with the increase in reaction time. When the
reaction time varied from 0.5 d to 2 d at 300 ◦C, the H2S concentration increased from
0.003185% (31.85 ppm) to 0.01019% (101.9 ppm). The concentrations of CO2 and H2 also
increased from 26.935% and 39.437% to 30.861% and 40.265%, respectively. The results
suggest that increasing time deepened the degree of aquathermolysis.

According to the experimental data of the aquathermolysis experiments, the activation
energy and frequency factor were estimated by a Kapadia kinetics model [15]. As shown in
Figure 3a, the reaction time had a linear relation with the concentrations of H2S [24]. The
reaction time and the concentration of H2S were fitted, with the slope of the regression
lines showing the values of reaction rates (k) at different temperatures. It can be seen
from Figure 3a that the reaction rates at 300 ◦C and 270 ◦C are 0.0000467 and 0.00001933,
respectively. Figure 3b shows the relationship between the reaction rates (k) and tempera-
tures (T). The corresponding kinetic parameters (activation energy and frequency factor)
were obtained according to the slope and intercept of the interpolation line (Figure 3b),
which are 76.12 kJ/mol and 404.03 1/day, respectively.
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2.4.2. One-Dimensional CSS Experiment

The results of the one-dimensional CSS experiment are shown in Figure 4. As shown
in Figure 4a, the sandpack model pressure increased during the steam injection. Once the
target pressure was reached, the soaking began, and then the sandpack model pressure
tended to be stable. When the soaking was completed, the pressure decreased at 1 MPa/h.
In addition, as the CSS cycle increased, the oil production gradually dropped while the
water cut gradually increased (Figure 4b). The oil recovery at the end of the eighth cycle
reached 40.10% (Figure 4a).
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The results of gas chromatography are shown in Table 3. It can be seen from Table 3 that
the H2S concentration increased from 0.000077% (0.77 ppm) in the first cycle to 0.000194%
(1.94 ppm) in the eighth cycle during the one-dimensional CSS experiment. This is because
the injected amount of steam increased as the oil was produced, resulting in stronger
aquathermolysis reactions. However, it is noted that, after the fourth cycle, the amount of
oil saturation was gradually reduced. Therefore, the concentration of H2S at the end of the
eighth cycle was only 0.000004% higher than that at the end of the fourth cycle. In addition,
the relative volume of CO2 decreased from 98.08% to 89.769% due to the generation of
more types of gases during the aquathermolysis reactions and steam extraction.
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Table 3. Results of gas chromatography during the CSS process.

The First Cycle The Fourth Cycle The Eighth Cycle

Composition Volume, % Composition Volume, % Composition Volume, %

CO2 98.080 H2 0.316 H2 0.475
Methane 1.274 CO2 93.698 CO2 89.769
Ethane 0.095 Methane 2.176 Methane 3.043

Ethylene 0.137 Ethane 0.422 Ethane 0.536
Propane 0.162 Ethylene 0.575 Ethylene 0.670

C6+ 0.248 Propane 0.413 Propane 0.508
H2S 0.000077 Propylene 0.406 Propylene 0.457

Isobutane 0.158 Isobutane 0.135
Trans-2-Butene 0.137 Trans-2-Butene 0.194

Pentane 0.384 N-butane 0.568
Pentene 0.256 1-butene 0.159

C6+ 1.054 Isopentane 0.402
H2S 0.00019 Pentane 0.961

Pentene 0.720
C6+ 1.400
H2S 0.000194

3. Numerical Simulation
3.1. One-Dimensional Numerical Simulation
3.1.1. Building the One-Dimensional Numerical Simulation Model

In this study, CMG-STARS software was used to develop a numerical model to simu-
late the H2S generation during the one-dimensional CSS experiment. According to the size
of the one-dimensional sandpack model, a one-dimensional numerical simulation model
was established, as shown in Figure 5. Reasonable grid size and step size can not only
approach reality, but also improve the operational speed of the grid model. Therefore, the
one-dimensional numerical simulation model included 48 × 19 × 19 (17328) grids, and
the grid size was 1 cm (X) × 0.2 cm (Y) × 0.2 cm (Z). The reservoir properties (porosity,
permeability, oil saturation) were obtained from the experimental data, and Table 4 shows
the other reservoir and rock properties used in the model.

In this study, the fluid model was set up with three components: water, heavy oil,
and H2S. The density and oil volume factors of heavy oil are 955.977 (kg/m3) and 1.035,
respectively. The viscosity–temperature curve of heavy oil, oil–water relative permeability
curve, and gas–liquid relative permeability curve adopted in the model are shown in
Figures 6 and 7.
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Table 4. The reservoir fluid and rock properties used in the model.

Parameters Values

Reservoir temperature, ◦C 46
Reservoir pressure, kPa 8000

Rock compressibility, 1/MPa 4 × 10−5

Rock heat capacity, J/(m3·◦C) 2.58 × 106

Thermal conductivity of rock, J/(m3·d·◦C) 1.634 × 105

Thermal conductivity of water phase, J/(m3·d·◦C) 5.99 × 104

Thermal conductivity of oil phase, J/(m3·d·◦C) 9.77 × 103

Thermal conductivity of gas phase, J/(m3·d·◦C) 1.9 × 103
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The kinetic parameters (activation energy and frequency factor) used in the numerical
simulation model were obtained from the aforementioned studies (Figure 3), and the
following reaction Equation (6) was applicable to describe the generation of H2S during
the CSS process.

Heavy Oil→H2S (6)

The production parameters of wells in the model are consistent with the operating
parameters during the one-dimensional CSS experiment.

3.1.2. History Matching

Taking the cumulative oil production and H2S production of the one-dimensional
CSS experiment as the fitting targets, the matching was carried out by mainly adjusting
the relative permeability curve and kinetic parameters, such as activation energy and
frequency factor in the developed numerical simulation model. As shown in Figure 8,
the simulated cumulative oil production and H2S production are consistent with those
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obtained by experiments. The average absolute errors between the measured and simulated
cumulative oil production and H2S production were 4.31% and 12.46%, respectively. All the
results indicate that the measured and simulated H2S production had a good consistency,
and the developed model can accurately predict H2S production during CSS processes.
Therefore, the calibrated parameters were used to predict H2S production in the following
reservoir numerical simulation.
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3.2. Reservoir Numerical Simulation
Prediction of H2S Production

There is a heavy oil reservoir in Bohai Bay, China, at depths of 800 to. 1000 m, with
porosities of 12–45%, average permeabilities of 2450 mD, and initial oil saturation of 70–82%.
In the reservoir model, to consider the reasonable running time, the total number of cells in
the three-dimensional (3D) model was equal to 20,000. The oil layer was vertically subdivided
into 10 zones. The reference depth of the reservoir simulation model was set equal to 800 m
with pressure at 8000 kPa. Basic reservoir properties and operational parameters for the 3D
reservoir model are shown in Table 5. The relative permeability curves and kinetic parameters
obtained from the history matching of the one-dimensional CSS experiment are directly
applied to the reservoir simulation.
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Table 5. Reservoir properties and operational parameters used in the simulation model.

Parameter Values

Porosity 0.12–0.45
Average permeability, mD 2450

Initial oil saturation, % 70–82
Oil volume factor 1.035

Cyclic steam injection volume, m3 7500
Steam temperature, ◦C 300

Steam quality 0.7
Steam injection rate, m3·d−1 250

Soaking time, d 5
Cycles 5

Based on the established reservoir model, the H2S production during the CSS process
of offshore reservoirs was predicted, ranging from 228 m3 to 1490 m3 (Figure 9). However,
it is noted that the H2S production decreases with the increase of cycles after two cycles.
This is attributed to the fact that the continuous production of heavy oil near-wellbore leads
to a decrease in the amount of S-containing organic compounds, resulting in a weakened
aquathermolysis reaction.
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3.3. Sensitivity Analysis
3.3.1. Effects of Steam Quality

Figure 10 shows the effects of steam quality on H2S production. It can be found from
Figure 10 that the production of H2S has an increasing trend with the increase in steam
quality. The maximum H2S production is 2895 m3 when the steam quality is 1. This is
because the steam with higher quality has a high latent heat of vaporization and a large
specific volume. When the steam was injected into the reservoir, the steam with a higher
steam quality accelerated the aquathermolysis reaction and increased the H2S production.
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3.3.2. Effects of Soaking Time

Figure 11 shows the effects of soaking times (1–5 days) on H2S production. As shown in
Figure 11, the production of H2S increases gradually with the increase in soaking time. The
reason for this trend is that with the increase in soaking time, the time of aquathermolysis
reaction increases. Therefore, the extent of the aquathermolysis reaction is gradually
deepened. However, the increasing degree of H2S production gradually decreases with
the increase in soaking time after the third cycle. The reason is that the oil saturation
near-wellbore decreases after the continuous aquathermolysis reactions.
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3.3.3. Effects of Steam Injection Volume

Figure 12 shows the effects of steam volumes on H2S production. It can be seen from
Figure 12 that the production of H2S increases from 652 m3 to 1490 m3 as steam injection
volume increases from 5500 m3 to 7500 m3 per cycle. It is because the aquathermolysis
reaction of heavy oil is more intense due to the existence of more steam and higher heat.
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4. Conclusions

(1) The concentrations of H2S increased with the increase in temperature and time. The
aquathermolysis reaction resulted in the presence of H2S, CO2, and H2 in the gas
products. The effects of the oil–water ratio, rock minerals, and pressure on the
concentrations of H2S need to be further investigated, and the oil products after the
aquathermolysis need to be comprehensively analyzed in future research.

(2) The established kinetic model can be used to predict H2S production during the
CSS processes. The activation energy and frequency factor were estimated to be
76.12 KJ/mol and 404.03 1/day, respectively.

(3) The H2S concentrations increased from 0.77 ppm to 1.94 ppm during the one-dimensional
CSS experiment. As the CSS cycle increased, the oil production gradually dropped
while the water cut gradually increased. The oil recovery at the end of the eighth cycle
reached 40.10%.

(4) The measured and simulated H2S production had a good consistency, indicating
that the developed model has high precision in predicting H2S production during
CSS processes.

(5) The H2S production increased with the increase in soaking time, steam quality, and
steam injection volume due to the strengthened aquathermolysis reactions. Based on
the reservoir simulations, the H2S production was predicted in the range of 228 m3 to
2895 m3 within the parameters of this study.
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