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Abstract: In recent times, the number of Internet of Things devices has increased considerably.
Numerous Internet of Things devices generate enormous traffic, thereby causing network congestion
and packet loss. To address network congestion in massive Internet of Things systems, an efficient
channel allocation method is necessary. Although some channel allocation methods have already
been studied, as far as we know, there is no research focusing on the implementation phase of Inter-
net of Things devices while considering massive heterogeneous Internet of Things systems where
different kinds of Internet of Things devices coexist in the same Internet of Things system. This paper
focuses on the multi-armed-bandit-based channel allocation method that can be implemented on
resource-constrained Internet of Things devices with low computational processing ability while
avoiding congestion in massive Internet of Things systems. This paper first evaluates some well-
known multi-armed-bandit-based channel allocation methods in massive Internet of Things systems.
The simulation results show that an improved multi-armed-bandit-based channel selection method
called Modified Tug of War can achieve the highest frame success rate in most cases. Specifically,
the frame success rate can reach 95% when the numbers of channels and IoT devices are 60 and
10,000, respectively, while 12% channels are suffering traffic load by other kinds of IoT devices. In
addition, the performance in terms of frame success rate can be improved by 20% compared to the
equality channel allocation. Moreover, the multi-armed-bandit-based channel allocation methods
is implemented on 50 Wi-SUN Internet of Things devices that support IEEE 802.15.4g/4e commu-
nication and evaluate the performance in frame success rate in an actual wood house coexisting
with LoRa devices. The experimental results show that the modified multi-armed-bandit method
can achieve the highest frame success rate compared to other well-known frame success rate-based
channel selection methods.

Keywords: massive heterogeneous IoT networks; distributed channel selection; reinforcement
learning; multi-armed bandit

1. Introduction

In recent years, the number of Internet-of-Things (IoT) devices has increased. The
International Data Corporation (IDC) predicts that more than 40 billion IoT devices will
generate 79 zettabytes (ZB;1021 bytes) by 2025 [1]. One of the goals of Beyond 5G is to
support massive machine-type communications (mMTC). 6G-IoT aims to support the
transmission of 10 million connected devices per square kilometer [2]. Various companies
and alliances have developed unique low-power wide-area (LPWA) systems and have
offered their own devices or network services. The wireless intelligent utility network
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(Wi-SUN) spreads across more than 40 countries, Sigfox in more than 70 countries, and
LoRa in more than 160 countries, and they have been leading the IoT world [3]. Network
congestion would become unavoidable in a “massive” IoT environment. Each country has
regulations on available frequencies band and communication channels for IoT devices.
For example, the 915 MHz band is assigned in the US, the 433 MHz and 868 MHz band in
the EU, and the 920 MHz band in Japan. In addition, the duty ratio, which indicates the
communication frequency, is set to 1% or less or 10% or less. Efficient use of frequency
resources is essential to ease congestion while complying with regulations. This fact has
motivated many researchers to discuss dynamic spectrum access, where IoT devices can
access channels dynamically to improve spectrum efficiency.

There are mainly two categories of resource allocation methods: centralized ones and
decentralized ones. Regarding the centralized methods, references [4] propose time-slotted
channel hopping (TSCH) based channel allocation methods that have been adopted in
the IEEE 802.15.4e standard [5] to improve the IoT network performance. Reference [6]
proposes a resource allocation method based on deep Q learning performed at the gateway
(GW) side. Although the centralized methods can adequately manage the operation of
end nodes, increasing the number of nodes brings the burden on the controlling server.
In addition, synchronization and constant connection between GW and IoT devices are
required, resulting in high power consumption of the end device. Therefore, the centralized
methods are unsuitable for avoiding collisions in massive IoT networks.

The IoT device decides the access channels in the autonomous decentralized resource
allocation method. Reference [7] proposed a decentralized channel assignment method
for cognitive radio networks. In [8], a reinforcement learning method was adopted to
dynamically select channels in a complicated communication environment. In [9], a deep
learning-based method was proposed to determine the transmission schedule and power.
References [10,11] treated channel access by a single user as a multi-armed bandit (MAB)
problem [12]. Reference [10] proposed a channel selection protocol based on optimization
and reference [11] analyzed the average communication performance of competitive users.
Reference [13] formulated the channel access problem as multi-player MAB (MP-MAB)
problems. In [14], the channel assignment problem is also formulated as an MP-MAB
problem. The proposed MAB-based channel assignment method in this work is imple-
mented on a single-board computer supported by IEEE 802.15.4g/4e communication. The
performance is evaluated using 30 IoT devices, verifying that the MAB methods are efficient
for the channel assignment in dynamic IoT systems. However, a massive heterogeneous
scenario is not well considered. In [15], a distributed learning technique based on bandit
algorithms is proposed for LoRa devices to select their access selection. In [16], a distributed
channel selection method based on TOW dynamics is proposed for fully decentralized
networks. Both reference [15] and reference [16] implement and evaluate their proposed
methods on the practical IoT devices.

Contributions of This Paper

This paper focuses on lightweight learning algorithms that can be implemented on
IoT devices. MAB algorithms are the simplest reinforcement learning method. In the MAB
algorithm-based channel selection methods, the channel can be selected only based on
ACK information. The communication performance may be improved by using some other
information besides ACK information. However, it takes time to obtain the information,
which may increase energy consumption. Since the state information other than ACK
information is necessary for the Q learning method or deep reinforcement learning method
in related work, which may reduce energy efficiency. Hence, compared to the other
reinforcement learning method, the MAB methods considered in this paper may achieve
higher energy efficiency and are more suitable for battery powered IoT devices. On the
other hand, although there are several works on MAB-based channel selection that are
implemented on IoT devices, channel selection under massive heterogeneous IoT networks
is not considered in the related work.
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To support substantial IoT devices in the next-generation communication systems, the
effectiveness of the MAB-based channel assignment methods in massive heterogeneous IoT
networks is verified in this paper. Specifically, the effectiveness of the MAB-based channel
assignment method in a massive heterogeneous IoT network consisting of 10,000 devices
is firstly evaluated by simulations. Subsequently, the performance in frame success rate
(FSR) is evaluated using the 50 Wi-SUN IoT devices with IEEE 802.15.4g/4e protocol in
the IoT networks coexisting with the LoRa devices. The contributions of this paper can be
summarized as follows.

• The channel assignment problem is formulated as a MAB problem and apply MAB
algorithms to solve the formulated problem in massive heterogeneous IoT networks.

• The effectiveness of the MAB-based channel assignment methods in FSR is evaluated
and verified under a massive IoT network with 10,000 IoT devices.

• The MAB-based channel assignment methods is implemented on actual Wi-SUN IoT
devices and evaluates the performance in FSR under the IoT heterogeneous network
coexisting with LoRa devices.

The remainder of this paper is organized as follows. Section 2 summarizes the fre-
quency standards of major countries and LPWA networks that are widely deployed world-
wide. Section 3 describes the system model and problem formulation. Section 4 presents
the MAB-based channel assignment methods. Section 5 evaluates the performance in FSR
of the MAB-based channel assignment methods through simulations, assuming a massive
heterogeneous IoT networks with 10,000 IoT devices. Section 6 describes the experiments
conducted in a real IoT network where Wi-SUN IoT devices coexist with LoRa devices.
Finally, Section 7 provides the concluding statement.

2. Low-Power Wide-Area Networks

Applications such as smart cities and smart meters need to cover a large area with low
power consumption communication to realize long-term operation without maintenance.
Traditional wireless local area networks (WLANs) such as Wi-Fi and cellular networks are
not suitable to meet this requirement. To meet the requirement, various standards for IoT
networks have already been developed over the last decade, such as LoRa, Sigfox, and
Wi-SUN. This section introduces these major standards of the IoT networks.

LoRa is a unique chirp spread spectrum modulation technique optimized for long-
range low-power communications. The data rate of the LoRa devices mainly depends
on the used bandwidth, spreading factor (SF), and forward error correction (FEC) rate.
The bandwidth is typically set to 125 kHz or 250 kHz for the uplink and 500 kHz for the
downlink. The SF values can range from 7 to 12, and the FEC rate can vary from 4/8 to 4/5.
Setting a larger SF value can improve receiver sensitivity and wider coverage; however, the
data rate is consequently reduced. LoRaWAN is the most widely used protocol stack for
LoRa networks and has 240 million devices in 170 countries [17], End LoRa devices connect
to one or more gateways through a single hop. A LoRa gateway can process up to nine
channels in parallel by combining different sub-bands, and SF [18]. LoRa has a capture
effect that makes it possible to recover a LoRa signal, provided that the desired signal is at
least one dB above the interference level.

Sigfox is a standard originating in France and currently has 75 regions and coun-
tries with more than 19 million devices [19]. Sigfox utilizes unlicensed ISM bands and
differential-BPSK (D-BPSK) modulation. The message is sent with a fixed bandwidth
of 100 Hz and a speed of 100 bps for the uplink, and 200 Hz and 600 bps for the down-
link, respectively. This modulation technique belongs to the ultra-narrow band (UNB)
modulation. The advantages of using D-BPSK modulation are its high efficiency in the
spectrum medium access and ease of implementation. A low bit-rate enables the use of
low-cost transceiver components. Sigfox transmits data by changing the frequency three
times for each data to ensure data transmission. Sigfox technology has a duty cycle whose
restrictions vary within the transmission band from 0.1% to 10%, depending on regional
regulations [20].
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Wi-SUN is a standard based on IEEE 802.15.4g/4e and deployed in 46 countries, and
has more than 100 million devices [21]. IEEE 802.15.4g is an amendment to the IEEE 802.15.4
standard, focusing on SUN communications that play an essential role in the smart grid [22].
The standard specifies several modes that operate in different bands, including the sub-GHz
industrial science and medical (ISM) bands. Multirate frequency-shift keying (MR-FSK)
with 2-FSK or 4-FSK is the main modulation technique used in Wi-SUN devices. The
data rate varies from 2.4 to 200 kbps, depending on the region and frequency band. The
mandatory configuration for all regions is 2-FSK, which operates at 50 kbps, implying a
channel spacing of 200 kHz. More than 50 million smart meters in Japan that can collect
electricity consumption data using this standard have already been deployed. Their number
is expected to increase in the future.

The IoT standards described above coexist in the same frequency band called the
ISM band [23]. Thus, an increase in the number of IoT devices leads to a significant
decrease in network performance because devices following each standard may affect other
devices, which will bring collisions to the massive heterogeneous IoT networks [24]. By the
MAB-based channel assignment methods that will be present in this paper, approximately
10,000 IoT devices can be accommodated in such coexistence IoT networks.

3. System Model

This section describes the system model and problem formulation. Figure 1 illustrates
an IoT network environment where one or more gateways with multiple asynchronous
IoT devices are distributed in each of the m IoT networks. In each network, the IoT devices
send data to the gateway according to their standards regarding the network configuration,
frequency channel to be used, transmission timing, and so on. Each IoT network could
not know the standards and the locations of the IoT devices and gateways of the other IoT
networks. Therefore, it is difficult to avoid collisions between heterogeneous IoT networks.

…

IoT network 1
• Configuration: star 
• Channels: 1 ~ 10
• Transmission interval: 60 s IoT network "

• Configuration: mesh 
• Channel: 1
• Transmission interval: 360 s

IoT network 2
• Configuration: mesh 
• Channels: 1 ~ 5
• Transmission interval: 3600 s

Figure 1. System model of the heterogeneous IoT networks.

Figure 2 shows the channel selection problem of one IoT network in such heteroge-
neous IoT networks. In the network, K channels are available. A gateway and M IoT
devices are associated with the star topology. IoT device sends data to the gateway, and
when the gateway receives the data properly, the IoT device will receive an acknowledg-
ment (ACK). This paper defines communication as success when the IoT device receives
ACK information. Communication is defined as failure otherwise. If the communication
fails, NACK information will be obtained on the IoT device side. For example, node 1 sends
data to the gateway using channel 1; communication is successful since no other IoT device
is accessing that channel. Hence, an ACK can be received from the gateway. Meanwhile,
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node two and node M− 1 transmit data using channel three simultaneously. The trans-
missions of node two and node M− 1 are failures because of the collision between them.
In addition, node M transmits using channel k also fails because the node interferes with
other IoT networks. In summary, the transmission will be assumed as a failure if two or
more than two IoT devices access the same channel simultaneously, no matter which IoT
network the devices belong to.

CH !

CH 1 CH 2 CH 3 … CH ! − 1 CH !

ACK

Available channels

Data

node 1

…

node " − 1 node "node 2

Figure 2. Channel access model.

Figure 3 shows the occupied state of the channel in the time domain. If multiple
nodes send data using the same channel simultaneously, a collision will occur, and the
communications are assumed to fail. Assume that an IoT battery-powered node will be
driven for an extended period without charging. All nodes repeat the wake-up and sleep
modes. Assume the sleep time for each IoT device is t. After t. time sleep, a node sends
data to the gateway by utilizing the selected channel k based on the MAB methods from
the available K channels. It does not matter if the node performs carrier sensing before
transmission as long as it complies with the communication standard. The contents of the
data and data size depend on the requirement of IoT devices. A node will be in sleep mode
after sending and saving the result of receiving the ACK/NACK information.

Channel 1

Channel 2

Channel 3

⋮ ⋮ ⋱ ⋮

Channel &

Time

Node 1
Node 2
Node 3
Node 4

Collision

Collision

Figure 3. Occupied state of the channels in time domain.
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4. Channel Selection Algorithm Based on Multi-Armed-Bandit Algorithm

This section describes channel selection algorithms based on major MAB methods.
That is the ε-greedy algorithm, UCB1-tunned algorithm, TOW dynamics algorithm, and
the MTOW algorithm. The reason that we investigate these four algorithms is summarized
as follows. The epsilon greedy method is the easiest to implement among the multi-armed-
bandit (MAB) methods, while the UCB1-tunned can almost get the highest performance
among the MAB methods. Moreover, TOW and MTOW proposed by the co-author of
this paper can achieve higher performance than UCB1-tuned under certain environments.
Hence, we investigated the effects of these four methods. Generally, the performance of
the other MAB algorithm is between the UCB1-tunned method and the epsilon greedy
method. In the rest of this section, the relationship between the MAB problem and the
channel selection problem is presented first. Then, the details of the channel selection
method are given.

4.1. Formulation of the Channel Selection as a Multi-Armed-Bandit Problem

The MAB problem [12] is a gambler model that plays multiple slot machines. This
problem aims to obtain a strategy to decide which slot machines to be played to earn
maximum rewards. Initially, the gambler had no prior information regarding the reward
probability of any of the machines. The player gathers information about each slot machine
when playing a slot machine. In the MAB problem, resolving the tradeoff between “explo-
ration” to search and identify good slot machines and “exploitation” to play the optimal
slot machine and obtain rewards is essential. The MAB problem has various applications,
such as in-network advertising, medical fields, network routing, and channel selection.
Various algorithms have been proposed that include (among others) ε-greedy [25], Soft-
max [26], upper confidence bounds (UCB) [27] and UCB1-tuned [28], which is a champion
algorithm improved UCB. Besides those well-known MAB methods, a MAB method based
on Tug-of-War (TOW) dynamics has been proposed, and the high performance with a
small computational cost is shown in [29–33]. Ref. [29] proposes a decision-making mecha-
nism inspired by the behavior of unicellular organisms. Ref. [30] proposes the application
of decision-making method based TOW to channel access selection in cognitive radio.
Ref. [31] analyzes how to give optimal reward and punishment values in the learning
process of TOW. Ref. [32] analyzes individual rewards and social rewards in a competitive
environment. Ref. [33] proposes a model in which TOW works on atomic switch.

A channel access model aided by cognitive radio has been proposed in [10,11]. In
that model, the authors assume that there are K available channels, and each frame is
separated into time slots in the network. The cognitive user selects one channel from
K = {1, . . . , k} channels to send data. In this model, the availability probability pk, which
denotes the degree of channel congestion, is defined. Figure 4 illustrates the correspondence
between the channel selection problem and the MAB problem when the ACK frame from
the gateway is used as a reward. First, the IoT device has no information about the IoT
networks, including the state of the available channels. As a node accesses some channels
to send data, it gradually learns the communication conditions depending on whether or
not ACK frames can be received. This channel selection model is consistent with the MAB
problem and can be considered a problem that maximizes the number of successful data
transmissions to the gateway.
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・・・
・・・

Reward:coin Reward:ACK frame

MAB problem Channel Selection

Player node

Channel 1 Channel "Channel 2
Machine 1 Machine "Machine 2

Gateway

Figure 4. MAB problem vs. channel selection problem.

4.2. Learning Rules of the Multi-Armed-Bandit Algorithms

Figure 5 illustrates a series of flows from the determination of the transmission channel
to the data transmission based on the MAB algorithm when each node treats the ACK
frame from the gateway as a reward for the MAB problem. The node periodically repeats
the wakeup mode for data transmission and learning and the sleep mode for suppressing
power consumption. The process shown in the red frame in this flow is the channel-
selection process. A node updates the learning parameters such as the number of data
transmission attempts N and the number of successful messages R according to whether
ACK can be received or not after data transmission. The following sections introduce some
major MAB algorithms that can be used as the channel-selection algorithm in this process.

Start

Wake up

Select channel !∗
following the rule of each algorithm

ACK received

Updated learning parameters
" = " + 1

In UCB1-tuned: update &
In TOW: update ', &

Updated learning parameters
) = ) + 1,
" = " + 1

In UCB1-tuned: update &
In TOW: update ', &

Transmit data to a Gateway

N

Y

Time * + 1

Go to sleep mode

Channel selection algorithm

Figure 5. Flowchart of the channel selection.

4.2.1. ε-Greedy Based Algorithm

The ε-greedy algorithm is a simple method that determines the ratio of exploration to
exploitation using the variable ε. Therefore, it is widely used as an algorithm for solving
MAB problems. In each trial t = 1, 2, . . ., among the K channels, the channel that seems
to have the highest reward probability from past experience is selected with a probability
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of 1− ε. Subsequently, another slot is randomly selected with a probability of ε. In the
ε-greedy algorithm, ε must be set or adjusted correctly. If the value of ε is too low, it will be
difficult to find the optimal behavior. On the contrary, the behavior will be close to random
and the rewards that can be obtained will be unstable if the ε is too high. The estimated
reward probability of machine k is expressed as follows:

pk(t) =
Rk(t)
Nk(t)

, (1)

k∗ =

{
arg maxk∈K pk(t) if 1− ε,
Randomly selected otherwise,

(2)

where Nk(t) is the number of transmissions by channel k until time t, that is, the number of
times channel k is selected. Rk(t) is the number of rewards gained until time t, that is, the
number of successful transmissions and ACKs received. k∗ is an index of the channel to be
selected at the next time t + 1, with the highest reward probability at time t. Algorithm 1
describes the ε-greedy based channel selection process.

Algorithm 1 ε-greedy based channel selection algorithm.

1: Initialize Rk(0), Nk(0)

2: Set ε ∈ [0, 1]

3: while wake time t = 1, 2, . . . , is not expired do

4: Generate a normal random number x ∈ [0, 1]

5: if x > ε then

6: Select channel k∗ = arg maxpk(t)(∀k ∈ K)

7: Transmit the data frame

8: Update Nk(t) + 1

9: if the data frame is transmitted and the corresponding ACK frame is received

then

10: Data transmission succeed

11: Update Rk(t) + 1

12: else

13: Data transmission failed

14: Update pk(t) given by Equation (1)

15: end if

16: else

17: Select channel k∗ from K

18: end if

19: t = t + 1

20: end while

4.2.2. Upper Confidence Bounds1-Tuned Based Algorithm

The UCB1-tuned algorithm is the best MAB algorithm with no parameter. It is also
widely used in various applications. The characteristic of this algorithm is that it considers
the mean value of the reward and the variance value Vk of the number of selections for
each channel, as shown in Equation (3). After selecting all channels and transmitting once,
to select channel k∗ in t + 1 trial is with the highest UCB value Xk, as represented by (4).
Algorithm 2 describes the UCB1-tuned based channel selection process.
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Xk(t) =
Rk(t)
Nk(t)

+

√
ln t

Nk(t)
min(1/4, Vk), (3)

k∗ = arg maxk∈KXk(t). (4)

Algorithm 2 UCB1-tuned based channel selection algorithm.

1: Initialize Qk(0), Rk(0), Nk(0)

2: while wake time t = 1, 2, . . . , is not expired do

3: if t < K then

4: Select channel k∗ = t

5: else

6: Select channel k∗ = arg maxXk(t)(∀k ∈ K)

7: end if

8: Transmit the data frame

9: Update Nk(t) + 1

10: if the data frame is transmitted and the corresponding ACK frame is received then

11: Data transmission succeed

12: Update Rk(t) + 1

13: else

14: Data transmission failed

15: end if

16: Calculate variance Vk

17: Update Xk(t) given by Equation (3)

18: t = t + 1

19: end while

4.2.3. Tug-of-War Dynamics-Based Algorithm

TOW dynamics is a reinforcement learning algorithm that rules reward estimates Qk
obtained by (5):

Qk(t) = Nk(t)− (1 + ω)Lk(t), (5)

where Lk(t) is the number of times channel k is selected and transmitted without receiving
ACKs until time t, and ω is a weight parameter. Furthermore, (5) can be expressed
as follows:

Qk(t) = Qk(t− 1) + ∆Qk(t), (6)

where ∆Qk follows the following rule.

∆Qk(t) =


+1 k = k∗and if receiving ACK,
−ω k = k∗ and if not receiving ACK,
0 k 6= k∗.

(7)

The displacement Xk(t) at time t, which is used for the decision of the TOW, is
expressed using Qk(t) in (5) and (6) as follows:

Xk(t) = Qk(t− 1)− 1
K− 1

K

∑
k′ 6=k

Qk(t) (8)
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Reference [31] describes the way to obtain the optimal weight parameter ω. Let us
consider the expected value of the reward estimate of machine k from Equation (9).

E[Qk(t)] = {pk(t)−ω(1− pk(t))}Nk(t). (9)

This paper describes the highest and second highest reward probabilities of the ma-
chine at time t as p1st(t) and p2nd(t), respectively. To ensure that the machine with the
highest reward probability is always selected, both of the following two expressions should
be satisfied:

p1st(t)−ω(1− p1st(t)) > 0, (10)

p2nd(t)−ω(1− p2nd(t)) < 0. (11)

These equations can be written as follows:

p1st(t) <
ω

1 + ω
< p2nd(t). (12)

It can be confirmed that (13) satisfies (12), and the optimal ω is derived.

ω

1 + ω
=

p1st(t) + p2nd(t)
2

, (13)

ω =
p1st(t) + p2nd(t)

2− (p1st(t) + p2nd(t))
. (14)

The channel to be selected at time t + 1 is the channel k∗, corresponding to Equation (15).

k∗ = arg maxk∈KXk(t + 1). (15)

This algorithm has a small calculation cost compared with the champion algorithm
UCB, which uses a complicated calculation methodology, such as the square-root calculation.

4.2.4. Modified Tug-of-War

As the channel quality changes dynamically owing to the emergence of mobile nodes
or the deployment of new networks, a forgetting parameter α (0 < α ≤ 1) is introduced
to reduce the influence of past experiences. Subsequently, Equation (5) is modified to (16).
Xk(t) is calculated and selects the channel k∗ is selected using Equation (15), after it wakes
up at the next cycle.

Qk(t) = αQk(t− 1) + ∆Qk(t). (16)

The smaller α is, the lesser the effect of past experiences on the current learning
state. Algorithm 3 describes the learning process for TOW dynamics and MTOW-based
channel selection.
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Algorithm 3 TOW dynamics or MTOW-based channel selection algorithm.

1: Initialize Qk(0), Rk(0), Nk(0),

2: while wake time t = 1, 2, . . . , is not expired do

3: Select channel k∗ = arg maxXk(t)(∀k ∈ K)

4: Transmit the data frame

5: if the data frame is transmitted and the corresponding ACK frame is received then

6: Data transmission succeed

7: Update Rk(t) + 1

8: Set ∆Qk∗(t) = +1

9: else

10: Data transmission failed

11: Update pk(t) given by Equation (1)

12: Update ω(t) given by Equation (14)

13: Set ∆Qk∗(t) = −ω(t)

14: end if

15: Update Qk(t) given by Equation (6) in TOW or Equation (16) in MTOW

16: Update Xk(t + 1) given by Equation (8)

17: t = t + 1

18: end while

5. Performance Evaluation

In this section, the performance of the MAB-based channel selection methods is
evaluated by simulation. In the simulation, there are two kinds of massive IoT networks
where ALOHA communication without channel sensing is adapted. IoT devices in one
network transmit data using the channel selected by the MAB-based methods. IoT devices
in the other network transmit data using the allocated fixed channel following a two-state
Markov model [34]. The two states are ON state and OFF state. During the ON state, IoT
devices operate regularly, including wake-up and sleep modes. During the wake-up mode,
the IoT device transmits data using the allocated fix channel. During the sleep mode and
OFF state, IoT devices keep silent without transmitting data. The state transition probability
of the two-state Markov model can be expressed as:

P =

(
ON-ON ON-OFF
OFF-ON OFF-OFF

)
=

(
1+λk

2
1−λk

2
1−λk

2
1+λk

2

)
, (17)

where λk is a parameter that indicates the ease of transition of the state transitions in channel
k and its range is from −1 to +1. This formulation means that the network continues the
past state (i.e., ON-ON or OFF-OFF) with a probability of 1+λk

2 and transitions from the
past state to a different state (i.e., ON-OFF or OFF-ON) with a probability of 1−λk

2 . The
transmission is a failure if two or more IoT devices simultaneously access the same channel.
This paper verifies the effectiveness of applying the MAB algorithm such as ε-greedy,
UCB1-tuned, and basic TOW and MTOW to the channel selection problem in a massive
heterogeneous IoT network and evaluates the network performance in terms of FSR. The
common simulation settings are summarized in Table 1. Note that the value of ε is set to
0.1 in the simulation.
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Table 1. Simulation settings.

Simulation time [s] 10,000

Number of nodes M 100, 1000, 10,000

Number of available channels K 15, 30, 60

Duty cycle 0.01, 0.1

Number of load channels 1/5, 2/5, 3/5, 4/5 of K

Load duty cycle [%] 0.1, 0.5, 0.9

Duration of each state [s] 100

λ 0.8

Forgetting parameter α 0.95

ε 0.10

Figure 6 shows an example of channel selection based on the TOW method. In the
simulation, the numbers of IoT nodes and channels are set to 10 and 15, respectively.
Among the 15 channels, 12 channels are loaded by the other IoT network. The orange line
in Figure 6 indicates the loaded channel and the loaded time by the IoT devices of the other
IoT network. The channel access situation of the 10 IoT devices in the IoT network accessing
channels based on TOW algorithms are shown at different points. Simulation results show
that the IoT devices can avoid accessing the channels loaded by other IoT networks. The
reason is that IoT devices can select the channel with the highest probability based on the
TOW method. The communication fails when IoT device selects the channel that are loaded
by other IoT networks, which reduces the probability of the selected channel. By iterative
selection and the update of the probability parameter corresponding to each channel, IoT
devices can select the channels without load.

0 200 400 600 800 1000
time [s]

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

C
H

load
node 1
node 2
node 3
node 4
node 5
node 6
node 7
node 8
node 9
node 10

Figure 6. Example of channel selection based on TOW method in the heterogeneous IoT networks.
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Figure 7 illustrates the relation between the FSR and the number of IoT nodes. In this
simulation, the number of IoT devices varies from 102 to 104. The number of channels is
set to 20. The parameter related to the state transition probability of the IoT devices in
the network where IoT devices transmit data using the allocated fixed channels λ is set as
0.8. The duty ratio is set to 0.5. From the simulation results, it can be observed that as the
number of nodes increases, FSR decreases. The reason is that with the increase of the IoT
devices, the collisions among IoT devices in the same IoT network increase. Even though
the FSR decreases with the increase of the number of IoT devices, the FSR is higher than
90% for the TOW/MTOW channel selection method when the number of IoT devices is 104.
The reason is that the TOW/MTOW-based channel selection method can select the channel
with highest available probability. Hence, the TOW/MTOW is effective for the massive
heterogeneous IoT networks.

Figure 8 illustrates the relation between the FSR and the duty cycle of the IoT nodes.
In this simulation, the numbers of IoT nodes and channels are set to 10,000 and 30. Among
the 30 available channels, 12 channels may be loaded by the IoT devices in the other
network. λ and the duty ratio are set to 0.8 and 0.5, respectively. The simulation results
show that the FSR decreases with the increase of the duty ratio. The reason is that the
transmission interval becomes shorter with the increased duty ratio, which will increase
the collision probability among IoT devices. Moreover, the MTOW can obtain the highest
FSR. The reason is that channel selection-based MTOW can select the channel with the
highest available probability. In addition, the MTOW method is more adaptable to dynamic
environments due to the introduction of the forgetting parameter, which is introduced to
reduce the influence of past experiences.

Figure 9 illustrates the relation between the FSR and the number of available channels.
In this simulation, the number of IoT nodes is set to 10,000. The number of channels that
may be loaded by the IoT devices in the other IoT network is set to 12. The transition
parameter λ and the duty ratio are set to 0.8 and 0.5. Simulation results show that the FSR
increases with the number of available channels. The reason is that with the increase of the
number of available channels, the average number of IoT nodes assigned to each channel
is decreased, which reduces the probability of collisions. In addition, the MTOW can get
the highest FSR no matter how many available channels there are for the IoT network.
The reason is that the introduction of the forgetting parameter can make the method more
adaptable to a dynamic environment.

102 103 104

Number of nodes

0.75

0.80

0.85

0.90

0.95

1.00

FS
R

MTOW (α=0.95)
TOW
UCB1-tuned
ε-greedy (ε=0.10)
Equality

Figure 7. Number of nodes vs. FSR in the IoT network, where 30 available channels and 12 channels
may be occupied by the IoT devices from the other network with λ = 0.8 and a duty ratio of 0.5.
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0.01 0.10
Duty cycle

0.60

0.65

0.70

0.75

0.80

0.85

0.90

FS
R

MTOW (α=0.95)
TOW
UCB1-tuned
ε-greedy (ε=0.10)
Equality

Figure 8. Duty cycle vs. FSR in the IoT network where there are 10,000 nodes and 30 available
channels, while 12 channels may be loaded by the IoT devices of the other kind of network with a
communication frequency of λ = 0.8 and a duty ratio of 0.5.

15 30 60
Number of available channels

0.65

0.70

0.75

0.80

0.85

0.90

0.95

FS
R

MTOW (α=0.95)
TOW
UCB1-tuned
ε-greedy (ε=0.10)
Equality

Figure 9. Number of available channels vs. FSR in the IoT network where 10,000 nodes and
12 channels may be loaded.

Figure 10 illustrates the relation between the FSR and the numbers of available and
loaded channels. Figure 10a–c show the FSR when the number of available channels are
set to 15, 20, and 60, respectively. The number of channels that may be loaded varies from
20% to 80% of the available channels. The numbers of duty ratio and IoT nodes are set
to 0.5 and 10,000, respectively. The transition parameter λ is set to 0.8. Simulation results
show that the FSR decreases with the increases of the loaded channels. The reason is
that collisions among different IoT networks increase when the number of load channels
becomes larger. In addition, MTOW can get much better FSR than the other methods
when the number of loaded channels increases, which shows that MTOW may be more
effective for heterogeneous IoT networks with a larger number of IoT devices. Hence,
MTOW could be applied for the heterogeneous IoT network with a higher congestion
degree, while UCB1-tuned/MTOW could be used for the heterogeneous IoT network with
a lower congestion degree.
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(a)
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Number of load channels
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(b)

12 24 36 48
Number of load channels

0.70

0.75
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0.85

0.90

0.95
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R

MTOW (α=0.95)
TOW
UCB1-tuned
ε-greedy (ε=0.10)
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(c)

Figure 10. Number of load channels vs. FSR in the IoT network where the number of IoT nodes is
10,000 with λ = 0.8 and a duty ratio of 0.5. (a) Number of load channels vs. FSR when the number of
available channels is 15. (b) Number of load channels vs. FSR when the number of available channels
is 30. (c) Number of load channels vs. FSR when the number of available channels is 60.

The experimental results described above show that MTOW can achieve the highest-
performance in FSR compared to the other three methods. These results have also been
evaluated in [16]. Moreover, the theoretical analysis in [30] also shows that regret, an
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indicator of how much loss was made from the appropriate choices, is smaller for the
TOW-based algorithm than that for the UCB1-tuned algorithm. From the experimental
results of this paper, it is clarified that MTOW-based channel selection algorithm works
properly in a dynamic environment with a huge number of IoT nodes where competition
caused by other coexistence IoT exists.

6. Implementation and Performance Evaluation of the Multi-Armed-Bandit-Based
Channel Selection Methods on Internet of Things Devices

In this section, the performance of the channel selection-based MAB algorithms simu-
lated in Section 5 is implemented and evaluated using the actual IoT devices. Wi-SUN IoT
devices and LoRa are used as the evaluation IoT network and the interference IoT network,
respectively. For the Wi-SUN IoT devices, Lazurite 920J, which supports IEEE 802.15.4g/4e
standard and can communicate using the 920 MHz band, is used. Table 2 lists the specifica-
tion of the Lazurite 920J.

Table 2. The specification of the Lazurite 920J.

Operating voltage [V] 1.8–3.3

Operating frequency 16 MHz (operation)
32.768 kHz (sleep)

Standby current [µA] 7

Operating current [mA] 4 (not using radio)
25 (using radio)

RAM 6 KB

ROM 64 KB

Figure 11 shows the settings of the IoT devices in the experiment. The heterogeneous
IoT network is constructed in a 13 m × 7 m square area. A Wi-SUN IoT network consists of
50 Wi-SUN devices (i.e., Lazurite) and a gateway is deployed in this area. Meanwhile, a
LoRa network composed of 5 LoRa devices is also deployed in the area. Wi-SUN devices
select the access channels based on the MAB algorithms. A Raspberry Pi controls each
Wi-SUN device. The MAB algorithms are implemented on the Raspberry Pi to calculate the
access channel and control the Wi-SUN device to transmit data using the selected channel.
LoRa devices transmit data using channel 34 every 20 min. The transmission interval for
the LoRa device is 10 s.

13m

7m

node
Gateway

load node (LoRa)

Figure 11. The layout of the IoT devices in the experiment.

Table 3 summarizes the experimental settings.
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Table 3. The experimental settings.

Experiment time [s] 7200

Transmission power [mW] 20

Bit rate [kbps] 50

34 (922.6),
Channel (center frequency [MHz]) 37 (923.2),

40 (923.8)

Number of IoT node M 50

Number of available channels K 3

Sleep interval of IoT node [s] 1.0

Number of load node (LoRa) 5

Load channel (center frequency [MHz]) 34 (922.6)

Sleep interval of load node [s] 10.0

Figure 12 shows the experimental results in FSR of the MAB-based channel selection
methods, i.e., ε-greedy based, UCB-1tuned based, TOW-based, and MTOW-based channel
selection method. Wi-SUN devices select their access channel among three channels, i.e.,
CH34, CH37, and CH40, using the MAB-based channel selection methods. Figure 12 shows
that the MTOW can achieve the highest FSR. In addition, the fairness index (FI) values
for ε-greedy based, UCB-1tuned based, TOW-based, and MTOW-based channel selection
method are 0.997, 0.995, 0.974, and 0.998, respectively. Hence, The MTOW-based channel
selection method is superior to the other MAB-based channel selection methods in FI and
FSR under both simulation and implementation. The experimental results also verify the
effectiveness of the MTOW algorithm in dynamic environments, which introduces the
forgetting parameter to adapt to the dynamic environment.

ε-greedy 
 (ε = 0.10)

UCB1-tuned TOW MTOW 
 (α = 0.90)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

FS
R

Figure 12. Implementation results in terms of FSR for the MAB-based channel selection methods.

7. Conclusions

In this paper, the effectiveness of the MAB-based autonomous decentralized channel
selection methods for massive heterogeneous IoT networks is evaluated. Specifically, the
FSR can reach 95% when the numbers of channels and IoT devices are 60 and 10,000,
respectively, while 12% channels are suffering traffic load by other kinds of IoT devices.



Appl. Sci. 2022, 12, 7424 18 of 19

In addition, the performance in terms of FSR improves by 20% compared to the equality
channel allocation. In addition, the MAB algorithm, termed MTOW, can achieve the
highest FSR in any setting. Moreover, the performance of the MAB-based channel selection
methods is implemented and evaluated on IoT devices. Experimental results show that the
MTOW-based channel selection method can achieve the highest FSR and FI, i.e., around
0.95, and 0.998, respectively. In summary, the MTOW-based channel selection method can
get high FSR either in simulation or experiments. As described above, due to the high FSR
and FI, and easy application concerning the practical IoT devices, the MTOW-based channel
selection method may become an efficient technique to support massive IoT applications,
such as smart city, personal IoT, Smart grid, industrial assets monitoring, agriculture, and
many other applications [35] in the next generation of wireless communication networks.
In our further work, we will investigate the impact of the parameters in the MAB algorithm
on the performance for massive heterogeneous IoT networks. For instance, the ε value in
ε-greedy algorithm, the α in MTOW algorithm, and so on. Moreover, the time consumption
of the evaluated algorithms in this paper will be experimentally analyzed later.
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