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Abstract: In order to realize the accurate prediction of the vibration fatigue life of the beam in service,
a loose coupling analysis method is proposed to carry out vibration fatigue analysis of a beam with
an initial crack. In modal analysis, the initial crack segment is replaced with a torsion spring, and the
damping loss factor is introduced by the complex modulus of elasticity; for the simply supported
beam, the inherent vibration characteristic equation of the cracked beam is derived. In vibration
fatigue analysis, the interaction between the crack’s growth and vibration analysis is considered, and
a loose coupling analysis method is proposed to conduct modal dynamic response and vibration
fatigue analysis simultaneously. Results indicate that the crack’s relative location and depth determine
the modal of the cracked beam, and crack parameters, damping loss factor and external excitation
frequency are important factors for the vibration fatigue life of the beam.

Keywords: crack; simply supported beam; vibration; fatigue life

1. Introduction

As modern industry develops rapidly, the development trend for large equipment
are the extreme environments of high speed, high temperature and high pressure, and
factors causing the failure of the engineering structure are increasing. In the service process
of large mechanical equipment, vibration fatigue is one of the most important failure
factors. In the vibrating environment, when the external excitation frequency is close
to the natural frequency of the structure, resonance failure is caused in the engineering
structure, which will in turn cause major losses to personnel and affect property safety. For
engineering structures, the fatigue crack is an important structural health problem, and
safety accidents caused by cracks in engineering structures are very common. Therefore,
dynamic characteristics analysis of structures with cracks is essential, and conducting modal
analysis and vibration fatigue life analysis of cracked structures has great engineering value.

In the past 40 years, vibration fatigue analysis of the cracked structures has received
extensive attention from scholars. Dentsoras and Dimarogonas [1,2] systematically studied
the fatigue crack growth mechanism under the resonance condition based on the Paris
equation [3]. Dentsoras and Kouvaritakis [4] assumed a polymer material beam was under
the resonance condition, and systematically investigated the influence mechanism of the
excitation frequency on crack growth. Colakoglu [5] derived the relationship between
the crack initiation life and the structural damping changes. Eldoǧan and Cigeroglu [6]
developed an in-house numerical code to conduct vibration fatigue analysis of a cracked
cantilever beam, and investigated the influence of damping ratio on the vibration fatigue
life of the cantilever. Jassim et al. [7] conducted the vibration fatigue analysis of the cracked
beam by the numerical method, and carried out the vibration fatigue experiment of the
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cracked beam for verification. Demirel and Kayran [8] designed a rectangular cross-section
cracked beam, and applied the Dirlik’s damage model to investigate a random vibration
fatigue mechanism in the frequency domain numerically and experimentally. Liu and
Barkey [9] used the energy principle to derive the friction damping loss factor based on the
Coulomb friction model, and investigated the coupling mechanism of vibration analysis
and crack’s growth. Wu et al. [10] established the high frequency vibration-induced fatigue
failure experimental platform of the cracked beam, and analyzed the influence of dynamic
stress, acceleration and operational modal on the vibration fatigue life. References above
provided a variety of solutions for vibration fatigue analysis of the cracked beam, but
these methods had certain defects. In the theoretical method, the interaction between crack
growth and the stress field is not considered; in the numerical method, the crack growth
cannot be tracked; in the experimental method, the workload is huge and the cost is high.

Structural vibration induces fatigue crack propagation, and fatigue crack propagation
also changes the vibration characteristics and stress field of a structure, and then the crack
growth behavior is affected. Scholars have carried out a lot of analysis and research to
consider the complexity of the interaction between vibration and fatigue crack propagation,
Shih and Chen [11] considered the interaction between stress intensity factor and crack
axis, and established a model for fatigue life and crack axis analysis. Shih and Wu [12]
used the generalized Forman equation [13] to simulate the crack growth, and analyzed
the influence of the vibration on the crack growth of a rectangular plate with a unilateral
crack. Wu and Shih [14] assumed the periodic load excitation was acting on the rectangular
plate with a unilateral crack, and studied the non-linear vibration response characteristics.
Liu and He [15] considered the coupling effect of vibration analysis and crack’s growth,
and proposed a new method to conduct the vibration fatigue analysis of cracked beams by
introducing the complex elastic modulus. Assuming that the cyclic loading was acting on a
V-notched cantilever beam, Liu and Barkey [16] investigated the crack growth characteris-
tics by experimental method, and proposed a new method to predict remaining life. Appert
and Gautrelet [17] designed the shaker vibration fatigue experimental plan of the cracked
beam, and investigated non-linear behavior and remaining life. Considering the coupling
effect between vibration analysis and the crack’s growth, the references above provide
several solutions to predict the remaining life of a beam. In the vibrating environment,
there is interaction between the stress field and the crack field, and the modal dynamic
response and vibration fatigue analysis need to be carried out at the same time.

In this paper, a loose coupling analysis method is proposed to carry out vibration fa-
tigue analysis for a simply supported beam under a typical harmonic excitation. Assuming
that the crack does not grow in each vibration cycle, and the crack grows at the end of each
vibration cycle. For simplicity, only the first order natural frequency of the cracked beam is
considered. According to the loose coupling analysis method, modal, dynamic response
and vibration fatigue analysis can be carried out synchronously in each vibration cycle, and
the influence of crack’s parameters, damping loss factor and external excitation frequency
on the fatigue life is investigated.

2. Modal Analysis
2.1. Model of Cracked Beam

As shown in Figure 1, the research object is a rectangular cross-section beam with
an initial transverse crack. The length, height and thickness of the beam are L, h and b,
respectively, and the position and depth of the crack are xc and a0, respectively.
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Figure 1. Model of the beam with a unilateral crack.

Based on the crack, the beam can be transformed into a two-segment elastic beam
with no mass torsion spring. For simplicity, the torsion spring coefficient KT is considered
only. The torsion spring coefficient [18] of the crack can be equivalent, as follows:

KT =
E ∗ h3

72(1− v2)F(r)
(1)

where v is the Poisson ratio; E∗ is the complex modulus of elasticity [19], and E∗ = E(1+ iγ);
γ is the material damping loss factor; r is the relative depth of the crack, r = a0/h; and F(r)
is the flexibility correction function [20] obtained through the strain energy density function:

F(r) = 1.98r2 − 3.277r3 + 14.43r4 − 31.26r5 + 63.56r6

−103.36r7 + 147.52r8 − 127.69r9 + 61.5r10 (2)

2.2. Modal Analysis

As shown in Figure 1, the homogeneous slender straight beam can be regarded as the
Euler-Bernoulli beam [21], and the vibration differential equation can be expressed as:

ρA
∂2y(x, t)

∂t2 + E∗ I
∂4y(x, t)

∂x4 = 0 (3)

where ρ is the material density; A is the cross-section area of the beam; and I is the cross-
section moment of inertia.

Equation (3) is a fourth order homogeneous differential equation with constant coeffi-
cients, and can be solved by the separation variable method [22]:

y(x, t) = y(x)sin(ωt) (4)

Substitute Equation (4) into Equation (3), and motion equations of two stage beams
can be yielded:{

y1(x) = c1 sin(λx) + c2 cos(λx) + c3sinh(λx) + c4 cosh(λx)
y2(x) = c5 sin(λx) + c6 cos(λx) + c7sinh(λx) + c8 cosh(λx)

(5)

where λ is the frequency constant, and λ4 = ω2ρA/(E ∗ I); c1, c2, · · · , c8 are the undeter-
mined coefficients, which can be determined by boundary conditions.

Due to the simply supported beam, boundary conditions can be written as follows:

y1(0) = 0; y” 1(0) = 0
y2(L) = 0; y” 2(L) = 0
y1(xc) = y2(xc);
M1(xc) = M2(xc)
F1(xc) = F2(xc)

−E ∗ I ∂2y1(xc)
∂x2 = KT

[
∂y1(xc)

∂x − ∂y2(xc)
∂x

]
(6)
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Substitute Equation (5) into Equation (6), algebraic equations with undetermined
coefficients c1, c2, · · · , c8 can be obtained, which can be transformed into the matrix form:

H[c1 c2 c3 c4 c5 c6 c7 c8]
′
= 0 (7)

where H is the coefficient determinant matrix.
Through the condition that the algebraic equations have nonzero solutions, the value

of the coefficient determinant is zero, then natural frequencies of the simply supported
cracked beam can be obtained:

det(H) = 0 (8)

3. Vibration Fatigue Analysis
3.1. Dynamic Response Analysis

Assume that the cracked beam is under the distribution harmonic excitation shown in
Figure 2, then vibration response equations can be expressed, respectively, as follows:

yd1(x) = cd1 sin λx + cd2 cos λx + cd3sinhλx
+cd4 cosh λx + q0(cosh λx+cos λx−2)

2E∗ Iλ4

yd2(x) = cd5 sin λx + cd6 cos λx + cd7sinhλx
+cd8 cosh λx + q0(cosh λx+cos λx−2)

2E∗ Iλ4

(9)
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Boundary conditions can be written, respectively, as:

yd1(0) = 0; y” d1(0) = 0
yd2(L) = 0; y” d2(L) = 0
yd1(xc) = yd2(xc)
Md1(xc) = Md2(xc)
Fd1(xc) = Fd2(xc)

−E ∗ I ∂2yd1(xc)
∂x2 = KT

[
∂yd1(xc)

∂x − ∂yd2(xc)
∂x

]
(10)

Substitute Equation (9) into Equation (10), and undetermined coefficients cd1, cd2, · · · , cd8
can be obtained. Assume that the unilateral crack is the open crack, and the normal stress
at the cross section can be derived:

σ(x) =
My

I
= E ∗ z

∂2y
∂x2 (11)

where z is the distance to neutral axis of the beam.
For the beam under the distribution harmonic excitation, assume xc ∈ [0, L/2], and

the maximum stress expression at the crack tip (z = (h− a0)/2) can be written as:

σ(xc) = E ∗ z
∂2yd1

∂x2 |x=xc (12)
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3.2. Stress Intensity Factor

Stress intensity factor at the crack tip can be derived as follows:

∆KI = Y(r)∆σd
√

πa (13)

where ∆KI is the stress intensity factor; ∆σd is the maximum stress; and Y(r) is the crack
correction factor: Y(r) = 1.122− 1.4r + 7.33r2 − 13.08r3 + 14r4.

Under the distribution harmonic excitation, the stress intensity factor at the crack tip
can be derived as follows:

∆KI = KImax = Y(r)σ(xc)
√

πa0 (14)

3.3. Loose Coupling Analysis Method

In the vibration of the cracked beam, the interaction occurs between the cracked beam
vibration and crack’s growth. Crack growth will change the modal and dynamic response
of the beam, and affect the stress field distribution; variation of the stress field distribution
of the cracked beam will also change the crack growth rate. In this paper, a loose coupling
analysis method is proposed to conduct the vibration fatigue analysis of the cracked beam.
Assume that the crack length is constant in each cycle of vibration, and the crack will
grow at the end of each cycle. Crack growth and cracked beam vibration analysis are in
segmented data transmission form, which means that data transmission occurs at the end
of each vibration cycle. The flow chart of loose coupling analysis method is shown in
Figure 3.
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Paris Law [23] can be applied to describe the crack growth rate in this paper:

da
dN

= C(∆KI)
n (15)

where C, n are the constants of beam material; and da/dN is the crack growth rate.
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Substitute Equation (14) into Equation (15), and the crack growth rate can be obtained:

da
dN

= C[Y(r)σ(xc)
√

πa0]
n (16)

After ∆Nj periodic vibration, the crack growth increment can be calculated:

∆aj =
∫ Nj

Nj−1

C[Y(r)σ(xc)
√

πa0]
ndN (17)

Assume ∆Nj = Nj − Nj−1 = 1, and da
dN ≈

∆aj
∆Nj

.
Equation (17) can be transformed as follows:

∆aj = C[Y(r)σ(xc)
√

πa0]
n∆Nj (18)

where ∆aj is the crack growth increment after jth periodic cycle.
According to the fatigue damage accumulation theory, the depth of the crack can

be calculated:

aj = a0 +
k

∑
j

∆aj (19)

where k is the number of cycles; and ak is the depth after k periodic cycles.

3.4. Fatigue Failure Criterion

The following three fatigue failure criteria are applied in this paper:
Criterion 1: if the depth of the crack reaches to the neutral layer of the beam, the beam

will be destroyed.
a ≥ ac (20)

where ac is the critical crack depth, ac = h/2.
Criterion 2: if the stress intensity factor reaches to the material fracture toughness, the

beam will be destroyed.
Kmax ≥ Kc (21)

where Kmax is the maximum stress intensity factor; and Kc is the material fracture toughness.
Criterion 3: if the maximum stress at the crack surface reaches to the material ultimate

strength, the beam will be destroyed.

σmax ≥ σb (22)

where σmax is the maximum stress at the crack surface; and σb is the material ultimate strength.

4. Results and Discussions

Assume that geometric dimensions of the beam are as follows: L = 0.3 m, h = 0.02 m
and b = 0.002 m. The structural material is the low carbon alloy steel AISI1050, and material
parameters are as follows: E = 210 Gpa, γ = 0.05, ρ = 7860 kg·m−3, σb = 723.45 Mpa,
v = 0.33, Kc = 1172.2 Mpa·m1/2, ∆Kth = 0.93421Mpa·m1/2, C = 3.0093e− 32 and m = 3.3.

4.1. Natural Frequency

For the simply supported cracked beam, the geometric parameters of the crack are
as follows: xc ∈ [0, L] and a0/h ∈ [0, 0.5]. As the relative position and depth of the crack
change, the first order natural frequency variation is shown in Figure 4.
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As shown in Figure 4, the crack is the important factor affecting natural frequencies
of the beam, which cannot be ignored. As the crack’s relative depth increases, the first
order natural frequency of the beam gradually decreases, and the amplitude of the decrease
gradually increases. From the perspective of the crack’s relative position, the first order
natural frequency variation is symmetrical in the middle section of the simply supported
beam. When the crack is in the middle part of the simply supported beam (xc/L ∈ [0.3, 0.7]),
the first order natural frequency decreases faster as the crack’s relative depth increases.

4.2. Relative Positions

Assume that the crack’s geometric parameters are as follows: xc/L ∈ {0.1, 0.2, · · · , 0.9} ,
r ∈ {0.05, 0.1, 0.15} and q0 = 500 N/m, γ = 0.05. At the resonance condition, vibration
fatigue lives are shown in Table 1.

Table 1. Vibration fatigue lives as the crack’s geometric parameters change.

xc/L 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.05 385,337 37,099 14,859 13,403 12,706 13,403 14,859 37,099 385,337
0.1 234,626 20,118 9327 8535 7877 8535 9327 20,118 234,626
0.15 159,228 12,371 7030 6636 6080 6636 7030 12,371 159,228

As shown in Table 1, the crack’s geometric parameters are important factors affecting
the vibration fatigue life of the beam. From the perspective of the crack’s relative position,
the vibration fatigue lives of the beam are symmetrical in the simply supported beam, and
the vibration fatigue life of the beam with the same-depth crack at the midpoint is the least.
As the crack is close to the middle section of the simply supported beam, the amplitude
of the beam’s vibration fatigue life gradually decreases. As the relative depth of the crack
decreases, the vibration fatigue life of the cracked beam gradually decreases.

4.3. Damping Region

Assume that the crack’s geometric parameters are as follows: xc/L = 0.3, r = 0.1 and
q0 = 500 N/m, γ = {0.005, 0.01, 0.05, 0.1}. Vibration fatigue life curves are shown at the
resonance condition, in Figure 5.
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As shown in Figure 5, the damping loss factor is another important factor affecting
the vibration fatigue life of the beam. When γ = 0.005, 0.01, the simply supported beam
will be destroyed at around r = 0.3, because the maximum stress at the crack’s surface
reaches to the material ultimate strength. As the damping loss factor gradually increases,
the vibration fatigue life of the beam increases. The influence of a small damping loss
factor on the vibration fatigue life is not obvious, but a big damping loss factor will greatly
influence the vibration fatigue life of the cracked beam.

4.4. Resonance Region

Assume that the crack’s geometric parameters are as follows: xc/L = 0.3, r = 0.1 and
q0 = 500 N/m, γ = 0.05. Define the ratio of the external excitation frequency and natural
frequency as the frequency ratio ζ and ζ = ω/ωn = {0.8, 0.85, 0.9, 0.95, 1.0}. Vibration
fatigue life curves with different ζ are shown in Figure 6.
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As shown in Figure 6, the external excitation frequency is another important factor
affecting the vibration fatigue life of the beam. At the resonance condition, the vibration
fatigue life is much less than that of other frequency ratios in the resonance region. When
the external excitation frequency is closer to the first order natural frequency, the vibration
fatigue life becomes shorter, and the decreasing amplitude of the vibration fatigue life
decreases exponentially.

5. Conclusions

Considering the interaction between vibration analysis and crack’s growth, a loose
coupling analysis method is proposed to conduct the vibration fatigue analysis of a beam
with a unilateral crack. The crack’s geometric parameters are important factors to determine



Appl. Sci. 2022, 12, 7398 9 of 10

the modal of the beam, and damping loss factor and external excitation frequency are
external conditions for the vibration fatigue life of the beam, which cannot be ignored.

The innovations of this manuscript are as follows:
(1) The loose coupling analysis method proposed can conduct modal dynamic response

and vibration fatigue analysis simultaneously, which will more accurately calculate the
crack growth increment;

(2) A theoretical method for vibration fatigue behavior of the cracked beam provides a
theoretical basis for health monitoring of the beam in service.
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L.F.; validation, Y.M., K.M. and L.F.; formal analysis, Y.M.; investigation, J.W.; resources, Y.M. and
G.C.; data curation, K.M.; writing—original draft preparation, J.W.; writing—review and editing,
Y.M.; project administration, G.C. All authors have read and agreed to the published version of
the manuscript.
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8. Demirel, G.İ.; Kayran, A. Implementation of Dirlik′s damage model for the vibration fatigue analysis. Procedia Struct. Integr. 2019,

21, 101–111. [CrossRef]
9. Liu, W.; Barkey, M.E. The effects of breathing behaviour on crack growth of a vibrating beam. Shock. Vib. 2018, 2018, 2579419.

[CrossRef]
10. Wu, X.; Xie, C.; Liu, K.; Wu, S.; Wen, Z.; Mo, J. Study on high frequency vibration-induced fatigue failure of antenna beam in a

metro bogie. Eng. Fail. Anal. 2022, 133, 105976. [CrossRef]
11. Shih, Y.; Shih, Y. Analysis of fatigue crack growth on a cracked shaft. Int. J. Fatigue 1997, 19, 477–485.
12. Shih, Y.S.; Wu, G.Y. Effect of vibration on fatigue crack growth of an edge crack for a rectangular plate. Int. J. Fatigue 2002, 24,

557–566. [CrossRef]
13. Forman, R.G.; Kearney, V.E.; Engle, R.M. Numerical analysis of crack propagation in cyclicloaded structures. ASME J. Basic Eng.

1967, 89, 459–463. [CrossRef]
14. Wu, G.Y.; Shih, Y.S. Dynamic instability of rectangular plate with an edge crack. Comput. Struct. 2005, 84, 1–10. [CrossRef]
15. Liu, W.G.; He, H.L. An Analytical Method for Vibration Fatigue of Cracked Beams. In Advanced Materials Research; Trans Tech

Publications Ltd.: Bäch, Switzerland, 2012; Volume 479, pp. 783–786.
16. Liu, W.; Barkey, M.E. Prediction on Remaining Life of a V-Notched Beam by Measured Modal Frequency. Shock. Vib. 2019,

2019, 7351386. [CrossRef]
17. Appert, A.; Gautrelet, C.; Khalij, L.; Troian, R. Development of a test bench for vibratory fatigue experiments of a cantilever beam

with an electrodynamic shaker. In Proceedings of the MATEC Web of Conferences, Poitiers, France, 27 May–1 June 2018; EDP
Sciences: Les Ulis, France; Volume 165, p. 10007.

18. Douka, E.; Loutridis, S.; Trochidis, A. Crack identification in beams using wavelet analysis. Int. J. Solids Struct. 2003, 40, 3557–3569.
[CrossRef]

19. Dentsoras, A.J.; Dimarogonas, A.D. Resonance controlled fatigue crack propagation in a beam under longitudinal vibrations. Int.
J. Fract. 1983, 23, 15–22. [CrossRef]

http://doi.org/10.1016/0013-7944(83)90088-7
http://doi.org/10.1016/0013-7944(89)90133-1
http://doi.org/10.1115/1.3656900
http://doi.org/10.1016/0013-7944(94)00226-8
http://doi.org/10.1016/j.engfailanal.2013.02.016
http://doi.org/10.1016/j.prostr.2019.12.091
http://doi.org/10.1155/2018/2579419
http://doi.org/10.1016/j.engfailanal.2021.105976
http://doi.org/10.1016/S0142-1123(01)00110-4
http://doi.org/10.1115/1.3609637
http://doi.org/10.1016/j.compstruc.2005.09.003
http://doi.org/10.1155/2019/7351386
http://doi.org/10.1016/S0020-7683(03)00147-1
http://doi.org/10.1007/BF00020154


Appl. Sci. 2022, 12, 7398 10 of 10

20. Wu, Q.; Guo, S.; Li, X.; Gao, G. Crack diagnosis method for a cantilevered beam structure based on modal parameters. Meas. Sci.
Technol. 2019, 31, 035001. [CrossRef]

21. Andreaus, U.; Spagnuolo, M.; Lekszycki, T.; Eugster, S.R. A Ritz approach for the static analysis of planar pantographic structures
modeled with nonlinear Euler–Bernoulli beams. Contin. Mech. Thermodyn. 2018, 30, 1103–1123. [CrossRef]

22. Vidal, P.; Giunta, G.; Gallimard, L.; Polit, O. Modeling of composite and sandwich beams with a generic cross-section using a
variable separation method. Compos. Part B Eng. 2019, 165, 648–661. [CrossRef]

23. Pugno, N.; Ciavarella, M.; Cornetti, P.; Carpinteri, A. A generalized Paris’ law for fatigue crack growth. J. Mech. Phys. Solids 2006,
54, 1333–1349. [CrossRef]

http://doi.org/10.1088/1361-6501/ab5480
http://doi.org/10.1007/s00161-018-0665-3
http://doi.org/10.1016/j.compositesb.2019.01.095
http://doi.org/10.1016/j.jmps.2006.01.007

	Introduction 
	Modal Analysis 
	Model of Cracked Beam 
	Modal Analysis 

	Vibration Fatigue Analysis 
	Dynamic Response Analysis 
	Stress Intensity Factor 
	Loose Coupling Analysis Method 
	Fatigue Failure Criterion 

	Results and Discussions 
	Natural Frequency 
	Relative Positions 
	Damping Region 
	Resonance Region 

	Conclusions 
	References

