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Abstract: This paper proposed a probabilistic framework that could be used for the sensitivity
assessment of grid-connected voltage source converters (VSCs), where uncertainties in the grid
short circuit ratio (SCR) and operating point conditions, as well as control-loop interactions, were
considered. The proposed method tried to broaden the available knowledge on the small-signal
stability analysis of VSCs and provide a probabilistic point of view of this subject. It considered
the probability of different operational conditions in order to obtain less conservatism and more
accurate results. Based on uncertain inputs and the employed stability model, the proposed model
produced statistical distributions of the critical mode and its damping factor and ratio, which were
not accessible by existing deterministic methods. Crucial statistical information measures how much
system stability and performance are maintained or changed over the system uncertainties and
disturbances, as well as provides a clear insight into the system stability problem. For instance, as
concluded in this paper, for the conventional control system design, fast dynamic parts of a VSC,
such as the current controller and control delay, significantly impact the minimum damping ratio.
Furthermore, slow dynamic parts, such as outer voltage control loops and the synchronization block,
influence the maximum damping factor. For strong grids, the AC voltage magnitude controller (AVC)
significantly impacts the maximum damping factor due to its lower bandwidth among all control
loops. For weak grids, the damping factor of the critical mode is highly affected by interactions
between the VSC, the power grid, and different control loops due to the synchronization mechanism.
The other contributions of this paper were the introduction of robust stability and performance
definitions and indices; explanations of the pros and cons of probabilistic assessment methods and
their applicability; interpretation of the obtained results; and, finally, a link was provided between
system stability and reliability, which will be crucial for future power system design.

Keywords: voltage source converters (VSCs); grid-connected VSC; weak grids; probabilistic stability
analysis; Monte Carlo simulations; robustness analysis

1. Introduction

Nowadays, methods of renewable energy generation, such as solar farms and wind
power plants, have become an important part of the energy sector due to global climate
change and the depletion of fossil fuel-based energy. It is worth noting that, by the end
of 2020, the share of renewables in electricity generation was 27%, which is expected to
reach 33% by 2025 [1]; however, these sources produce electrical energy that is incon-
sistent with power grid characteristics. Consequently, a power electronic converter is
required to successfully transfer the electricity generated from these energy sources to the
power grid, which results in highly aggregated modern power systems with many static
power converters.

This rapid growth in power electronic systems has attracted considerable attention
and concern from power system researchers and engineers, especially regarding the robust
and reliable operation of these reformed systems due to their fast dynamics, wide timescale
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control dynamics, and the interactions between different control loops, converters, and
grids [2–7]. In addition to the mentioned issues, PEPS are subjected to various uncertainties
and disturbances. Power system conditions change substantially during the day due to
variations in the number and characteristics of connected generators and loads, equipment
failure, and nonlinear effects of power converters. These issues make the robustness
analysis of PEPS more challenging as their presence is increasing.

1.1. State of the Art
1.1.1. Nominal Stability Analysis

So far, many research works have been conducted for the small signal stability analysis
of PEPS, either using the eigenvalue method or the impedance-based method.

Eigenvalue analysis clarifies essential information such as stable, unstable, and os-
cillation modes and participation factors of each system variable on the system modes.
However, eigenvalue analysis is based on the system state–space representation and needs
complete system information, which may not be available due to confidentiality rules of
different vendors [8–12].

In the impedance-based method, the power system can be divided into two separate
parts: a load-equivalent part and a source-equivalent part. The system stability can then
be analyzed by the impedance ratio of the load and the source using the Nyquist criterion.
This method needs less information about the system and analyzes system stability at the
point of connection of each inverter. However, this method is unable to identify oscillation
modes and participation factors of each system state [13–18].

These methods are popular due to the effectiveness and simplicity of their application.
However, they have been developed for linear time-invariant (LTI) systems around a
certain steady-state operating point. Therefore, they cannot investigate the impact of
multiple uncertain parameters and operational point changes on the system’s stability
and performance. Eventually, without properly incorporating these potential system
uncertainties, the stability assessment may lead to conservative or even inaccurate results.

1.1.2. Analytical Robust Stability Analysis

Recently, many efforts have been made to present advanced robust stability anal-
ysis methods for compensating for imperfections in the classical techniques. The most
important methods are µ-analysis [19–21], the edge theorem [22], the Lyapunov function,
and linear matrix inequality (LMI)-based approaches [23–25]. A structured singular value
or µ-analysis is employed to assess the robust stability of an LCL grid-connected syn-
chronverter where uncertainties in control parameters and grid conditions are modeled as
unstructured (nonparametric) uncertainties [19]. In this paper, results have confirmed that
µ-analysis could identify some effects, which might be unclear when performing an eigen-
value analysis. Moreover, µ-analysis concluded that the robustness of the synchronverter
would be increased under weaker grid conditions (i.e., a grid with higher impedance),
which was exactly opposite to the supposed results from eigenvalue analysis [26]. In [22],
the stability robustness of a power system with participating wind power plants in the
automatic generation control (AGC) task was analyzed by the edge theorem. In contrast to
conventional units, the share of wind power systems was uncertain (but bounded), which
limited the application of classical robustness analysis methods. The stability analysis of
DC microgrids with uncertain constant power loads (CPLs) was investigated in [23,24]. An
uncertain system was modeled as a linear system with polytopic uncertainties on system
matrices in this work. Moreover, robustness analysis was performed using the Lyapunov
stability theorem combined with the linear matrix inequalities (LMIs).

These robust stability-analysis methods are interesting and manifest different op-
erational aspects of emerging power electronic-based power systems; however, they are
mathematically complex and a high level of expertise is required to apply them. In addition,
their application to a larger scale system with multiple uncertainties and disturbances is
not easy at all. Moreover, these methods usually consider a system’s worst-case scenario,
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which might have an extremely low occurrence. Therefore, a power system design based
on the obtained results might not be cost-effective and efficient. To better utilize existing
assets, and at the same time properly incorporate all system uncertainties and disturbances
in the stability analysis, probabilistic stability analysis could be considered as a simple and
powerful tool [27–34].

1.1.3. Probabilistic Robust Stability Analysis

In probabilistic assessment, proper probability density functions (PDFs) for system
uncertainties, operating point conditions, and the stochastic nature of renewable energy
sources are defined. A sampling approach, such as the Monte Carlo (MC) sampling method,
draws data from PDFs. Finally, sampled data are used in the stability model to determine
statistical measures of the stability indicators.

Probabilistic stability analysis can provide more accurate results due to the examina-
tion of various influential parameters and their probability of occurrence. It can reveal
the sensitivity of system outputs to the uncertainties and variations in the system inputs.
Furthermore, in contrast to previous methods, probabilistic stability assessment can pro-
vide a much clearer picture of the system understudy and its behavior, and can facilitate
appropriate actions to utilize it better, as summarized in Table 1 and compared to the
state-of-the-art nominal and robust stability-analysis methods.

Table 1. State-of-the-art nominal and robust stability-analysis methods.

Methods Nominal
Stability

Robust
Stability

Mathematical
Complexity

Computational
Burden Conservatism

Link to Other
Power System

Studies

Conventional nominal
stability analysis, e.g.,

eigenvalues analysis, Nyquist
method, etc., [8–18]

Yes No Low Low Low Hard

Analytical robust
stability-analysis methods,

e.g., µ-analysis [19–25]
Yes Yes High Medium High Hard

Probabilistic robust stability
analysis [31–34] Yes Yes Medium High Low Easy

However, so far, probabilistic assessment has not been widely used in modern power
system studies except for specific topics, such as reliability assessment (adequacy and
security) [35–37], lifetime estimation [38], and efficiency calculation [39]. In [31–34],
probabilistic-transient and small-signal stability assessments have been performed in or-
der to consider the impact of load variations, the stochastic generation of renewable
energy sources, and other system disturbances. However, stability analysis is based on
rotor-angle stability analysis that was developed for low-frequency stability analysis of
traditional power systems. It cannot clarify different mentioned challenges in PEPS, such
as wide timescale control dynamics and interactions between other control loops and the
power grid.

1.2. Paper Motivations and Contributions

This paper helped to develop a comprehensive probabilistic framework for PEPS
that could reflect changes in the overall dynamic behavior of a system under different
uncertainties and disturbances.

In this respect, the primary motivations and contributions of this work were as follows:

• A workflow diagram for probabilistic robust stability and performance analysis was
proposed; it was helpful to be able to better understand how the probabilistic robust-
ness assessment was implemented and how different calculation parts were related.

• Various features of the probabilistic robustness assessment were clarified; this paper
presented how probabilistic assessment could be used for small-signal analysis meth-
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ods of PEPS, how obtained results could be interpreted, and what their advantages
and disadvantages were.

• Nominal and robust stability and performance definitions and indices were provided;
this paper tried to clarify nominal stability and performance, robust stability, and
performance and how they could be calculated based on the critical mode and damping
factor and ratio.

• A link between system stability and the risk and reliability assessment was provided
and the probabilistic assessment methods could provide PDFs and CDFs of stability
indices; therefore, they could provide the probability of a specific condition or a
system’s stability and instability. This information could be used for a further power
system reliability assessment.

• Major contributing parameters to system stability and performance (parameters or
control loops with a more significant impact on the maximum damping factor and
minimum damping ratio) were found.

1.3. Paper Structure

The remainder of this paper is organized as follows. Section 2 presents the proposed
framework for probabilistic stability and performance assessment and employed system
operational indicators. The system that was studied, a grid-connected LCL-filtered voltage
source converter (VSC), which included all inner and outer control loops, is introduced in
Section 3. The small-signal modeling of the power system and operating point calculations
are then discussed. After that, the application of the proposed algorithm to probabilistic
stability and the performance assessment of a grid-connected VSC is demonstrated in
Section 4. This section investigates the impact of grid short circuit ratios (SCRs), different
operating point conditions, and control parameters on the system stability and performance,
and recommendations are made. Additionally, simulations and experiments have also been
provided to validate the analytical conclusions in Sections 4 and 5. After that, a review
and comprehensive discussion on the obtained results are presented, and future works are
identified in Section 6. Finally, Section 7 concludes the paper.

2. Proposed Framework for Probabilistic Stability and Performance Assessment

The robustness assessment can be considered in two different levels: the converter level
and the system level. This paper’s primary goal was to present and discuss a systematic
way to perform a probabilistic assessment at the converter level. A single grid-connected
VSC was considered, and the impact of the power grid and operating point conditions and
control-loop bandwidths were studied in relation to the system stability and performance.
The proposed flow diagram for a probabilistic robustness assessment at the converter level
is shown in Figure 1. A single VSC with known control parameters was connected to
the power grid at PCC. It is worth remarking that the power grid was represented by a
Thevenin equivalent model, and the grid SCR or grid equivalent inductance could vary
over a wide range and it was unknown. Moreover, the inverter power level was dictated
by the power profiles of the renewable sources or power flow calculations at the higher
level. This might also have affected the system’s stability and performance. In the proposed
algorithm, at first, proper PDFs for uncertain parameters, such as grid SCR, were defined
in order to consider its variations. A Monte Carlo sampling method was then employed
to draw parameters from the PDFs. The sampled and fixed parameters were entered into
the operating point calculation. After that, the stability model was built based on the
available data and the linearized time-invariant state–space model. The eigenvalue analysis
calculated the system’s critical mode and its damping factor and ratio. This procedure was
repeated NC times for different sampled parameters that were provided by MC.
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Figure 1. Proposed flow diagram for probabilistic stability and performance assessment of a grid-
connected VSC.

Finally, the statistical characteristics of the outputs, which were of utmost importance,
were computed and plotted.

2.1. Definitions, Stability and Performance Indicators

In a power electronic-based power system, the unstable or lightly damped modes
caused significant oscillations or even system instability; therefore, identifying these modes,
as well as the most influential parameters on them, was very important. The critical mode
was an unstable eigenvalue or weakest damped eigenvalue among all the eigenvalues.
Placing the critical mode to the left side of the s-plane can guarantee system stability and
improve system performance.

The following complex equation can represent the eigenvalue of a system:

λ = σ± jωd (1)

The real part is the damping factor (σ) and shows the relative system stability. The
imaginary part is called the damped frequency (ωd) or frequency of oscillations. Another
stability and performance indictor is the damping ratio (ξ), which measures the system
performance in terms of overshoot:

ξ =
−σ√

σ2 + ωd
2

(2)

To have some stability margin, the damping factor of the critical mode should be less
than a maximum value (σ ≤ σmax). This places all closed-loop eigenvalues in a sector, as
shown in Figure 2a. Moreover, to limit a system’s overshoot, it is desirable to keep the
worst damping ratio greater than a minimum value (ξ ≥ ξmin), as shown in the wedge-
shaped sector in Figure 2b. When both damping factor and damping ratio meet the
required requirements simultaneously, the system closed-loop eigenvalues are placed in
the D-shaped sector in which σ ≤ σmax and ξ ≥ ξmin, as shown in Figure 2c.
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It is worth mentioning that the system was exponentially stable for σmax < 0 and
ξmin > 0, and oscillating or unstable for σmax ≥ 0 and ξmin ≤ 0. Therefore, based on the
imposed conditions on σ and ξ, and whether the system uncertainty was considered or not,
four different definitions for the nominal and robust stability and performance could be
defined as follows:

Nominal stability (NS): the closed-loop system was exponentially stable when the
plant was known precisely, i.e.,{

σ < 0, ξ > 0
Uncertainties = 0

→ Nominal Stability analysis

Robust stability (RS): the closed-loop system was exponentially stable when there
were one or more uncertain parameters in the plant, i.e.,{

σ < 0, ξ > 0
Uncertainties 6= 0

→ Robust Stability analysis

Nominal performance (NP): the closed-loop system met the performance specifications
when the plant was known precisely, i.e.,{

σmin ≤ σ ≤ σmax, ξmin ≤ ξ ≤ ξmax
Uncertainties = 0

→ Nominal Performance analysis

Robust Performance (RP): the closed-loop system met the performance specifications
under system uncertainties, i.e.,{

σmin ≤ σ ≤ σmax, ξmin ≤ ξ ≤ ξmax
Uncertainties 6= 0

→ Robust Performance analysis

2.2. The Stopping Criterion for Monte Carlo (MC) Simulations

Although increasing the amount of sampled data and MC simulations (NC) resulted
in a higher accuracy of the obtained results, it also increased the computational demands.
Therefore, the selection of NC was a compromise between the accuracy and computational
burden. Accordingly, a stopping criterion was needed. Figure 3 shows the error of the
estimated damping factor mean value under different iterations of MC simulation, which
were associated with the ideal case (damping factor mean value under an approximately
infinite number of iterations). Moreover, the time needed to conduct MC simulations for
some cases is also depicted.

It could be seen that 2000 iterations were sufficient to provide a satisfactory result
since the stability criteria surely had errors in a mean of less than 2% and the required time
to carry out MC simulations was acceptable. The same conclusions could also be obtained
for other stability and performance criteria and grid conditions, which were not presented
here due to limited space.
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3. Test System, Description, and Modeling

The proposed probabilistic framework could be applied to different PEPS. Among
others, this work considered the most commonly used structure of LCL-filtered grid-
connected VSCs, which revealed the most stability issues that were usually related to
the low-frequency oscillations. This was due to lower SCR and PLL and high-frequency
oscillations due to LCL-filter resonance and delay.

The principal scheme of the studied system is depicted in Figure 4. The main aim was
to inject the power produced by renewables into the power grid and help the power system
keep the voltage at the point of common coupling (PCC) within the allowable ranges. The
power system included primary energy sources, the power grid, a three-phase voltage
source converter (VSC), an LCL output filter, and a control system.
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Figure 4. Single line diagram of a grid-connected three-phase voltage source converter (VSC).

The Thevenin model represented the power grid as seen from the PCC. Its impedance
could also vary to emulate a weaker or stronger connection point. The control system
consisted of five main parts, which included the DC-link voltage controller (DVC), AC
voltage magnitude controller (AVC), current controller (CC), highpass filter (HPF), and
synchronous reference frame phase-locked loop (SRF-PLL).

The DVC regulated the active power or DC-link voltage at the desired value, and the
AVC controled the reactive power or PCC voltage magnitude. The outer voltage control
loops generated the reference for the inner current control loop (CC), and CC provided
inverter current control and protection. For PCC voltage synchronization, a PLL was also
required. It is worth remarking that all of these employed a proportional-integral (PI)
controller to ensure a good dynamic response and zero steady-state tracking errors in the
synchronous reference frame. Finally, a voltage feedforward control-based HPF emulated a
virtual resistor paralleled with the filter capacitor to dampen the LCL filter resonances. The
remaining parameters in Figure 4 are as follows: if, ig, vf, vinv, and vdc are converter and
grid currents, the voltage across the filter capacitor, inverter output voltage, and DC-link
voltage, respectively. In addition, Zg, Lf, Lg1, Cf, Lg2, and Cdc represent the seen impedance
from PCC, the converter and grid-side filter inductances, filter capacitance, equivalent
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grid inductance, and DC-link capacitance, respectively. Additionally, θ is the phase angle
obtained by the PLL, and the subscript reference gives the reference values for different
control loops.

3.1. Small-Signal Modeling of the Grid-Connected Three-Phase VSC

For small-signal stability analysis, a linearized model around an equilibrium point of
the power system is required. Many efforts have been made to present a proper small-signal
model of a grid-connected VSC in [8,11,15]. The small-signal model of the studied model
used in the following assessment is presented in Appendix A. Additionally, the control and
system parameters are also provided in Table 2.

Table 2. System and control parameters of the main power system.

Power System Parameters Control Parameters

Nominal power (Pn) 10 [kW] CC

Nominal line voltage (vg) 400 [V] kpc, kic 9.425, 4.4 × 103

Grid frequency (ω) 50 [Hz] DVC

Inverter-side inductor (Lf) 2 [mH] kpd, kid 0.088, 1.934

Grid-side inductor (Lg1) 0.5 [mH] AVC

Filter capacitor (Cf) 10 [µF] kpa, kia 0, 3.428

Grid inductor (Lg2) 5–30 [mH] HPF

Grid SCR 1.67–10 ka, ωa 1, 6.6 × 103

DC-link capacitor (Cdc) 1.5 [mF] SRF-PLL

DC-link voltage (vdc) 700 [V] Vfd, ξPLL, ωPLL 400, 0.7, 14π

Sampling and switching
frequencies 10 [kHz] kpp = ξPLL.ωPLL.Vfd

−1 0.154

Td 150 [µs] kip = ωPLL
2.Vfd

−1 4.836

3.2. Operating Point Calculation of the Grid-Connected Three-Phase VSC

The obtained linearized state–space model needed steady-state values for the PCC
voltage and current. These could be obtained by evaluating the nonlinear state–space
model or conducting simulations, which were more accurate but more time-consuming.
This subsection presents a simple algorithm to calculate the operating point condition
based on the mathematical model and Figure 5, as shown in (3).

Inputs→ P, C f , Lg1, Lg2, Vdc, Vf d, Vg

Xg = ω1
(

Lg1 + Lg2
)
, XC = 1

C f ω1
, δ = a sin

(
Xg .P

Vf dVg

)
,

Qg =
Vg
Xg

(
Vf d cos(δ)−Vg

)
, Sg =

√
Qg2 + P2,

∣∣Ig
∣∣ = Sg

Vf d

QL = Xg.
∣∣Ig
∣∣2, QC =

Vf d
2

XC
, Qinv = Qg + QL −QC

Idc =
P

Vdc
, I f d = P

Vf d
, I f q = −Qinv

Vf d

Outputs→ Idc, I f d, I f q

(3)
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In summary, the inverter power level and grid inductance (P, Lg2) were two indepen-
dent inputs that impacted the VSC operating point. Moreover, it was assumed that the
system was stable and, hence, the control system could keep the DC-link voltage (Vdc) and
AC magnitude of the PCC voltage (Vfd) at the desired values (here, Vdc = 700 V, Vfd = 400 V).
Therefore, based on the mentioned parameters and assumptions, the PCC (Ifd, Ifq) and DC
source (Idc) currents could be calculated. All parameters and signals were available to build
the state–space model of the system (A1).

4. Results of Probabilistic Stability and Performance Assessment

This section evaluates the impact of uncertainties in grid SCR and operating point
conditions and different PLL bandwidths on the system stability and performance through
the proposed probabilistic methodology. It is worth remarking that although many research
works considered these uncertainties, this section tried to present a new probabilistic point
of view and widen the available knowledge. The proposed methodology measured the
system stability and performance, not only by the absolute values of the stability indices
(based on the deterministic assessment) but also in terms of their statistical properties
(based on the proposed probabilistic assessment). Therefore, the probabilistic evaluation
presented in this paper reflected the system behavior better under uncertainties than the
conventional one. Moreover, it could provide the likelihood of a specific condition and
related the system stability analysis to the risk and reliability assessment.

4.1. The Grid SCR Impact on System Stability and Performance
4.1.1. Critical Mode Locus in the S-Plan

This subsection investigates the impact of grid SCR variations on the system stability
and performance. In this respect, five different levels for grid SCR (10, 5, 2.5, 2, and 1.67)
were considered and a proper normal PDF was defined for each of them, or equivalently
for grid inductances in Figure 6a.
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Figure 6. Probabilistic assessment and transient response of a grid-connected VSC. (a) Probability
density functions (PDFs) of a normal distribution considering different levels of grid SCR; (b) critical
mode locations in the complex s-plane due to considered uncertainties; (c) time-domain simulations
showing inverter current under 10% voltage sag at grid voltage and different grid SCRs (P = Pn);
numbers indicate the operation under different grid SCRs, i.e., 1, 2, and 3 represent grid SCR equal to
1.51, 1.67, and 2, respectively.

The mean values were equal to each SCR level, and the standard deviation was equal
to 6.67% of the mean value. Therefore, the sampled grid SCR and corresponding inductance
had a 99.9% confidence of being within ±20%.

It is worth mentioning that a strong grid was introduced when SCR = 5 and 10,
2 < SCR < 3 represented a weak grid, and SCR < 2 corresponded to a very weak grid [11];
therefore, the following analysis could cover a wide range of probable operating conditions
of a power system. Figure 6b depicts variations in the system critical mode under different
grid conditions.

Before explaining the obtained results, it is worth remarking that the critical mode
was computed based on the proposed framework in Figure 1. In such a way, at first, the
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Monte Carlo sampling method drew a random grid inductance value from the PDFs of
grid inductances (defined in Figure 6a). The sampled grid inductance, the inverter power
level, and other fixed control and power system parameters were then used to calculate
the steady-state operating point in (3). This information built the stability model up in
(A1). Eigenvalue analysis then estimated the critical mode. This procedure was repeated
NC times, and the results were plotted and are shown in Figure 6b. Additionally, the
statical properties of the critical mode and corresponding PDFs and CDFs could also be
assessed for this case and other inverter powers and PLL bandwidths, which the following
subsections discuss.

As shown in Figure 6b, under a weaker grid, the potential locations of the critical modes
covered a larger area, meaning there was a higher sensitivity to grid inductance variations.

Moreover, when the SCR decreased from 10 to 2.5 and then from 2.5 to 1.67, two
opposite behaviors could be seen. In the first part, the system damping increased, while
by further SCR reduction, the stability margin decreased. The main reasons behind this
phenomenon could be explained as follows.

As discussed in [40], a VSC with an inverter-side current control has a smaller stability
margin under higher SCR; therefore, by reducing the SCR from 10 to 2.5, the system stability
margin increased. However, a further SCR reduction resulted in higher grid coupling and
control-loop interactions due to PLL and higher grid inductances, which could degrade the
system stability and even cause instability.

In addition to this, the AVC could also significantly impact the damping factor in
higher SCRs due to its lower bandwidth among different control loops. In this situation, the
worst damping factor could be approximated as σmax = −ωB,AVC. For the studied system,
the AVC bandwidth changed from 5.38 rad/s (0.85 Hz) to 32.31 rad/s (5.14 Hz), according to
ωB,AVC = kia.ω1.Lg [41]. Therefore, a higher SCR (SCR : 2.5→ 10) resulted in a lower AVC
bandwidth and, consequently, a smaller damping factor (σmax = −ωB,AVC : −21→ −5.1),
which can also be seen from Figure 6b. It is worth emphasizing that for a much lower
SCR (e.g., SCR < 2.5), since the AVC bandwidth increased and became closer to other
control-loop bandwidths, the above conclusions could not be entirely applied to them. In
summary, the inverter-side current controller and AVC could impact the stability margins
in higher SCRs. In addition, grid coupling and control-loop interactions due to PLL and
higher grid inductors were the main reasons for damping reductions at lower SCRs. This
discussion is verified by participation factor analysis in Table 3 for a system working under
nominal power.

Table 3. Participation factor analysis of critical modes for different grid SCRs and power levels.

SCR 10 5 2.5 2 1.67

P = 0.05Pn

Damping Factor AVC (0.99) AVC (0.99) AVC (0.92) AVC (0.8), DVC (0.13)
CC (0.46), igdq (0.23),

PLL (0.07), AVC
(0.06), APB (0.09)

Damping Ratio HPF (0.3), Delay (0.27),
idq (0.17), vcdq (0.13)

HPF (33), Delay(0.22),
idq (0.21), vcdq (0.13)

HPF (0.33), Delay
(0.22), idq (0.21), vcdq

(0.13)

CC (0.47), igdq (0.25),
PLL (0.06), AVC

(0.05), APB (0.08)

CC (0.46), igdq (0.23),
PLL (0.07), AVC

(0.06), APB (0.09)

P = 0.25Pn

Damping Factor AVC (0.99) AVC (0.99) AVC (0.92) AVC (0.73),
DVC (0.18)

CC (0.46), igdq (0.23),
PLL (0.08), AVC

(0.06), APB (0.08)

Damping Ratio HPF (31), Delay (0.26), idq
(0.17), vcdq (0.14)

HPF (34), Delay
(0.21), idq (0.22),

vcdq (0.13)

HPF (34), Delay (0.2),
idq (0.25), vcdq (0.13)

CC (0.46), igdq (0.25),
PLL (0.06), AVC

(0.05), APB (0.08)

CC (0.46), igdq (0.23),
PLL (0.08), AVC

(0.06), APB (0.08)
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Table 3. Cont.

SCR 10 5 2.5 2 1.67

P = 0.5Pn

Damping Factor AVC (0.99) AVC (0.97) DVC (0.1), AVC (0.87)
PLL (0.56), AVC

(0.07), DVC (0.13),
APB (0.22)

CC (0.46), igdq (0.23),
PLL (0.08), AVC

(0.06), APB (0.08)

Damping Ratio HPF (31), Delay (0.27), idq
(0.16), vcdq (0.13)

HPF (33), Delay
(0.22), idq (0.2),

vcdq (0.13)

HPF (34), Delay (0.2),
idq (0.24), vcdq (0.13)

CC (0.45), igdq (0.24),
PLL (0.1), AVC (0.05),

APB (0.07)

CC (0.46), igdq (0.23),
PLL (0.08), AVC

(0.06), APB (0.08)

P = 0.75Pn

Damping Factor AVC (0.99) AVC (0.97)
PLL (0.44), AVC

(0.08), DVC (0.17),
APB (0.21)

PLL (0.42), AVC
(0.12), DVC (0.16),

APB (0.21)

PLL (0.4), AVC (0.15),
DVC (0.15), APB

(0.21)

Damping Ratio HPF (31), Delay (0.27), idq
(0.17), vcdq (0.14)

HPF (33), Delay
(0.23), idq (0.2),

vcdq (0.14)

HPF (35), Delay (0.2),
idq (0.24), vcdq (0.14)

CC (0.46), igdq (0.24),
PLL (0.08), AVC

(0.05), APB (0.07)

CC (0.46), igdq (0.23),
PLL (0.2), AVC (0.06),

APB (0.08)

P = Pn

Damping Factor AVC (0.99) AVC (0.97)
PLL (0.37), AVC

(0.13), DVC (0.18),
APB (0.23)

PLL (0.35), AVC
(0.16), DVC (0.16),

APB (0.22)

PLL (0.33), AVC (0.2),
DVC (0.14), APB

(0.21)

Damping Ratio HPF (31), Delay (0.27), idq
(0.2), vcdq (0.14)

HPF (33), Delay
(0.22), idq (0.22),

vcdq (0.14)

HPF (33), Delay
(0.22), idq (0.22),

vcdq (0.14)

CC (0.45), igdq (0.24),
PLL (0.1), AVC (0.05),

APB (0.07)

CC (0.45), igdq (0.24),
PLL (0.1), AVC (0.06),

APB (0.08)

4.1.2. Nominal and Robust Stability and Performance Comparison

The system’s stability and performance under different grid conditions could also
be compared in terms of NS, RS, NP, and RP. In Figure 6b, the lines show critical mode
variations under grid inductance uncertainties, and white circles with colored multiplica-
tion signs show the critical mode location under nominal conditions. As an example, the
following conclusion could be drawn for SCR = 10 (the purple curve): the critical mode
under the nominal condition was in the LHP and met the performance requirements (the
green line); hence, the system had nominal stability and performance.

Under grid inductance variations, although the purple lines were in the LHP, they
crossed the green line. Therefore, the system was robustly stable, but it did not meet the
robust performance definition. In the same manner, conclusions could be drawn for other
SCRs that are summarized in Table 4.

Table 4. Nominal and robust stability and performance comparison for different grid SCRs (P = Pn).

SCR

Indexes 10 5 2.5 2 1.67
Nominal stability (NS) + + + + +
Nominal performance (NP) + + + + +
Robust performance (RS) + + + + −
Robust stability (RP) − + + + −

+: criteria fulfilled; −: criteria not fulfilled.

4.1.3. Time-Domain Simulations

Time-domain simulations based on a switching model were also been conducted to
validate the previous analytical results. Figure 6c shows results for an inverter current
under a 10% voltage sag at grid voltage in three different cases.

In the third case, the critical mode met the stability and performance requirements and
was far from the unstable area. The inverter current had a good transient response with
low overshoot and oscillations. In the second case, the critical mode moved to the right,
but the stability and performance criteria were still met; as expected, the oscillations grew.
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In the first case, the system was still stable but very close to an unstable area; therefore, the
oscillations increased dramatically, and there was a high overshoot in the outputs.

4.1.4. Critical Mode Statistical Representation

In addition to the previous results, probabilistic assessment could also provide a
wealth of statistical information on the desired indices. In Figure 7, PDFs and cumulative
density functions (CDFs) of the maximum damping factor and minimum damping ratio
for different grid conditions were calculated and plotted. As can be seen, under a lower
grid SCR, the PDFs of the damping factor became wider and moved to the RHP, which
indicated a higher sensitivity to grid inductance variations and lower stability margins.
The same conclusions as the previous subsections could be drawn for the damping factor
and ratio changes under different grid SCRs. It could also be concluded that the maximum
damping factor was generally related to the slower dynamics of the outer control loops.
In contrast, the minimum damping ratio was highly related to faster internal control-loop
dynamics, as could be concluded from participation factor analysis and Table 3.
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Figure 7. Probability density functions (PDFs) and cumulative density functions (CDFs) of sta-
bility indices for different grid SCRs. (a,c) are PDFs and CDFs of the maximum damping factor;
(b,d) are PDFs and CDFs of the minimum damping ratio. Colors correspond to different grid SCRs in
Figure 6a.

Furthermore, CDFs can also provide valuable information on the probability of system
stability or the occurrence of desired conditions. They can relate stability analysis to the
risk and reliability assessment. In this regard, the risk index of small-signal stability (RIS) is
defined as the probability of a damping factor greater than zero P(σ ≥ 0). From Figure 7c,
P(σ < 0) is 100%, meaning RIS is zero under all grid SCRs and the system was always
stable. In addition, as another example, the likelihood of the desired damping factor
(σ < −5) for SCR = 1.6 was 68%, and for others it was 100%.

Therefore, the probabilistic assessment could provide the likelihood of a specific
condition. In contrast, the deterministic evaluation could not determine how stable a
system was or the possibility of system instability. Deterministic methods are treated as
binary, i.e., a particular situation is either stable or unstable.

4.2. Inverter Power Level Impact on System Stability and Performance

The inverter power level may affect a system’s stability. Therefore, it seemed neces-
sary to investigate this issue. Five different levels for inverter power in the probabilistic
assessment were considered. Based on the prepared flow diagram, PDFs of the maximum
damping factor and minimum damping ratio were calculated and are shown in Figure 8.



Appl. Sci. 2022, 12, 7375 13 of 21

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 23 
 

  
(a) (b) 

  
(c) (d) 

Figure 7. Probability density functions (PDFs) and cumulative density functions (CDFs) of stability 
indices for different grid SCRs. (a,c) are PDFs and CDFs of the maximum damping factor; (b,d) are 
PDFs and CDFs of the minimum damping ratio. Colors correspond to different grid SCRs in Figure 
6a. 

Therefore, the probabilistic assessment could provide the likelihood of a specific 
condition. In contrast, the deterministic evaluation could not determine how stable a 
system was or the possibility of system instability. Deterministic methods are treated as 
binary, i.e., a particular situation is either stable or unstable. 

4.2. Inverter Power Level Impact on System Stability and Performance 
The inverter power level may affect a system’s stability. Therefore, it seemed 

necessary to investigate this issue. Five different levels for inverter power in the 
probabilistic assessment were considered. Based on the prepared flow diagram, PDFs of 
the maximum damping factor and minimum damping ratio were calculated and are 
shown in Figure 8. 

  
(a) (b) 

Figure 8. Probability density functions (PDFs) of stability indices for different grid SCRs and power 
levels. (a) PDFs of the maximum damping factor; (b) PDFs of the minimum damping ratio. Colors 
correspond to different grid SCRs in Figure 6a. 

4.2.1. Damping Factor Analysis 
Two different behaviors for solid and weak grids can be seen from Figure 8a. The 

damping factor was not affected by the inverter power level in the strong grid. In 
contrast, it was highly influenced by the power level in the weak grids. As discussed in 

PD
F

PD
F

33.3

0

16.7

50

0
Damping Ratio

0.10 0.15 0.20 0.25-0.05 0.05

SCR=10
Unstable 

area

SCR=1.6
SCR=2

SCR=5

ξ > 0.1
SCR=

2.5

Damping Factor
-20 -10 -5 0 5-25 -15

σ < ‒5
1

0

0.4

Unstable 
area

P(σ <0) = 
100%

P(σ < ‒5)=68%

-20
Damping Factor

-10 0 5-30

 0.50Pn

 0.25Pn

 0.05Pn

 0.75Pn

 1.00Pn

σ < -5 Unstable 
area

PD
F

0.6/div

0
Damping Ratio

0.10 0.20-0.05 0.05

Unstable 
area

 0.50Pn

 0.25Pn

 0.05Pn

 0.75Pn

 1.00Pn

PD
F

ξ > 0.1

50/div

Figure 8. Probability density functions (PDFs) of stability indices for different grid SCRs and power
levels. (a) PDFs of the maximum damping factor; (b) PDFs of the minimum damping ratio. Colors
correspond to different grid SCRs in Figure 6a.

4.2.1. Damping Factor Analysis

Two different behaviors for solid and weak grids can be seen from Figure 8a. The
damping factor was not affected by the inverter power level in the strong grid. In contrast,
it was highly influenced by the power level in the weak grids. As discussed in the previous
subsection and as verified by participation factor analysis in Table 3, for the strong grids
(higher SCRs), the critical mode was initiated by an AVC due to its lower bandwidth
among different control loops. Moreover, grid currents and other control loops did not
have much impact. However, under weak grids (lower SCRs), the inner current controller
(CC) and outer control loops (PLL, DVC, AVC, and active power balance (APB)) affected
the damping of the critical mode at lower and higher output powers, respectively.

4.2.2. Damping Ratio Analysis

As shown in Figure 8b, the grid inductance uncertainties significantly affected the
damping ratio in the weak grid and had the least affect in the solid one. For the weak grids,
the minimum damping ratio was highly influenced by the fast current control loop (CC).
Therefore, by increasing the inverter power level, the SCR that was seen by the current
controller under the same grid inductance reduced; thus, the damping ratio improved.
The fast dynamic parts, such as the highpass filter (HPF) and control system delay, also
contributed to the minimum damping ratio for the strong grids.

4.2.3. Time-Domain Simulations

Time-domain simulations were also prepared to validate the above discussions. Two
different SCRs were considered, and the system stability and performance were studied
under a grid voltage sag. The PCC voltage under a 10% grid voltage sag and two different
power levels are depicted in Figure 9.
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As expected due to the analytical results, the system response was the same under
different power levels at higher SCRs. However, under lower SCRs, the system response
was affected by the inverter power level such that under a lower power level, higher
oscillations existed.

4.3. The Impact of PLL Bandwidth on System Stability and Performance

This section investigates the impact of PLL bandwidth on system stability and per-
formance. It is worth remarking that the PLL bandwidth is usually a known and constant
parameter, unlike the grid SCR and operating point conditions; hence, the stability assess-
ment could be performed for the provided value of the PLL bandwidth, as presented in
Sections 4.1 and 4.2 and as shown in Figures 6–9.

However, additional functionalities were recently suggested for VSCs to support
power grids, e.g., transient stability enhancement, virtual inertia implementation, and fault
ride-through capability. To fulfil these objectives, a VSC might be equipped with a PLL
designed with adaptive or gain scheduling techniques. In this respect, this subsection
considers five different values for PLL bandwidth, and the probabilistic assessment is
carried out on each of them. The results are presented in Figure 10. This also revealed
the importance of an optimal and robust control system design in order to guarantee a
stable operation over grid uncertainties. In this regard, the next research step would be
a probabilistic control system design that minimizes the probability of the critical mode
in the unsuitable area and considers the statistical properties of stability indices. This is
highlighted in Section 6 as future work.
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4.3.1. Damping Factor Analysis

As shown in Figure 10a and Table 5, for fPLL = 1 Hz, PDFs become very narrow,
and it could be concluded that the damping factor was less sensitive to grid inductance
variations. However, the stability margin was also insufficient. It could also be deduced
from participation factor analysis that the PLL remarkably contributed to the critical mode.
In addition, it seemed that the maximum damping factor for lower PLL bandwidths could
be estimated by σmax = −ωB,PLL = −2π fPLL.
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Table 5. Participation factor analysis of critical modes for different grid SCR and PLL bandwidths
(P = Pn).

SCR 10 5 2.5 2 1.67

fPLL = 1 Hz

Damping Factor PLL (0.99) PLL (0.99) PLL (0.97) PLL (0.94) PLL (0.92)

Damping Ratio HPF (0.31), Delay (0.27),
idq (0.16), vcdq (0.14)

HPF (33), Delay (0.22), idq
(0.22), vcdq (0.14)

HPF (0.34), Delay
(0.21), idq (0.24),

vcdq (0.14)

HPF (0.34), Delay
(0.2), idq (0.25),

vcdq (0.13)

CC (0.52), igdq (0.23),
PLL (0.02), AVC

(0.06), APB (0.09)

fPLL = 4 Hz

Damping Factor AVC (0.99) AVC (0.96)
PLL (0.5), DVC

(0.16), AVC (0.14),
ABP (0.14)

PLL (0.42), DVC
(0.16), AVC (0.18),

ABP (0.16)

PLL (0.38), DVC
(0.14), AVC (0.21),

ABP (0.17)

Damping Ratio HPF (0.3), Delay (0.27),
idq (0.16), vcdq (0.14)

HPF (33), Delay (0.23), idq
(0.21), vcdq (0.14)

HPF (34), Delay
(0.2), idq (0.24),

vcdq (0.14)

HPF (34), Delay
(0.2), idq (0.25),

vcdq (0.14)

CC (0.48), igdq (0.22),
PLL (0.05), AVC

(0.06), APB (0.09)

fPLL = 8 Hz

Damping Factor AVC (0.99) AVC (0.96)
PLL (0.34), DVC
(0.2), AVC (0.11),

APB (0.26)

PLL (0.33), AVC
(0.19), DVC (0.17),

APB (0.24)

PLL (0.31), DVC
(0.14), AVC (0.19),

APB (0.23)

Damping Ratio HPF (31), Delay (0.27), idq
(0.17), vcdq (0.14)

HPF (34), Delay (0.23),
idq(0.2), vcdq (0.14)

HPF (34), Delay
(0.2), idq (0.25),

vcdq (0.14)

CC (0.45), igdq (0.24),
PLL (0.1), AVC

(0.05), APB (0.07)

CC (0.43), igdq (0.23),
PLL (0.1), AVC

(0.06), APB (0.08)

fPLL = 12 Hz

Damping Factor AVC (0.99) AVC (0.96)
PLL (0.01), DVC

(0.25), AVC (0.71),
APB (0.01),

PLL (0.19), DVC
(0.22), AVC (0.15),

APB (0.32),

CC (0.38), igdq (0.2),
PLL (0.16), AVC

(0.06), APB (0.07),

Damping Ratio HPF (31), Delay (0.27), idq
(0.17), vcdq (0.14)

HPF (33), Delay (0.22), idq
(0.21), vcdq (0.14)

CC (0.42), igdq (0.26),
PLL (0.12), AVC

(0.05), APB (0.07)

CC (0.4), igdq (0.25),
PLL (0.14), AVC

(0.05), APB (0.07)

CC (0.38), igdq (0.24),
PLL (0.15), AVC

(0.06), APB (0.08)

fPLL = 16 Hz

Damping Factor AVC (0.99) AVC (0.97)
PLL (0.37), APB

(0.23), DVC (0.18),
AVC (0.13)

PLL (0.35), APB
(0.22), DVC (0.16),

AVC (0.16)

PLL (0.33), APB
(0.21), AVC (0.2),

DVC (0.14)

Damping Ratio HPF (31), Delay (0.26), idq
(0.16), vcdq (0.14)

HPF (33), Delay (0.22), idq
(0.22), vcdq (0.14)

CC (0.38), igdq (0.26),
PLL (0.19), AVC

(0.03), APB (0.05)

CC (0.35), igdq (0.26),
PLL (0.21), AVC

(0.05), APB (0.06)

CC (0.32), igdq (0.25),
PLL (0.24), AVC

(0.06), APB (0.07)

Therefore, it could be expected that the damping factor could be improved by increas-
ing the PLL bandwidth. By increasing the PLL bandwidth to 8 Hz, the stability margin
was improved; however, the PDFs became wider, which meant more sensitivity to grid
inductance variations and higher coupling and control-loop interactions. Finally, increasing
the PLL bandwidth further under weak grid conditions might cause stability problems.

4.3.2. Damping Ratio Analysis

Based on Figure 10b and Table 5, PLL bandwidth had the most considerable effect
on the damping ratio in the weak grid and the least effect in the strong one. In the weak
grids, for lower and higher PLL bandwidths, fast (CC, HPF, delay) and slow (PLL, DVC,
AVC) dynamics of the VSC had the highest contributions to damping ratio, respectively.
Furthermore, for higher PLL bandwidths, PDFs became broader, and the critical mode
moved to the unstable area.

4.3.3. Time-Domain Simulations

In the first test, the system response for a 20-degree phase jump at grid voltage under
different PLL bandwidths was investigated. As can be concluded from Figure 11, very low
PLL bandwidths provided a lower amount of oscillations in the inverter current at the cost
of a slower dynamic response; it took a long time to reach a steady-state value. On the
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other hand, higher PLL bandwidths provided a fast transient response at the price of higher
output oscillations. Therefore, the PLL bandwidth selection is a compromise between quick
dynamic response, output fluctuations, and system stability.
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Figure 11. Time-domain simulations showing the system response for 20-degree phase jumps at grid
voltage under different PLL bandwidths (P = Pn, SCR = 2).

In the second test, the system response for a 10% voltage sag at grid voltage under
different grid inductances was studied and the results are shown in Figure 12. Two
distinct values for PLL bandwidth, 1 Hz and 12 Hz, were considered to carry out the
mentioned scenario.
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Figure 12. Time-domain simulations showing the system response for 10% voltage sag at grid under
grid inductance uncertainties (P = Pn), (a) fPLL = 1 Hz; (b) fPLL =12 Hz.

As expected due to the previous statistical analysis, under lower PLL bandwidths, the
system response was not sensitive to grid inductance variations, but the dynamic response
was prolonged. In contrast, under higher PLL bandwidths, the dynamic response was
relatively faster but it was highly affected by grid inductance variations.

5. Experimental Verification

In this section, experimental tests were carried out to validate the previous analytical
results. The experimental setup included two 5 kW Danfoss VSCs operating back-to-back,
LCL filters, a grid simulator (Chroma 61845), and a DS1007 dSPACE control system. The
first VSC acted as a constant power source, emulating a primary source such as PV or
a wind turbine, and supplied the second three-phase grid-connected VSC. The second
VSC was connected to a grid simulator through an LCL filter and transfered the received
power to the power grid. It contained CC, HPF, PLL, AVC, and DVC. To emulate weak grid
conditions and reduce the required inductors in practice, some of the power system and
control parameters were changed, and a down-scaled power system was designed. Table 6
shows the parameters that differed from the main circuit parameters.

Table 6. System and control parameters of down-scaled power system.

Power System Parameters Control Parameters

Nominal power (Pn) 5 [kW] Conventional control method
Nominal line voltage (vg) 172 [V] kpc, kic 7.068, 3.3 × 103

Filter capacitor (Cf) 30 [µF] kpp, kip 0.41, 14.7
Inverter-side inductor (Lf) 1.5 [mH] kpa, kia 0, 9.23

Grid-side inductor (Lg) 1.9–19 [mH] Proposed control method
DC-link voltage (vdc) 600 [V] kpp, kip 0.41, 14.7
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Figures 13 and 14 show the system response under different power levels and PLL
bandwidths under weak and strong grid conditions (SCR = 1.63 and 5.3), respectively. Even
though a perfect match between the analytical and experiments was not presented due to
laboratory implementation limitations, the results demonstrated the same trend.
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Figure 13. Experimental results showing the system response under weak grid conditions
(SCR = 1.63) and different power levels (P = 5 kW, 2.5 kW) and PLL bandwidths (fPLL = 8 Hz,
19 Hz).
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Figure 14. Experimental results showing the system response under strong grid conditions (SCR = 5.3)
and different power levels (P = 5 kW, 2.5 kW) and PLL bandwidths (fPLL = 8 Hz, 24 Hz).

As shown, the system response under weak grids was sensitive to inverter power
level, and a low grid SCR limited the application of a high-bandwidth PLL. While under a
strong grid, this phenomenon could not be seen. The following section summarizes the
presented discussions and results in the previous sections.

6. Discussion and Future Works

This work aimed to develop a comprehensive probabilistic framework for the robust-
ness analysis of VSCs for power system applications. From the provided perspective, it
was possible to measure system stability and performance using statistical properties of
operational indices, which are of utmost importance. Moreover, based on the provided
statistical information, the likelihood of a specific condition could be easily calculated, and
relationships between the system stability and the risk and reliability assessment were
identified. Therefore the proposed framework and defined indices could broaden the
existing knowledge on robust stability and performance analysis of VSCs and provide new
insights for future works.

To evaluate the applicability of the proposed framework, the impact of uncertainties in
the grid SCR, operating point conditions, and control-loop interactions on system stability
and the performance of a grid-connected VSC were thoroughly investigated. It is worth
remarking that the most crucial stability and performance indicators were the maximum
damping factor and minimum damping ratio, which were evaluated for the specified level
of plant uncertainty.

It was found that the grid SCR was the most influential parameter on the system
stability and performance among the different parameters and could seriously limit the
VSC’s performance.

Lower Grid SCR results in higher sensitivity of the critical mode to grid inductance
variations, which appear in wider PDFs or lower slopes of CDFs. CDFs could also determine
the risk of system instability or the likelihood of a particular condition. In contrast, the
deterministic methods were only treat as binary.
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It was also concluded that the stability and performance of VSCs were not affected
by the inverter power level for strong grids. In contrast, the opposite observation was
observed for weak grids. Increasing the inverter loading increased the stability margin
at first. However, at higher levels, stability margins were again reduced due to higher
coupling and interactions between different control parts.

The impact of PLL bandwidth was also investigated with respect to the system stability
and performance. Under very low PLL bandwidths, VSCs and power grids could be
assumed decoupled due to very narrow PDFs in the outputs. However, the stability margin
was also insufficient, which was not desirable. It could be expected that increasing the PLL
bandwidth increases the stability margin; however, PDFs could become broader than before,
which could increase coupling between the grid and the VSC and increase sensitivity to
grid inductance variations. Additionally, system instability might occur for higher PLL
bandwidths under weak grid conditions; therefore, low and high PLL bandwidths might
reduce the stability margin and drive the system to instability. Consequently, this parameter
should be carefully selected.

It is worth noting that for the usual selection of control parameters, fast dynamic
parts of the VSC, such as the current controller, highpass filter, control delay, etc., had
a significant impact on the minimum damping ratio. Moreover, outer and slow control
parts such as AVC, DVC, PLL, etc., influenced the maximum damping factor. For strong
grids, AVC usually had a lower bandwidth among the different control loops, and it had a
significant impact on the maximum damping factor. For weak grids, the damping factor
of the critical mode was more sensitive to PLL bandwidths, and different control-loop
interactions influenced it remarkably.

In summary, the proposed probabilistic robustness assessment could achieve the following:

• Reveal the range of the critical mode variations;
• Demonstrate the sensitivity of the critical mode to uncertainty in different system

parameters;
• Identify the risk of system instability and the probability of occurrence of a specific

condition;
• Identify major parameters contributing to system stability;
• Easily include the stochastic nature of renewables;
• Allow better utilization of existing assets compared to the deterministic approaches

based on worst-case scenarios.

For future works, investigating the impacts of outer control loops, such as DVC and
AVC, on system stability and performance are also recommended. Additional stability and
performance indicators, such as frequency of oscillations, phase and gain margins, steady-
state error, disturbance rejections capability, singular values, etc., could be defined and
developed to clarify system behavior better. Moreover, robustness analysis considering the
mission profiles of PV modules or wind turbine systems, resonances in the grid impedance,
and unbalanced network conditions would be interesting. Probabilistic control system
design, which minimizes the probability of the critical mode in the unsuitable area, would
be an exciting topic as well. Finally, considering more complex and larger power systems
is highly recommended. When multiple power electronic converters are connected to
the point of common coupling, different behaviors might occur and possible interactions
between power converters and passive elements of power systems might adversely affect
the entire system operation.

7. Conclusions

This paper proposed a probabilistic framework that could be adopted for robust
stability and performance analysis of VSCs for power system applications. It provided
the desired statistical information that could better reflect a system’s performance under
different uncertainties and disturbances.

In addition, it provided the risk of system instability or the likelihood of a specific
situation, which is of utmost importance for power system design and utilization.
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The proposed probabilistic framework was applied to an LCL-filtered grid-connected
VSC to evaluate the applicability of the proposed methodology and broaden the available
knowledge on the robustness of VSCs. The obtained results showed that a grid SCR could
vigorously limit a system’s stability and performance; hence, under the lower grid SCR,
PDFs of stability indices became wider and moved to the unstable area, meaning there
was a higher sensitivity in the critical mode to grid inductance variations and smaller
stability margins. It was also concluded that, although stability and performance were
not affected by the inverter power level in a strong grid, it was remarkably affected in a
weak grid. In weak grids, the stability margin might not be sufficient under lower inverter
power levels. Moreover, it was found that the PLL bandwidth selection was a compromise
between the fast dynamic response and stability margin. Lower PLL bandwidths resulted
in thinner PDFs, meaning lower coupling between the VSC and grid, but the transient
response was slow and the stability margin might not be adequate. Higher PLL bandwidth
results in faster transient response and broader PDFs, revealing more coupling between
the grid and VSC and higher sensitivity to grid inductance variations. In summary, based
on the proposed probabilistic sensitivity assessment, a system’s dynamic behavior under
different system uncertainties and disturbances was entirely investigated. Moreover, the
main phenomena and reasons behind each observation were fully explained.
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Appendix A

Small-Signal Modeling of the Grid-Connected Three-Phase VSC

The closed-loop system can be written as follows [8,15]:

.
xsys = Asysxsys (A1)

Here, xsys and Asys are system states and the closed-loop state matrix (A2) and (A3). In
(A2), CC, HPF, delay, PLL, DVC, AVC, and APB (active power balance) refer to different
VSC dynamics associated with different power and control parts. Moreover, ifdq

c, igdq, and
vfdq are inverter and grid currents and the capacitor voltage, respectively. It is worth noting
that there are two dq-frames in the system small-signal model to include the PLL dynamics.
The converter dq-frame with superscript c, which is aligned by the phase angle obtained
by the PLL, and grid dq-frame without superscript aligned by the positive sequence of
PCC voltage. In (A3), rf, rg, and rc are the series-equivalent resistances of Lf, Lg and
Cf, respectively.

xsys =

 CC︷ ︸︸ ︷
γid, γiq,

HPF︷ ︸︸ ︷
x f f d, x f f q,

Delay︷ ︸︸ ︷
xd1, xd2, xd3, xq1, xq2, xq3, i f d

c, i f q
c,

PLL︷︸︸︷
ϕq, θ,

DVC︷︸︸︷
γdc ,

AVC︷︸︸︷
xac ,

APB︷︸︸︷
xdc , v f d, igd, v f q, igq


T

(A2)
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Asys =


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0 0 0 0 0 0 0 0 0 0
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

(A3)
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