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Featured Application: This research can be applied to path planning and automatic obstacle
avoidance of drone in low altitude complex environments.

Abstract: As various fields and industries have progressed, the use of drones has grown tremendously.
The problem of path planning for drones flying at low altitude in urban as well as mountainous
areas will be crucial for drones performing search-and-rescue missions. In this paper, we propose a
convergent approach to ensure autonomous collision-free path planning for drones in the presence of
both static obstacles and dynamic threats. Firstly, this paper extends the jump point search algorithm
(JPS) in three dimensions for the drone to generate collision-free paths based on static environments.
Next, a parent node transfer law is proposed and used to implement the JPS algorithm for any-angle
path planning, which further shortens the planning path of the drones. Furthermore, the optimized
paths are smoothed by seventh-order polynomial interpolation based on minimum snap to ensure the
continuity at the path nodes. Finally, this paper improves the artificial potential field (APF) method
by a virtual gravitational field and 3D Bresenham’s line algorithm to achieve the autonomous obstacle
avoidance of drones in a dynamic-threat conflict environment. In this paper, the performance of
this convergent approach is verified by simulation experiments. The simulation results show that
the proposed approach can effectively solve the path planning and autonomous-obstacle-avoidance
problems of drones in low-altitude flight missions.

Keywords: static obstacles; dynamic threats; path planning; track optimization; jump point search
algorithm; artificial potential field

1. Introduction

Initially, drones were valued by the military industries of various countries because of
their stealth, relatively low cost, ease of operation, and lack of fear of casualties. Nowadays,
the use of drones is gradually spreading from military [1] to education, film and televi-
sion [2], agriculture [3], and service industries [4]. Drones are also known as flying robots
or unmanned aerial vehicles [5]. Most of these vehicles are used for observation, search,
and discreet planning [6]. Recent advances in UAV technology have made it possible to
perform near-ground search and rescue (SAR) in complex environments such as urban and
mountainous areas [7]. For example, during a rescue mission in Oregon, drones were used
to identify fatalities in the Narrows Canyon and eliminate the need for search-and-rescue
personnel to perform dangerous rope drops at night [8]. This technology can greatly reduce
the search time, improve the efficiency of the rescue, and provide guidance assistance to
teams in areas where manual patrols are difficult and time-consuming [9]. For now, drones
still have very limited airspace activity in some areas, as shown in Figure 1. Missions in
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the no-fly zone require even more authorization and permission from the relevant authori-
ties [10]. However, this would highly limit the scope of drone search and rescue and would
not bring out the strengths and working standards of drones. Rational establishment and
planning of the framework of drone-based search-and-rescue systems and the proper use
of drones in urban and mountainous areas for near-ground search missions will provide
great help to rescue [11].
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Figure 1. No-Fly Zone in Montreal from DJL
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Unlike other commercial aircraft, the short takeoff and landing of drones in the
vertical direction increases the suitability of drones for near-ground search among complex
environments [12]. Nonetheless, drones still face significant challenges in performing
search-and-rescue missions in the near field. At present, drone-based near-ground search
and rescue usually has a similar set of constraints. First, the search time is tight and
drones need to arrive at the mission site as quickly as possible, and any delay could lead
to irreversible and serious consequences [13]. Secondly, the working environment is not
friendly, and the drone has more complex scenes such as buildings and forests during
low-altitude operations, which leads to an excessive number of total turning angles in
the path generated by the drone. It is not only energy-consuming, but also increases the
search time [14]. Third, due the dynamic threats that arise during the execution of the
mission, the drones need to maintain a safe distance between the working environment
and other dynamic obstacles [15,16] to prevent the phenomenon of course conflict. These
unfavorable constraints make it difficult for drones to complete missions in urban as well
as mountainous low-altitude airspace.

In order to solve the above-mentioned problems, this paper reduces the total length of
the drone’s generated path and the total turning angle of the path by introducing an any-
angle path-planning strategy [17] and a path-smoothing technique [18] to reduce the time
required and energy consumption for flight. Secondly, for dynamic threats in the mission
environment, stable dynamic-obstacle avoidance techniques need to be introduced [19].
This is to avoid collision phenomena caused by possible obstacle changes and other drones’
flight path conflicts in the complex operating environment.

2. Related Work

Path planning, a key element of autonomous drone navigation, is actually the selection
of a shortest obstacle-avoidance path from the starting point to the target point within the
flight area. Its essence is the problem of finding the optimal solution of the path [20]. The
feasibility constraints and dynamic threats that occur in the operational airspace should be
fully considered in the path-planning process of drones [21]. More precisely, the resultant
path generated by the path planning of the drones should be the optimal path that satisfies
the dynamic-threat avoidance condition.

In previous research, various algorithms have been developed for dynamic-obstacle-
avoidance design. In the paper [22], a method based on the combination of D* Lite and a
probabilistic roadmap (RPM) is proposed to implement the path planning of drones. The
article constructs the initialized node roadmap by RPM using random sampling and then
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uses D*lite for local corrections. For grid-discretized maps, local modification based on
initialized paths is a simple and effective method. Local modifications can avoid global
path corrections due to obstacle changes [23]. However, if there are many dynamic obstacles
in the workspace, frequent local modifications will lead to a significant decrease in the
computational efficiency of the algorithm. In addition, the poor smoothness of the path can
also have a negative effect on the efficiency of the drones and their energy consumption.

Model predictive control (MPC) is an online-based optimal control strategy that is
often used for trajectory tracking [24] and dynamic-obstacle avoidance [25] of drones and
mobile robot. MPC relies on historical information and future inputs of objects in the finite
time domain and predicts their future outcomes by means of predictive models of the
objects [26]. MPC is different from the optimal-control method (OCM) [27]. The OCM tends
to emphasize the optimality of the results, thus making it difficult to solve for nonlinear
cases containing complex constraints. Instead, MPC adopts a compromise strategy that
is more supportive of nonlinear systems, but sacrifices optimality to some extent. In the
article [28], a nonlinear, nonconvex solver based on proximal averaged Newton for optimal
control (PANOC) and fusing penalty functions is proposed to implement drone navigation
and obstacle avoidance. However, MPC requires a high accuracy of the model [29], and
the accuracy of the model has a very high impact on the performance of the MPC results.
The modeling problem is too complex for hybrid systems with complex objects, such as
unmanned aircraft systems.

The artificial potential field (APF) method is a virtual-force approach proposed by
Khatib [30]. A safe and smooth path is easily obtained by introducing an artificial potential
field [31]. The basic idea of the artificial-potential-field method is to control the drone’s
movement by the combined force generated by the virtual gravitational field at the target
location and the virtual repulsive field around the obstacle. The APF method is more
intuitively defined than other methods, has a simple model structure, and does not require
a large amount of computation to achieve real-time obstacle avoidance and complete the
path-planning task [32]. On the other hand, the APF method has low objective reachability
due to the drawback of local optimal solutions. To solve such a problem, the paper [33]
used the random generation of virtual target points within a local field of very small
points to break the equilibrium of gravitational and repulsive forces and bring the drones
out of the local-optimum point. This approach ensures the safety and accessibility of the
path-planning process to a large extent; however, it neglects the path quality issue.

In recent years, jump point search methods (JPS) using heuristic search methods have
been proposed, driven by the efficiency of path-planning algorithms [34]. The classical JPS
algorithm builds on the framework of the A* algorithm and further optimizes the way of
finding successor nodes through the neighbor-pruning rule and forced neighbors, which
improves the search efficiency of the A* algorithm [35] and, thus, greatly reduces the time
consumption in the search process [36]. From another perspective, the JPS algorithm based
on discrete grid maps also has many problems. During the pathfinding process performed
by the JPS algorithm, the planning usually starts from the center of the grid and only allows
expansion to the centroids of neighboring grids, as shown in Figure 2. This will result in a
fixed direction of search for the JPS algorithm, ignoring path selection at any angle [37],
which leads to a longer resultant path than the actual path. Secondly, the JPS algorithm
is mainly used for pathfinding in static space. For dynamic threats and changes in the
path-planning environment, JPS algorithms can only be solved using replanning, which
will significantly increase the time cost of path planning [38] and is not conducive to drones’
mission execution.

Based on the above issues and inspired by previous related work, this proposal takes
into account the time cost of path planning for drones, the degree of path smoothing
(path length and total path-turning angle), and obstacle avoidance strategies for static
obstacles and dynamic threats. First, this paper extends the traditional JPS to the 3D space
and implements the any-angle path planning of the 3D JPS algorithm by the parent node
transfer law, which ensures that the resultant path of the JPS algorithm is optimal in terms



Appl. Sci. 2022,12,7333

4 of 30

of length and total turning-angle measures. Secondly, this paper introduces the polynomial-
interpolation method based on minimum snap to achieve the continuity and smoothness
of the position, velocity, acceleration, and jerk function at the drones’ path nodes while
ensuring the shortest path. Finally, this paper uses the 3D Bresenham’s line algorithm and
the virtual-target gravitational field to solve the disadvantages of the artificial-potential-
field method which is easy to fall into the minima, and combines the 3D JPS algorithm to
realize the drones’ real-time dynamic-obstacle avoidance.
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Figure 2. Search-angle limitation of JPS algorithm. (a) Limitation of extension angle of JPS algorithm
in 2D structure, (b) Limitation of extension angle of JPS algorithm in 3D structure.

The main contributions of this paper are listed below. First, this paper achieves efficient
autonomous pathfinding for drones in a static environment through JPS 3D extension.
Secondly, the generation path of the JPS algorithm is further optimized by the parent
node transfer law and polynomial-interpolation optimization. Finally, a dynamic-obstacle
avoidance scheme based on the improved artificial-potential-field method is proposed to
realize the safe flight of drones in the dynamic environment of low-altitude airspace.

3. Path-Planning Design and Dynamic-Obstacle Avoidance Strategy

For drones performing near-ground search missions, feasible path planning should
integrate path quality and real-time obstacle avoidance capabilities. A safe and reliable
autonomous-obstacle-avoidance path is planned under the condition of ensuring the
shortest path and the best quality. The proposed path optimization method and the
dynamic-obstacle-avoidance strategy are based on the global set of path nodes derived
from the 3D JPS algorithm, as shown in Figure 3.

Optimize path redundant
nodes by the parent node
passing law

Get the set of global path
nodes using JPS algorithm
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Use polynomial
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smooth the paths and
generate the optimal set of
path nodes

o

Figure 3. The working framework of this article.
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3.1. Global Path-Planning Design Based on 3D [PS Algorithm

The JPS algorithm is a global path-planning algorithm based on a discrete grid map
model in a static environment. In general, static obstacles in the initial drone flight airspace
are relatively easy to obtain or the static obstacles themselves are known. Therefore, this
paper develops a 3D jump point search algorithm based on the original JPS algorithm for
the generation of global paths for drones in a static initial environment.

3.1.1. Traditional JPS Algorithm

The JPS algorithm was proposed by Harabor and Grastien in 2011 [34]. The main idea
of the JPS algorithm is to further optimize the process of finding subsequent path nodes by
the A* algorithm based on the heuristic function of the A* algorithm through the neighbor-
pruning rule and the forced-neighbor judgment method. The JPS algorithm drastically
reduces the number of nodes that need to be accessed in the openlist list, reducing the time
and space costs of the algorithm, as shown in Figure 4. The light-gray grid indicates the
nodes that have been visited by the openlist, and the purple grid indicates the remaining
nodes in the current openlist.
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Figure 4. Comparison between A* algorithm and JPS algorithm for accessing nodes in the search
process. (a) A* algorithm path-planning process. (b) JPS algorithm path-planning process.

The direction of expansion of the JPS algorithm during path planning depends on
the orientation of the natural neighbors given by the neighbor-pruning rule. When JPS
extends the path in a particular direction, it identifies a set of natural neighbors among
the neighboring nodes evaluated by the neighbor-pruning rule. If the extension direction
is a straight line, the natural neighbor of the current grid is defined as the next node in
the same direction, as shown in Figure 5a. That is, JPS will continue searching along the
direction of the current natural neighbor. When the extension direction is diagonal, the
natural neighbors of the current grid are the next node along the extension diagonal and
the vertical and horizontal nodes in the extension direction, as shown in Figure 5b. JPS will
start expanding along the natural neighbors in the vertical and horizontal directions until
they are blocked or a jump point is found before considering the search in the diagonal
direction. If there is an obstacle among the pruned neighbors, this will make it impossible
to prune all unnatural neighbors. The grids that are forced to become natural neighbors as
a result of this phenomenon are called forced neighbors, as shown in Figure 5c,d.

In essence, JPS is a heuristic search algorithm that relies on jump points for path plan-
ning. The efficiency of the JPS algorithm is inextricably linked to the choice of jump points.
Usually, the identification of jump points for the JPS algorithm relies on the judgment of
forced neighbors. The current node is the jump point if it is the start point, the target point,
or if there is at least one forced neighbor. If the current node is a diagonal search and there



Appl. Sci. 2022,12,7333

6 of 30

Parent
Node

Current
Node

—>
Natural
Neighborhood 1

(a)

is a jump point in its horizontal or vertical direction, the current node is also the same as

the jump point.

[Natural
[Neighborhood 1

{

[Natural
[Neighborhood 2

Current
Node

—

Natural
Neighborhood 3|

Parent
Node

(b)

Forced
Neighbour

Parent
Node

Current
Node

v

()

Forced
Neighbour

Parent
Node

Current
Node

(d)

Figure 5. JPS algorithm’s neighbor-pruning rule and forced-neighbor judgment method. (a) Neighbor
pruning in the linear extension state. (b) Neighbor pruning in the diagonal expansion state. (c) Forced
neighbors in the linear extension state. (d) Forced neighbors in diagonally extended states.

The JPS algorithm is much lower than the A* algorithm in terms of time complexity.
The fundamental reason is that the openlist list of the JPS algorithm no longer stores all the
natural neighbors of the current node, but the jump nodes that play a key role in the final
generated path. Although the JPS algorithm and the A* algorithm generate paths of equal
length, the A* algorithm requires far more nodes to be computed and visited than the JPS
algorithm, which explains why the JPS algorithm is more efficient than A*. In particular,
the efficiency of the JPS algorithm is more significant in complex environments. Just as the
results tested by Harabor are consistent, the search speed of the JPS algorithm is an order of
magnitude higher than that of the A* algorithm [34]. Therefore, choosing the JPS algorithm
to perform the drone path planning has a general advantage in meeting the requirements
of efficiency.

3.1.2. 3D Extension of JPS Algorithm

In order to ensure that the drone maintains excellent static-obstacle-avoidance capabil-
ity during the search mission in low-altitude airspace, this paper extends the JPS algorithm
in three dimensions.
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Figure 6. Minimum set of JPS algorithm in 2D and 3D space. (a) 2D JPS path search minimum set.
(b) 3D JPS path search minimum set.

In the traditional 2D space, the JPS algorithm uses a single grid node as the smallest
unit and the current node and contains all eight neighboring nodes as the smallest set
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for path-planning search and judgment. The number of neighbors and the orientation of
the current node play a crucial role in the search direction of the JPS algorithm, as shown
in Figure 6a. The minimum set of the current node and all its neighbors included in the
expansion process of 3D JPS is different from the traditional JPS algorithm. The neighboring
nodes of the current node are expanded in 3D space as 26 belonging grid nodes directly
connected to the current node, as shown in Figure 6b. In Figure 6b, only the expansion
direction of the same plane and the expansion of one edge of each of the upper and lower
planes are given; all other directions can be obtained by rotation.

The result of the change in the minimum set in the 3D space is a difference in the
direction of the expansion of the JPS algorithm during the path-planning process. The
different expansion directions are determined by the neighbor-pruning method of the JPS
algorithm. Therefore, this paper makes further modifications to the neighbor-pruning rule
for 3D JPS as follows.

1. The parent node parent(x) of the current node x satisfies the two-dimensional pruning
rule when it is in the same plane as the current node with linear extension and does
not involve other planes, as shown in Figure 7a. The current node needs to prune off
any neighbor node in the same plane that satisfies the following constraint n:

len(<parent(x),....,n>\x) < len(<parent(x),x,n>) 1)

where the len function represents the distance between nodes, and <parent(x),....,n>\x
represents the set of all nodes that reach n from the parent(x) node without the current
node x.

2. The parent node parent(x) of the current node x and the current node in the same
plane diagonal expansion also satisfies the two-dimensional pruning rule, and does
not involve other planes, as shown in Figure 7b. That is, it is necessary to prune off
any neighbor node 7 in the same plane that satisfies the following constraint:

len(<parent(x),....,n>\x) <len(< parent(x),x,n>) (2)

3. If the parent node parent(x) of the current node x and the current node for the body
diagonal expansion, the need to expand along the diagonal direction to the upper
level while satisfying the formula (b), as shown in Figure 7c.

From another point of view, forced neighbors and jump points are a relative set
of concepts in the 3D JPS algorithm. The number and location of forced neighbors
has an intuitive effect on jump points. We assume that the set of pruned neighbors is
P =< x1,x2,x3...,X; > in a minimal set with the current grid x as the core. There exists
an obstacle x,, € P; if there exists any neighbor grid x; € P, x; # x,;, of x,, satisfying the
following condition, then x; is called a forced neighbor of the current node x. Additionally,
x is called the jump point.

len(< parent(x),x,n >) < len(< parent(x),...,n > \x) ©)]

The JPS paths are generated in the 3D space consisting of a 3D grid, following an
expansion from straight lines to diagonals in the same plane and then to diagonals in the
body. In the process of expanding the 3D JPS, the current node is used as the reference, and
the first three linear-search directions parallel to the x-axis, y-axis, and z-axis are expanded,
as shown in Figure 8a. The same-plane diagonal expansion is performed only when no
jump point is found in the linear direction and the same-plane expansion follows the
two-dimensional JPS algorithm expansion rules, as shown in Figure 8b. If the jump point is
still not found, the final body diagonal expansion is performed; that is, a grid is expanded
along the diagonal of the map body and the linear and planar search is continued, as shown
in Figure 8c.
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Figure 7. Three-dimensional JPS algorithm neighbor-pruning law. (a) Pruning rule under the linear
extension direction in the same plane. The expansion direction of the 3D JPS algorithm is restricted to
the original expansion direction in the unique plane. (b) Pruning rule under the diagonal extension
direction of the same plane. The expansion direction of the 3D JPS algorithm is restricted to the
original expansion direction in the unique plane as well as above and to the right of the current grid.
(c) Pruning rules under the diagonal expansion direction of the body. The extension direction of the
3D JPS algorithm will involve two planes. Where the green arrow indicates the expansion direction
of the parent node from the lower layer to the current node, the red arrow indicates the expansion
direction of the middle layer, and the blue arrow indicates the expansion direction from the current
node to the upper layer.
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Figure 8. Three-dimensional JPS algorithm extension method. (a) Same-plane linear extension.
(b) Same-plane diagonal extension. (c¢) Body diagonal extension.

In the process of 3D JPS algorithm path planning, openlist and closelist are used to
record the search process, where the openlist list stores the candidate jump points in the
current search. After computing the heuristic function for each candidate jump point, the
point with the smallest heuristic function value is taken from the openlist and added to
the closelist for this round. During the next round of search, this jump point is used as the
parent of the current node to continue the search until the target is reached. The heuristic
function of the 3D JPS algorithm is shown below.

f(x) = g(x) + h(x) 4)

where x denotes the current node and g(x) denotes the actual cost from the initial node to
the current node x. h(x) denotes the heuristic evaluation cost of reaching the target point
goal from the current node x. In general, the three-dimensional spatial Euclidean distance
formula is used for evaluation, which is shown below.

dist(x, goal) = \/(xx — goal,)* + (xy — goaly)2 + (x, — goal)? (5)

In this paper, the path-planning steps of the 3D JPS algorithm are shown below.

1.  Initialize the static spatial environment and discretize the drone flight area into a
grid model.

2. Set the initial position of the drone to x4+ and the target point x,,,; and add x4+ to
the openlist.

3. The neighbor-pruning rule is selected according to the position information of the
current node and its parent node, and the expansion direction of the current node
is calculated.

4. Find jump points by forcing the location of neighbors and add them to the openlist.

5. Each node in the openlist is computed by a heuristic function. The node with the
smallest computed value is selected as the jump point and the parent node for the
next search process.

6.  Add the nodes that play the role of parent nodes in this search process to the closelist.
If there is x4 , the search will be terminated, and the search path will be formed by
the list of closelist. If x,,; is not present, repeat steps 3 through 6.

3.2. Trajectory Optimization Based on the Resultant Path of 3D JPS Algorithm

The 3D JPS algorithm is a path planning algorithm based on a discrete 3D grid map.
The paths obtained directly from the 3D JPS algorithm still cannot escape the limitations im-
posed by the search direction. This will cause the 3D JPS algorithm to ignore the possibility
of any search directions during the search process, making the path appear unnecessarily
twisted and unsmooth. In this paper, the set of path nodes of the 3D JPS algorithm is
optimized by the parent node transfer law, and the redundant nodes are removed to realize
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the JPS algorithm for any-angle path planning. Meanwhile, the minimum-snap seventh-
order polynomial-interpolation method is introduced to further ensure the continuity and
smoothness of information such as path node position, velocity, acceleration, and jerk
function of the drone in the flight process. The trajectory optimization framework based on
the 3D JPS algorithm for path generation is shown in Figure 9.
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Figure 9. Trajectory optimization framework.

3.2.1. An Any-Angle Path-Planning Strategy Based on the Parent Node Transfer Law

In the traditional JPS algorithm for path planning, the expansion direction of the current
node is determined by the neighbor-pruning law. The selection of the neighbor-pruning rule,
on the other hand, relies on the position relationship of the parent node with respect to the
current node. In general, the final path result set generated by the JPS algorithm contains a
chain of parent—child node relationships. After the JPS algorithm completes the search, it is
also necessary to infer the final path based on the chain of parent—child node relationships.
The parent—hild node relationship chains obtained by the JPS algorithm and the A* algorithm
are different. The relational chain of the A* algorithm is complete, and it completely covers
every grid node in the result path searched by the A* algorithm. As for the JPS algorithm, it is
obvious that the chain of relations consists of jump points and the redundant nodes between
every two jump points are removed, as shown in Figure 10.
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—\ algorithm parent-child
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—> Search result path of JPS
and A*

I:’ Visible neighbor nodes of
the current node x

Figure 10. JPS algorithm parent—child node relationship chain.

From the complete chain of relations, it can be found that the parent of any node x
can only be a visible neighbor node of x, as shown by parent(x),;; in Figure 10. The JPS
algorithm, however, breaks this rule. It can be seen that the parent node in the parent—child
node relationship chain obtained by the JPS algorithm is not a neighbor of the parent node,
but has direct visibility between the two nodes, that is, the line of sight (LOS) has direct
accessibility [17]. When two nodes have a parent—child relationship, the redundant nodes
in their middle can be deleted, as is the case with the 3D JPS algorithm. Therefore, in this
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paper, the way of passing the parent node to the forward node in the parent—child node
relationship chain is called the parent-node-passing law, and it is further improved and
expanded on this basis.

The JPS algorithm and the 3D JPS algorithm still have a gap between the obtained
paths compared to the shortest paths in the actual space. The fundamental reason for this
is the limitation of the search direction, as shown in Figure 11.
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Figure 11. Comparison between the actual spatial shortest path and the path obtained by JPS algorithm.
(a) Comparison of the actual spatial shortest path and the path obtained by the 2D-JPS algorithm.
(b) Comparison of the actual spatial shortest path and the path obtained by the 3D-JPS algorithm.

As we can see in Figure 11, there are still redundant steering points in the set of
nodes for both JPS algorithms resulting in paths that are not the shortest. Therefore, how
to delete these redundant nodes becomes the key to path optimization. The core of the
parent-passing rule is that if there is LOS reachability between two nodes, all nodes between
these two nodes are considered redundant, and any unnecessary path transitions caused
by them can be replaced by the direct connection of the two nodes. It would be unwise to
use the strategy of combining every two nodes to verify the LOS reachability in the parent-
node-passing rule. As the number of path nodes grows, the number of such verifications
will increase significantly to affect the overall computational efficiency of the algorithm.
For this reason, an inert strategy is used in this paper in the specific implementation of
the parent-node-passing law. By default, all nodes have LOS reachability with the parent
node of the current detection point, and LOS authenticity is considered when a specific
verification of a node in the path is needed. The specific way of the parent-node-passing
law used in this paper is as follows.

1. First of all, the path nodes of the 3D JPS algorithm are complemented so that each
raster through which the path of the 3D JPS algorithm passes is included in the set of
nodes. Let the set of nodes be pathlist = <Xuq, Xu, Xp—1, -, Xi, - .., X1, Xstart>.

2. Set the parent node of all nodes in the node collection to be the initial node. That is,
all nodes have direct visibility with the initial node by default.

3. Since the parent—child relationship between node x1 and x4+ is not modified, it is
only necessary to perform LOS reachability detection with x4+ from node x; to node
Xenq in order to verify whether the visibility between nodes holds.

4.  If visibility holds, the node between the current node and x4+ will be deleted and
added to the deletelist without changing the parent node relationship.

5. Ifvisibility does not hold, the parent node for the current node needs to be found again
in the deletelist, and the parent node of the remaining nodes without LOS detection is
replaced with the parent node of the current node to continue the detection.
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6.  When the parent node of x,,; is passed, the algorithm ends and the shortest path
is output.

In this paper, the pseudocode of the parent-node-passing rule is shown as follows
(Algorithm 1).

Algorithm 1: Parent Node Passing

Input: The complete set of nodes of the path obtained by 3D-JPS algorithm
{pathlis [Tends Tny Tn—1, oy Tiy ooy T1, Tstart] }

Output: Optimized set of nodes {pathlist}

if length(pathlist) > 2 then

1
2 initial closelist;
3 parentnode = parent(r1) = Tstart;
4 parent(Tend) = parent(z,) = ... = parent(zx;)... = parent(xs) = parentnode;
5 for i = 2 to length(pathlist) do
6 if LineO fSight(z;, parentnode) then
7 ’ remove all nodes between x; and parentnode, as well as adding closelist;
8 else
9 initial flag := 0;
10 for j =1 to length(closelist) do
11 if LineO fSight(x;, closelist(j)) AND
12 dist(x;, closelist(j)) + g(closelist(j), Tend) < g(@i, Tena) then
13 parent(x;) = closelist(j);
14 remove all nodes between z; and closelist(j), as well as adding
closelist;
15 flag =1;
16 end
17 end
18 if flag equals 0 then
19 | parent(z;) = x;i—1;
20 end
21 end
22 parentnode = parent(z;);
23 end
24 end

25 return pathlist;

3.2.2. Optimization of Trajectory Smoothing Based on Minimum-Snap Seventh-Order
Polynomial Interpolation

For drones performing near-ground missions, path planning should fully take into
account the feasibility constraints that arise during the actual flight of the drones. To be
precise, the path obtained by the path planning algorithm of drone should meet the path
space node state continuous and smooth, to achieve the shortest path. The full-state space
of the drone is 12 dimensions, which are position, velocity, attitude angle, and angular
velocity, as shown in Equation (6).

(6)

x=[xv,29,0,9.5zpqr]

However, in the process of drones’ path planning, it is not possible to plan for the full
dimensional space because it would be very complex and difficult to compute. In their
paper [38], Daniel Mellinger et al. demonstrated that the 12-dimensional full state of a
drone can be represented by a flat output space composed of four-dimensional variables,
as shown in Equation (7).

o=[xyzy]" )

There are only four-dimensional variables in this space, namely, the positions of the
x-axis, y-axis, z-axis, and yaw angle 1. The remaining states can be represented by the
algebra of these four variables and their finite order derivatives.

Therefore, in this paper, based on the four-dimensional flat-output space of UAV, the
seventh-order polynomial based on minimum snap is selected for trajectory optimization.
Additionally, for the possibility of recollision of the optimized path, the node expansion
interval is used and the flight safety corridor is set by applying the inequality constraint.
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Using minimum snap as the optimization objective ensures the continuity of the generated
paths of the 3D JPS algorithm in terms of node position, velocity, acceleration, and jerk
function and further reduces the energy consumption of the drone during the mission and
enhances the safety during the flight.

In order to ensure the degree of fit of the optimization curve to the original path and
the flight corridor setting, firstly, this paper performs the node interpolation process for the
set of nodes of the 3D JPS algorithm according to the fixed step size step. The interpolation
method is shown in the following pseudocode (Algorithm 2).

Algorithm 2: Path node interpolation

Input: Set of path nodes {pathlist := [Tend, Tn, Tn—1, s Tiy ooy 1, Tstart] 1
Interpolation step length{step};
Output: Set of path nodes after interpolation {newpath}
1 if length(pathlist) > 2 then

2 initial newpath = pathlist[1];
3 initial templist = null;
4 for i = 2 to length(pathlist) do
5 Pointy = pathlist[i — 1];
6 Pointy = pathlist[i];
7 Number of path interpolation n = rounding(dist(Pointy, Points)/step) + 1;
8 Insert n points evenly between Point; and Pointy and assign the result to a
zero-time set templist;
9 newpath = [newpath, templist];
10 templist = null;
11 end
12 end

13 return newpath;

Second, the segmentation is performed according to the number of nodes in the set of
path nodes generated by the 3D JPS algorithm. Assuming that the set of nodes has n + 1
nodes, the overall path is divided into n segments. The polynomial expression for the n
segment path is shown in Equation (8).

k : T

‘20 pritt = 1 ... F)(po pa o pik) (To <t<T;k=7)
=

k ; T

‘Zo prit' = (10 1 ... )(pao P21 0 P2k) (1 <t <Tyuk=7)
1=

R j 0 A k T ®

Lopmitt = (88 ) (pmo Pma e Pi) (Tu-1 <t < Tk =7)
=

k ; T

’ZO pn,itl = (to o tk) (pVIO Pna - pn,k) (Tnfl <t<Tyk= 7)
i=

where p,, ; denotes the ith polynomial coefficient of the mth segment of the path, t denotes
the drone flight time, and Tj to T, denote the moments when the drone passes the endpoints
of each segment of the path. Next, by performing multiple derivative calculations for
f(t), the expressions for velocity, acceleration, jerk, and snap for the corresponding path
segments are obtained, as shown in Equations (9) to (12).

Um(t):(o 1 2t - kbl )(Pm,o Pmi - Pmk )T )
i) =(0 0 2 6t - k(k=DF2)( puo Pum1 - Pug ) (10)

jerkn(t)=( 0 0 0 6 122 o GHEEI Y (e puy e p )] (11)
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snapu(t)=( 0 0 0 0 24 - ) (pug pun o pag )| (12)

In this paper, the minimum snap is used as the optimization objective of the polynomial
as shown in Equation (13).
2

Jn = min/OT (F@ (1)) at (13)

The quadratic solution equation for the PQ problem can be obtained by expanding it
as shown in the following expression.

n T, ook gk \T e K gk4
]nzzPT/ (0 0 24 et )(o 0 24 et )dt_P (14
i=1 Tiy 4 4
. Q1
Ju =min}_ PT P (15)
i=1
Qn

The position (P = f(t)), velocity (v = f(t)), acceleration (a = f”(t)), jerk function
(jerk = f©®)(t)), and snap function (snap = f*)(t)) of the nodes in the path process are
used as equation constraints in the quadratic programming. The set of smooth-trajectory
nodes is obtained by solving the expansion interval (expansion radius of r) of each node as
an inequality constraint, as shown in Equation (16).

fi(To) =P

fﬂ(Tﬂ) :Pn+1

FOT) — (T =0 (i=12...,n-1;k=1,234)
Pi—i’gfi(Ti_l)SPi-i-i’ (i:2,3,...,1’1)

s.t. (16)

3.3. Dynamic-Obstacle-Avoidance Strategy Based on Artificial-Potential-Field Method

The environment in which drones perform near-ground searches is dynamic and
changes in real time due to the presence of other drones as well as flying animals. It is
inevitable that drones will be in the same airspace as other dynamic obstacles in the course
of their missions. The 3D JPS algorithm can only use re-search to replan the global paths
in response to dynamic environments. With the dynamic-obstacle position constantly
changing in real time, this will significantly reduce the drones’ obstacle avoidance response
speed. Therefore, in this paper, the drone flight trajectory in the path collision region is
adjusted by introducing an artificial potential field to avoid the dynamic-threat-induced-
collision phenomenon by means of dynamic potential field forces.

In the process of dynamic-obstacle avoidance, the drone is required to monitor its
alert range in real time, and when a dynamic threat enters the alert area, the artificial-
potential-field method will be used to complete the obstacle avoidance behavior according
to the real-time dynamic changes in the force until the threat leaves the alert area. After
completing the obstacle avoidance behavior, the drone needs to determine whether there is
direct reachability between the node where the current drone is located and the source path
node through the 3D Bresenham’s line algorithm, so as to achieve trajectory regression.

3.3.1. Artificial-Potential-Field Method

The artificial-potential-field method is a virtual-force method proposed by Khatib,
whose method is to define the environment in which the drone is located in terms of
the potential field and control the obstacle avoidance driving of the drone by the position
information. The basic idea of the artificial-potential-field method is to construct an artificial
potential field in which the gravitational field at the target location and the repulsive field
around the obstacle act together, and to find collision-free paths by searching for the descent
direction of the potential function. Assuming that the current position of the drone is x
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and the position of the target point is x¢,4, the functional expression of the gravitational
potential field is shown in Equation (17).

1
Ut = 5’792(9@ xgoal) (17)

where 7 is the proportional gain function of the gravitational field and p(x, x¢,,1) denotes
the distance vector from the current position of the drone to the position of the target
point. The derivative of the gravitational-field function yields the gravitational function
Fatt, whose expression is shown in Equation (18).

Fat = =VUgt = —110(X, Xgoa1) (18)

In the artificial-potential-field method, the factor that determines the repulsive field of
the obstacle is the distance between the drone and the obstacle, and the drone is subject to
a potential energy of 0 when it is not within the influence of the obstacle. When the drone
enters the influence range of the obstacle, the smaller the distance between them, the more
potential energy the drone is subjected to, as shown in Equation (19).

1 1 12
ureq = { jk(."(x'xnbs) B %) 0= p(x' Xobs) < £o (19)
0 P(xrxobs) = 00

where x,,; denotes the position coordinates of the obstacle, p(x, x,ps) denotes the distance
vector from the current position of the drone to the position of the obstacle, k is the positive
scale factor of the repulsive field, and py denotes the maximum distance at which the
obstacle exerts a repulsive force on the drone. The corresponding repulsive function Freq is
expressed as the negative gradient of the repulsive field, as shown in Equation (20).

1 1) Vo)
Freq = {k(p(x’xnbs) PO) pz(x,xohs) O S p(x/ xObS) S PO (20)
0

p(x, xobs) = 00

The drone is in constant motion under the action of a combined potential field consist-
ing of the target point and multiple obstacles. Assuming that the number of obstacles that
exert repulsive influence on the drone at the current moment is #, the expression U for the
total potential field can be obtained by superimposing the potential field as shown below.

n
U= U+ Y Uep (21)
i=1

The expression of the combined force on the drone is as follows.

n
F=—-VU=Fu+)_ Frep (22)
i=1

3.3.2. Escape Method for Local Optimal Solutions of Artificial-Potential-Field Method

In the process of drones for path planning, the gravitational force generated by the
target point for the drone and the repulsive force generated by the obstacle are equal in
size and opposite in direction, that is, the force balance phenomenon at the nontarget point
where the drone is. When the search is trapped in a local optimum, it will result in the
drone being unable to continue the path planning and eventually fail to reach the target
point. In this paper, we classify the cases in which an artificial potential field will produce a
local optimum into three types.

1. When the obstacle is directly in front of the target point and the drone is in the same
course, and the current drone is subject to gravitational force and repulsive force of
the same magnitude and opposite direction, as shown in Figure 12a.
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Figure 12. Artificial-potential-field method falls into the local-optimum case. (a) The obstacle is
directly in front of the target point and on the same course as the drone. (b) Obstacles are on both
sides of the drone. (c) The obstacle is behind the target point and on the same course as the drone.

2. When the obstacle is on both sides of the drone and the combined direction of the
repulsive force is opposite to the direction of the gravitational force and has the same
magnitude, as shown in Figure 12b.

3. When the obstacle is behind the target point and the repulsive force is much larger
than the gravitational force, as shown in Figure 12c.

When the drone is in a local optimum, the situation is divided into two types based
on whether there is direct visibility between the drone and the target point. First, as shown
in Figure 12a, the obstacle is between the drone and the target point, and it can be found
through the 3D LOS visibility detection that the drone cannot reach directly through the
obstacle, and it must be affected by unequal external forces, thus breaking the force balance
of the drone. Therefore, in this paper, in the case that the drone is caught in the local
optimal solution and there is no direct visibility between the drone and the target point,
the virtual-target gravitational field is added around the local optimal point to induce the
drone to escape, as shown in Figure 13.
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Figure 13. Escape local optimal solution using virtual-target gravitational field. (a) Traditional
artificial-potential-field method. (b) Improved artificial-potential-field method.
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Figure 14. Escaping Local Optimal Solutions Using the 3D Bresenham’s Line Algorithm. (a) Tradi-
tional artificial-potential-field method. (b) Improved artificial-potential-field method. (c) Traditional
artificial-potential-field method. (d) Improved artificial-potential-field method.

When the drone is trapped in a local optimal solution but has direct visibility, the 3D
Bresenham’s Line algorithm can be used to test whether a straight line course between the
drone and the target is directly reachable. If a direct route is available between the drone
and the target point then the current drone is directly connected to the target point location,
as shown in Figure 14.

Among them, the 3D Bresenham’s line algorithm plays a key role in driving the local
optimal solution and trajectory regression of the drone escape. Bresenham’s line algorithm
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was previously used in bitmap images to determine the raster of pixels through which the
line determined between two points passes. Bresenham's line algorithm is very effective in
2D grid maps to test for the presence of obstacles between two points, but it is not applicable
in 3D stereoscopic space. In this paper, Bresenham'’s line algorithm is further extended
in three-dimensional space, and step sampling is used to detect whether two points are
directly accessible to each other. The implementation steps are given in pseudocode in this
article, as follows (Algorithm 3).

Algorithm 3: 3D Bresenham Line

Input: Two nodes that require reachability testing {pointl, point2}; Sampling step{steplength}
Output: Outputs a Boolean value of whether two points are directly accessible to each other
{hasLOS}
1 initial hasLOS = true;
2 initial X,a0,Ymaz,Zmae are the maximum value of the map x-axis, y-axis and z-axis;
3 if pointl or point2 is outside the map range then
4 | hasLOS = false;

5 else
6 if The line segment formed by pointl and point2 is parallel to the xy plane or yz plane or xz
plane then
| hasLOS = 2Dbresenhamlineof sight(pointl, point2)
8 end
9 if The line segment formed by pointl and point2 and the plane formed by the coordinate axis
are not parallel then
10 disy = abs(pointl.x — point2.x); dis, = abs(pointl.y — point2.y);
11 dis, = abs(pointl.z — point2.z);
12 if MAX(disg,disy,dis;) = dis, then
13 if pointl.z > point2.x then
14 for i = point2.x to pointl.x step steplength do
15 Tz
16 y = (point2.y — pointl.y) * (i — pointl.z)/(point2.z — pointl.x) + pointl.y;
17 z = (point2.z — pointl.z) * (i — pointl.z)/(point2.z — pointl.x) + pointl.z;
18 if The coordinates (z,y, z) correspond to an obstacle then
19 | hasLOS = false;
20 end
21 end
22 else
23 | Exchange the position of pointl and point2 in the spatial linear equation
24 end
25 end
26 end
27 if MAX (disg,disy,dis;) = dis, then
28 Similarly, the y-axis is sampled according to the steplength and the coordinates (z,y, z)
of the sampled points are calculated.
29 if The coordinates (x,y,z) correspond to an obstacle then
30 ‘ hasLOS = false;
31 end
32 end
33 if MAX(disg,disy,dis,) = dis, then
34 Similarly, the z-axis is sampled according to the steplength and the coordinates (z,y, z) of
the sampled points are calculated.
35 if The coordinates (x,y,z) correspond to an obstacle then
36 ‘ hasLOS = false;
37 end
38 end
39 end

40 return hasLOS;

4. Experiment

In this paper, three sets of experiments are conducted for the proposed 3D JPS al-
gorithm using Matlab 2020b (By MathWorks, Inc., Portola Valley, CA, USA) simulation
software based on the i5-1135G7 mobile computer (From Lenovo China).
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In experiment 1, randomized obstacle distribution and algorithm comparison experi-
ments were conducted for maps of different sizes with different obstacle proportions given
the path start and end points. This is used to examine the effectiveness of the 3D JPS
algorithm operating under different specification maps.

In experiment 2, a map of the mountain area in the GIS dataset and a map of the city
dataset from the Moving Al Lab were selected for the simulation of the 3D JPS algorithm with
any-angle path planning and the 3D JPS algorithm with polynomial difference optimization.

In Experiment 3, a 3D JPS algorithm obstacle avoidance test is conducted based on
a map of the central London area, using single dynamic threat, linear dynamic threat,
and multi-dynamic threats, respectively, as a way to verify the feasibility of the obstacle
avoidance strategy proposed in this paper.

The x-axis, y-axis, and z-axis coordinates in the experimental scenes under all designed
3D grid maps in the three sets of experiments are in meters.

4.1. Randomized-Map Experiment

In this paper, maps consisting of 125 grids, 343 grids, 1000 grids, 2179 grids, 3375 grids,
4913 grids, and 8000 grids are used in the design of the randomness maps, and the percent-
age of obstacles in each map is 20% to 40%. The computation time, space occupation rate,
number of path nodes, path length, and total path-turning angle of the 3D JPS algorithm,
3D A* algorithm, RRT algorithm, and Theta* algorithm are summarized and analyzed,
respectively. In the simulation experiments, the Euclidean distance formula is uniformly
chosen as the distance calculation of the heuristic function in this paper. The experimental
results were taken from the average of 10 experiments. The simulation results are partially
shown in Figure 15 below.

Map with 125 grids Map with 125 grids Map with 125 grids

Figure 15. Cont.
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Map with 3375 grids

Map with 3375 grids Map with 3375 grids

(k) @

Figure 15. Experimental comparison of algorithms based on randomness maps. (a) Obstacles
accounted for 20%. (b) Obstacles accounted for 30%. (c) Obstacles accounted for 40%. (d) Obstacles
accounted for 20%. (e) Obstacles accounted for 30%. (f) Obstacles accounted for 40%. (g) Obstacles
accounted for 20%. (h) Obstacles accounted for 30%. (i) Obstacles accounted for 40%. (j) Obstacles
accounted for 20%. (k) Obstacles accounted for 30%. (1) Obstacles accounted for 40%.

As can be seen in Figure 15, the 3D JPS algorithm can complete the global path
planning in 3D space with different sizes and different obstacle occupancy of the map. The
data of the four algorithms involved in the experimental comparison process are further
presented and explained.

In terms of the time complexity of the algorithm, the 3D JPS algorithm had a better
performance in the comparison of the four spatial-pathfinding algorithms, as shown in
Figure 16. However, it is very obvious that as the number of map grids and the percentage
of obstacles increased, all four algorithms used in the experimental process invariably
showed an increase in algorithm computation time. In the same map environment, the 3D
JPS algorithm had the lowest computation time and the Theta* algorithm had the highest
computation time. The 3D JPS algorithm reduced the computation time by 88.45% to
30.18% compared to the 3D A* algorithm and by 34.83% to 4.75% compared to the RRT
algorithm. Analyzing the average growth rate of the algorithm’s computation time, we can
find that the 3D JPS algorithm will improve the computation time by 0.45% to 1.18% for
every 10% increase in the number of grids with the same percentage of obstacles. With the
same number of grids in the map, the computation time of the 3D JPS algorithm will be
improved by 46.98% to 153.31% for every 10% increase in obstacle percentage. It can be
seen that the percentage of the number of obstacles has a large impact on the computation
time of the 3D JPS algorithm.
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Figure 16. Experimental comparison of algorithms based on randomness maps. (a) Obstacles
accounted for 20%. (b) Obstacles accounted for 30%. (c) Obstacles accounted for 40%.

The analysis was performed in terms of the memory usage of the algorithm, as shown
in Figure 17. The RRT algorithm had the lowest memory usage among the four algorithms,
followed by the 3D JPS algorithm, while the Theta* algorithm had the highest memory
usage. The memory usage of the 3D JPS algorithm was 28.72% to 48.32% higher compared
to the RRT algorithm and 2.72% to 37.78% lower compared to the A* algorithm. The
memory footprint of all four algorithms increased as the map size and obstacle percentage
increased. The number of grids was increased by 10% at a time for a map with the same
percentage of obstacles. The RRT algorithm had the highest average growth rate of 4.89%
in memory usage. The Theta* algorithm had the lowest growth rate of 1.31%. The 3D JPS
algorithm had an average growth ratio of 2.26% in the middle region of memory occupation.
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Figure 17. Algorithm memory usage comparison. (a) Obstacles accounted for 20%. (b) Obstacles
accounted for 30%. (c) Obstacles accounted for 40%.
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Figure 18. Comparison of the number of path nodes, total path length, and total path-turning

(a) Comparison of the number of path nodes based on 20% obstacle-occupied maps.

(b) Comparison of the number of path nodes based on 30% obstacle-occupied maps. (c¢) Com-
parison of the number of path nodes based on 40% obstacle-occupied maps. (d) Total path length
based on 20% obstacle-occupied maps. (e) Total path length based on 30% obstacle-occupied maps.
(f) Total path length based on 40% obstacle-occupied maps. (g) Total turning angle of the path based
on 20% obstacle-occupied maps. (h) Total turning angle of the path based on 30% obstacle-occupied
maps. (i) Total turning angle of the path based on 40% obstacle-occupied maps.
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From the perspective of the number of path nodes, the length of generated paths,
and the total number of path turns, the Theta* algorithm has a definite advantage. The
any-angle path planning strategy of the Theta* algorithm causes it to ignore most of the
redundant nodes generated by the A* algorithm during the search process, as shown in
Figure 18a—c. Also, because the Theta* algorithm is no longer limited by the expansion angle
during the search process, it results in a shorter generated path, as shown in Figure 18d-f,
and a smaller total path turning angle, as shown in Figure 18g—i. On the contrary, the RRT
algorithm is limited by the design of the step size, which leads to an inevitable significant
increase in the number of nodes as the map size increases. Additionally, the random-search
nature of RRT can lead to too many path-turning angles and poor smoothness. The 3D JPS
algorithm was similar to the 3D A* algorithm in terms of the number of path nodes, the
total length of the path, and the total turn angle of the path in the comparison experiments
of the four algorithms. The 3D JPS algorithm increased the path length by 0.583% to 5.9%
and the total path-turning angle by 27% to 98.2% compared to the Theta* algorithm. The
3D JPS algorithm is not optimal in terms of path quality because its search angle is limited
by the discretized grid map. There are still redundant turn points in the paths generated by
the 3D JPS algorithm that can be optimized, and these unnecessary turn points cause the
3D JPS algorithm to be higher than the Theta* algorithm, which supports any-angle path
planning, in terms of path length and total turn angle.

Through the comparative analysis of five sets of metrics for the 3D spatial path-
planning algorithm, it can be seen that the 3D JPS algorithm performs better in terms of
time complexity and space complexity, but its generated result paths still need further
optimization and improvement in terms of length and smoothness.

4.2. 3D JPS Algorithm Trajectory Optimization Experiment Based on Open Dataset

In this paper, we use the maps of London, Boston, and New York City Center from
the public database of Moving Al Lab and the mountain areas from the GIS map database
to compare the resultant paths of the 3D JPS algorithm, the parent node transfer rule, and
the polynomial interpolation optimization, respectively. This is to verify the effectiveness
and realism of trajectory optimization based on path generation by the 3D JPS algorithm.
In this paper, the path after parent node optimization is abbreviated as PNP-JPS; then, the
path after the polynomial-interpolation optimization is abbreviated as OP-PNP-JPS for the
convenience of presentation. The experimental results are shown below.

Table 1. Map information selected for the dataset.

. Total Turning Angle Calculation Memory Usage Number of
Map Name Algorithm Type Path Length (m) of the Path (°) Time (s) (kb) Nodes

JPS3d 156.385 1976.610 9.848 12,678.968 108

mountain region 1 PNP-JPS3d 144.965 421.465 10.029 12,679.540 14
OP-PNP-JPS3d 144.966 NULL 10.384 12,681.331 501

JPS3d 125.187 1011.851 12.120 14,137.523 91

mountain region 2 PNP-JPS3d 115.041 183.576 12.302 14,138.243 11
OP-PNP-JPS3d 115.148 NULL 12.421 14,138.492 495

JPS3d 137.329 1515.288 8.795 14,991.102 94

mountain region 3 PNP-JPS3d 130.699 732.246 9.035 14,991.821 25
OP-PNP-JPS3d 130.700 NULL 9.506 14,992.329 507

JPS3d 82.332 546.057 5.503 9217.221 16

London PNP-JPS3d 78.036 143.024 5.580 9218.319 10
OP-PNP-JPS3d 78.038 NULL 5.739 9218.970 477

JPS3d 93.629 1195.529 6.946 9679.211 33

New York PNP-JPS3d 87.548 255.291 7.171 9680.490 11
OP-PNP-JPS3d 87.550 NULL 7.233 9680.992 483

JPS3d 113.470 520.528 9.603 10,149.380 25

Boston PNP-JPS3d 107.483 35.567 9.787 10,150.194 4
OP-PNP-JPS3d 107.284 NULL 9.871 10,150.870 499
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Figure 19. Three-dimensional JPS algorithm generates paths and its trajectory optimization path
comparison experiment. (a) Map of the mountain region 1. (b) Map of London. (c¢) Map of the
mountain region 2. (d) Map of New York. (e) Map of the mountain region 3. (f) Map of Boston.



Appl. Sci. 2022,12,7333

25 of 30

As shown in Figure 19, the optimized 3D JPS algorithm based on the parent node
transfer law cuts out a large number of unnecessary turnaround nodes and further reduces
the total length of the generated paths. The seventh-order polynomial-interpolation opti-
mization based on the minimum snap again smooths the path to ensure the continuity and
smoothness of the position, velocity, acceleration, and jerk of the generated path at each
interpolation node, while using the snap as the optimization goal further ensures that the
final generated path is the path with the least energy consumption by the drone. In this
paper, the experimental results are presented as shown in Table 1.

From Table 1, it can be seen that the optimized path based on the parent node transfer
law removes unnecessary redundant turning points from the path generated by the 3D
JPS algorithm, making the optimized path length and smoothness better than the original
path. The paths optimized based on the parent node transfer law are 4.8% to 8.1% shorter
than those obtained by the original 3D JPS algorithm, and the total turning angle of the
paths is reduced by 51.6% to 93.2%, with a significant effect on the overall optimization of
the paths. In terms of the time and space complexity of the algorithm, the newly added
functional modules of the algorithm will inevitably lead to an increase in the running time
of the algorithm and an increase in memory usage. The optimized algorithm based on the
parent node transfer law increases the computing time by 1.4% to 3.2% and the memory
usage by 0.0045% to 0.012% over the original 3D JPS algorithm. In order to ensure the
continuity of position, velocity, acceleration, and other information of the final path at
each path interruption point, the optimized path based on the parent node transfer law
needs to be further optimized by polynomial interpolation. The seventh-order polynomial-
interpolation method based on minimum snap used in this paper achieves the optimal
smoothness and continuity in the path without affecting the overall computing time and
memory consumption of the algorithm as much as possible. As can be seen in Table 1,
the paths optimized by the parent node transfer law and polynomial interpolation only
increase in computing time by 2.5% to 5.4% and memory usage by 0.0014% to 0.0018%
compared to the 3D JPS algorithm.

4.3. Dynamic-Threat-Based Drone Obstacle Avoidance Experiments

In this experiment, we simulated and tested a single dynamic threat, a same trajectory
inverse threat, and multi-dynamic threats based on the map of some areas of Shanghai City
Center in a public dataset. In the design of this experiment, the alert range of the drone was
selected based on the mean value of the precise detectable range (20 m) of the forward and
side view of the laboratory drone testbed DJI Mavic 2 in a spherical envelope. When the
dynamic threat entered the alert range, the artificial potential field method was adopted
for dynamic-obstacle avoidance. The repulsive field range generated by the obstacle in
the artificial potential field method was set to 5 m, which is the average of the precise
measurement range of the DJI Mavic 2 forward and lateral infrared sensors of the drone
test platform. When the distance between the drone and the obstacle was less than or equal
to 5 m, there was a repulsive effect on the drone. The experimental results are shown in
Figure 20.
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Figure 20. Drone dynamic-obstacle avoidance experiment based on artificial potential field method.
(a) Single-dynamic-threat avoidance. (b) Obstacle avoidance path segments under single dynamic
threat based on the artificial potential field approach. (c) Same trajectory reverse dynamic threat
avoidance. (d) Obstacle avoidance path segments under inverse dynamic threat of the same trajectory
based on the artificial-potential-field method. (e) Multi-dynamic threats avoidance. (f) Artificial
potential field based approach for obstacle avoidance path segments under multiple dynamic threats.

First, during the single dynamic threat test, the intruder was at the same height as
the drone and performed a collision conflict with an oblique lateral insertion, as shown
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in Figure 19a. The artificial-potential-field method started to execute at a distance of
20 m from the drone detecting the dynamic threat and changed its path at a straight line
distance of 5 m from the obstacle by the real-time-changing repulsion, where the minimum
distance between the drone and the dynamic threat was 4.38 m. The obstacle avoidance
path generated by the artificial-potential-field method itself was a smooth path, but the
sudden switch between the 3D JPS algorithm and the artificial-potential-field method in the
pathfinding process led to the possibility of a large turn in the path, as shown in Figure 19b.
Second, in the same-trajectory reverse-conflict experiment, because the dynamic threat
was between the drone and the target point and moved along the drone trajectory in the
reverse direction, the gravitational force of the target point by the drone was opposite
to the direction of the repulsive force given by the dynamic obstacle, and it was very
easy for it to fall into the local optimal solution. In the improved artificial potential field
algorithm, the virtual target gravitational field and the 3D Bresenham’s line algorithm can
contribute to the successful escape of the drone, but the final generated path still appears
unsmooth due to the characteristics of the Bresenham’s line as a straight line segment, as
shown in Figure 19d The minimum distance between the drone and the dynamic threat
was 3.94 m. Finally, in this paper, we conducted experiments on the improved artificial-
potential-field method based on the multi-dynamic threats scenario, as shown in Figure 19.
From the experimental results, the three dynamic intrusions were detected by the drone at
(195.2040,70.0319,30), (206.7423,77.8219,30), and (95.8219,205.7992,30), respectively, while
the minimum distances between the drone and the dynamic threats were 4.21 m, 4.46 m,
and 3.35 m. From the path generation results, the improved artificial-potential-field method
met the dynamic-threat avoidance requirements for a near-ground search drone, but further
optimization is still needed for generating paths.

5. Simulation

For drones performing near-ground search and rescue, the complexity of the environ-
ment, the high number of obstacles, and the presence of dynamic threats all pose significant
challenges to the path planning of drones. Based on the above problems, the main work of
this paper lies in three aspects, which are summarized as follows.

1. For the static obstacles in the drone’s working environment, this paper extended the
JPS algorithm in three dimensions to guide the drone to perform the mission in the
3D space. The algorithm comparison experiments showed that the 3D JPS algorithm
had good expressiveness in terms of time complexity and space complexity. The 3D
JPS algorithm reduced the computation time by 88.45% to 30.18% compared to the
3D A* algorithm and by 34.83% to 4.75% compared to the RRT algorithm. The 3D JPS
algorithm met the demand for high efficiency in drone search-and-rescue missions.
However, it was also found in the comparison experiments that the quality of the
final generated paths of the 3D JPS algorithm did not reach the optimum. The 3D
JPS algorithm increased the path length by 0.583% to 5.9% and the total path-turning
angle by 27% to 98.2% compared to the Theta* algorithm.

2. In this paper, the parent node transfer law was used to optimize the generation path
for the 3D JPS algorithm. The any-angle path planning of the 3D JPS algorithm was
achieved by changing the parent—child node relationship chain among the path nodes
to eliminate redundant turning points. Second, this paper introduced seventh-order
polynomial-interpolation optimization based on minimum snap to further improve
the smoothness and continuity of the path generated by the 3D JPS algorithm. As can
be seen from experiment 2, the paths optimized based on the parent node transfer
law were 4.8% to 8.1% shorter than the paths obtained by the 3D JPS algorithm, and
the total turning angle of the paths was reduced by 51.6% to 93.2%, and the overall
optimization effect of the paths is obvious. At the same time, the time complexity
as well as the space complexity of the algorithm increased due to the parent node
transfer law and polynomial-interpolation optimization, and the computing time
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increased by 2.5% to 5.4% and the memory usage increased by 0.0014% to 0.0018%
compared to the 3D JPS algorithm.

3. Finally, this paper used an improved artificial-potential-field-based obstacle avoid-
ance strategy to avoid the dynamic threats that may occur in drone low-level flight
operations. Firstly, this paper improved the artificial-potential-field method to address
the problem of falling into local optimum, by adding a virtual-target gravitational
field and the three-dimensional Bresenham’s line algorithm to induce the drone to
achieve local-optimum escape. Secondly, the 3D ]JPS algorithm combined with an
improved artificial-potential-field method was used to avoid obstacles for dynamic
threats that come within the alert range. Experiment 3 showed that the dynamic-
obstacle-avoidance strategy based on the improved artificial-potential-field method
successfully accomplished the obstacle avoidance task in the cases of a single intruder,
a reverse intruder with the same trajectory, and multiple intruders. However, the
conversion of the 3D JPS algorithm to the artificial-potential-field method and the char-
acteristics of the 3D Bresenham’s line algorithm still led to the problem of unsmooth
and excessive cornering in the final result path.

The next work in this paper needs to further optimize the dynamic-obstacle-avoidance
strategy of the 3D JPS algorithm and further reduce the computation time of the 3D
JPS algorithm in order to improve the quality of the algorithm-generated path and the
computation efficiency of the algorithm.
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