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Abstract: Inertial sensors are widely used for classifying the motions of daily activities. Although
hierarchical classification algorithms were commonly used for defined motions, deep-learning models
have been used recently to classify a greater diversity of motions. In addition, ongoing studies are
actively investigating algorithm efficiency (e.g., training time and accuracy). Thus, a deep-learning
model was constructed in this study for the classification of a given motion based on the raw data
of inertial sensors. Furthermore, the number of epochs (150, 300, 500, 750, and 900) and hidden
units (100, 150, and 200) were varied in the model to determine its efficiency based on training time
and accuracy, and the optimum accuracy and training time was determined. Using a basic long
short-term memory (LSTM), which is a neural network known to be suitable for sequential data,
the data classification training was conducted on a common desktop PC with typical specifications.
The results show that the accuracy was the highest (99.82%) with 150 hidden units and 300 epochs,
while the training time was also relatively short (78.15 min). In addition, the model accuracy did
not always increase even when the model complexity was increased (by increasing the number
of epochs and hidden units) and the training time increased as a consequence. Hence, through
suitable combinations of the two factors that constitute deep-learning models according to the data,
the potential development and use of efficient models have been verified. From the perspective of
training optimization, this study is significant in having determined the importance of the conditions
for hidden units and epochs that are suitable for the given data and the adverse effects of overtraining.

Keywords: inertial sensor; long short-term memory; motion classification; efficiency

1. Introduction

Inertial sensors are useful for measuring and classifying motions because they are
convenient to use during daily activities. They are also advantageous because they place
few constraints on the environment and can be used over relatively long periods of time.
In general, a commercial inertial sensor system used for monitoring motion in daily life
includes software with its own embedded motion classification algorithm, and the system
uses a sensor attached to a fixed location on the body of the subject to perform the moni-
toring (i.e., fall detection or daily life monitoring for older adults). The advantages of this
approach include the relatively accurate classifications of a set of motions predefined in the
system, and the classification results can be used as indicators to evaluate and compare the
accuracy of each sensor [1]. However, the possible types of motion in daily life are highly
varied and depending on a study’s purpose, the motion to be detected may be diverse.
Therefore, the algorithms of such software cannot be revised by the investigator to restrict
the classification to a predefined set of motions. Moreover, the software is limited because
of its inability to classify more varied types of motion.
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Recently, a wide range of studies has been conducted based on deep-learning models,
including studies on motion classification referred to as human activity recognition (HAR)
using inertial sensor data. Various models have been tried by many researchers, but the
convolutional neural network (CNN), recurrent neural network (RNN) including long
short-term memory (LSTM), and hybrid methods are representative of motion classification
using inertial sensors depending on the data (Figure 1). In the study of Li et al. (2019), a
CNN model was used to develop algorithms that can classify the motions of unrelated
activities performed by the driver of a car with a free hand while driving [2]. For five
motions, from taking a phone call to text messaging and eating food, the reported accuracy
was 87%. In the study of Rivera et al. (2017), an RNN model was used to develop algorithms
that can classify hand movements related to six motions including door opening and door
closing, and the reported accuracy was 80.09% in the absence of noise and 74.92% in the
presence of noise [3]. Kreuzer et al. (2017) developed algorithms that can classify the steps
in human gait as five motions, from the loading response to the swing phase [4]. The LSTM
neural network was used, and its mean classification accuracy was shown to be 92%. As
such, various attempts have been to develop a suitable neural network for effective data
classification, with reported accuracies in the range of 80–90%.
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Figure 1. Categorization of proposed deep-learning models [5].

The inertial sensor data used for such motion classification is mainly utilized in the
form of image-based post-processed data and time series raw data. In the case of image-
based data, CNN models are mainly used, and for time series raw data, CNN or LSTM
is used according to the judgment of the researcher. A hybrid model using both of these
models is also used depending on the analysis data and the purpose [5]. Since the CNN
model operates based on image classification, it requires high computational resources
according to feature extraction through relatively numerous filters and mappings [6,7]. On
the other hand, the LSTM model is highly competent for classification using raw sequences
of time series signals [8]. In addition, LSTM is a model that solves the vanishing gradient
problem in which the RNN does not remember the preceding value as the number of
input increases, and it shows excellent performance when modeling long-term data such as
time series data [9]. In the case of the hybrid model, there have been reports of improved
accuracy compared to the single model (i.e., CNN or LSTM) depending on the conditions,
but since the CNN layer is included, more training time and computational resources
are required [10]. Therefore, in this study, since time-sequential inertial sensor data is
used to minimize training time and computing resources, it is judged that the use of a
single LSTM model using time series data is more suitable than a hybrid of CNN based on
spatial correlation.

The development of motion classification algorithms based on deep-learning models
generally requires a long training time and high-specification PC. The model type and
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architecture as well as the number of training iterations also exert a considerable influence
on the outcome.

Factors affecting the accuracy of motion classification can be very diverse, not only by
the type of model but also by data acquisition methods (number and attachment locations
of sensors, sampling rate, etc.), pre-processing, etc. [11,12]. However, if we look only at
the application of the same model under the same conditions, the main factors influencing
the training time and accuracy of deep-learning models are the number of hidden units
and epochs. An epoch is a single training iteration of the overall data, and an increase in
the number of epochs corresponds to an increase in the number of training iterations, and
hence an increase in the accuracy of the deep-learning model [13]. A hidden unit acts as a
neuron in the hidden layer and performs data computation. An increase in the number
of hidden units indicates an increase in the level of computation and hence an increase in
the accuracy; however, the training time per epoch also increases [14]. Thus, in order to
construct an efficient deep-learning model, it is necessary to properly control these two
factors: the numbers of epochs and hidden units.

In this study, motion classification was performed using low-sampling single ac-
celerometer data using a deep-learning model on a common PC with typical specifications.
In addition, the training time and classification accuracy according to the adjustment of the
number of epochs and hidden units were compared.

2. Methods
2.1. Experimental Procedures and Data Collection

The participants in this study consisted of 24 healthy undergraduates in their 20s, and
among them, data were damaged in 2 of them, so data from a total of 22 people were used
for training (14 males and 8 females, age 24.1 ± 1.7 years, height 171.2 ± 10.8 cm, weight
70.2 ± 15.5 kg). For data collection, ActivPAL4 (PAL Technologies Ltd., Glasgow, UK),
an accelerometer sensor that can be attached to the middle of the right thigh, was used
(Figure 2). The size of the sensor was 23.5 mm (wide), 43 mm (long), 5 mm (thick), and
weighed 9.5 g. Additionally, it had a measurement range of −4 g (gravitational acceleration)
to 4 g, and data was stored in 10 bits for each sample. Double-sided tape was used between
the sensor and the skin for fixing the sensor, and a nonwoven tape wider than the sensor
size was additionally covered and fixed on the attached sensor. The 3-axis acceleration data
were recorded at a 20 Hz sampling frequency.
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Figure 2. Sensor attachment position (middle of right thigh) and coordinate axis.

All participants were instructed to perform approximately 5 min of each of the seven
randomly assigned motions consistently (lying, running, sitting on a chair, sitting on the
floor, climbing stairs, chasing each other, and walking). In the case of walking, running,
and climbing stairs, all subjects were required to perform each motion at a predetermined
(limited) speed. Table 1 shows the description of the actions to be performed. For the data
of each motion, 150 s (i.e., 3000 frames) of data in the middle were used for analysis to
exclude the transition part out of the total of 5 min (300 s). In other words, 21,000 * 3 matrix
data consisting of 3-axis (x, y, and z-axis) data of 7 motions with 3000 frames each were
used for analysis after each motion labeling.
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Table 1. Motions used for the classification and their descriptions.

Motion Description

Lying lying on the floor with their arms and legs outstretched in a
supine position

Running running at their own pace on a flat, curved track
Sitting on a chair sitting on a chair without any movement

Sitting on the floor sitting cross-legged position on the floor without any movement
Stairs going up and down the 21 stairs in succession

Chasing each other a game in which multiple participants run around with tails on
their backs and grab each other’s tails

Walking walking at their own pace on a flat, curved track

Figure 3 shows the changes along the three-axis (x, y, z) acceleration for each measured
motion. The dynamic and static motions are shown in sequence from the first motion of
walking, sitting on a chair, running, sitting on the floor, climbing stairs, lying, and chasing
each other.
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Figure 3. The example of three-axis (x, y, z) data of the acceleration sensor for each motion. In
this case, the value on the vertical axis of the figure is the rescaled value of the acceleration and
is expressed as a change of 170 mV per 1 g based on approximately 510 mV (0 g). For example,
680 mV = +1 g, 340 mV = −1 g, etc.

2.2. Deep-Learning Model Construction

For the classification of motion, the LSTM deep-learning model was used, and the
deep-learning code provided by the MATLAB (R2021a) was applied.

The hidden layer of the deep-learning model used in this study was constructed as
shown in Figure 4. The LSTM layer was divided into an encoder and a decoder for the
sequence-to-sequence technique, which enables independent predictions for each time step
of the sequence data. The fully connected layer performs numerous computations because
all the neurons of one layer are connected to all the neurons of the next layer. This data
preprocessing step aligns the data in one dimension, whereas the complete connection
leads to higher accuracy (output) than that of an incomplete connection [15]. The softmax
layer is where the class probability is determined. Using input with dimensions based
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on the number of input classes enables the probability a given data instance belongs to
each dimension to be estimated. In this study, seven class inputs in total were provided for
the motion, and the probability of each data instance signifying each of the motions was
determined. The probability of each motion determined in the softmax layer was used to
classify the data in the classification layer. Lastly, the motion of the input was determined
as the output.
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The number of hidden units (100, 150, and 200) and the number of epochs (150,
300, 500, 750, and 900), which is the number of training iterations, were varied, and the
accuracy and training time for each case were determined. In the training set for model
training, the data from 60% of the participants were used. In the test set for verifying the
model accuracy, the data from 30% of the participants were used. In the validation set for
verifying the accuracy during training, the data from 10% of the participants were used.
For the model training and operation, a desktop PC with conventional performance (CPU:
i5-9400f 4.1 GHz, GPU: RTX 2060, and RAM: 16 GB) was used. Simultaneous work of other
applications was not performed during model training, but the internet connection and the
operation of Windows were not restricted.

3. Results

The accuracy and training time for the motion classification models according to the
numbers of hidden units and epochs used during training are presented in Tables 2 and 3,
respectively, whereas the visual representations are given in Figures 5 and 6. The accuracy
increased as the number of epochs increased from 150 to 300 regardless of the number of
hidden units. Depending on the conditions, the accuracy was the highest at approximately
300 and 500 epochs and after that, it showed a general decreasing trend. A detailed look at
the training model accuracy in each condition reveals that the accuracy was the highest
at 300 epochs for hidden units 150 and 200 and at 500 epochs for hidden unit 100. For
150 hidden units, the accuracy after 750 epochs slightly increased although a decreasing
trend was found overall. The training time of each model increased from a minimum of
28.1 min (100 hidden units and 150 epochs) to a maximum of 320 min (200 hidden units
and 900 epochs), which verifies the increase in training time in relation to increases in the
numbers of hidden units and epochs. However, across all conditions, the model with the
highest accuracy (99.82%) had 150 hidden units and 300 epochs and took 78.15 min to train.

Table 2. Training accuracy according to numbers of epochs and hidden units.

Training Accuracy (%)
Epoch

150 300 500 750 900

Hidden unit
100 93.46% 98.02% 98.50% 94.86% 90.53%
150 96.19% 99.82% 95.32% 98.58% 97.54%
200 95.94% 98.90% 95.98% 94.74% 90.99%
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Table 3. Training time according to numbers of epochs and hidden units.

Training Time (min)
Epoch

150 300 500 750 900

Hidden unit
100 28.10 50.37 81.01 120.06 148.37
150 49.41 78.15 112.39 202.35 231.14
200 66.29 99.02 183.43 276.18 320.01
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Figure 6. Training time results for the number of hidden units and epochs.

Figure 7 presents the training progression for 900 epochs and 100 hidden units. The
accuracy graph shows the accuracy according to the increase in epochs, where the solid
line indicates the training accuracy for the training data and the dotted line indicates the
validation accuracy. The loss graph shows the error (or loss) based on the increase in epochs,
where the solid line indicates the loss according to the training progression and the dotted
line indicates the validation loss; here, lower values indicate better training performance, in
contrast to accuracy. On the accuracy graph, increases in the number of epochs first led to
increases in training accuracy and validation accuracy. Then, after a certain level, a fall in
validation accuracy was observed. On the loss graph, an interval of increases in validation
loss was observed, after which a gap between the training accuracy and loss appeared. The
validation accuracy was the highest at approximately 400 epochs in the 900 epochs and
100 hidden units’ condition.
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Tables 4 and 5 present the confusion matrices for 150 hidden units and 300 epochs
and for 200 hidden units and 900 epochs, respectively. The rows in each table indicate
the classification result, and the columns indicate the actual class. The diagonal cells of
the matrix indicate the successful classifications, whereas the non-diagonal cells indicate
misclassifications. A greater number of errors were found in the training results in Table 5
than in Table 4, despite the higher numbers of epochs and hidden units.

Table 4. Confusion matrix for 150 hidden units and 300 epochs.

Lying Running Sitting on a
Chair

Sitting on
the Floor

Climbing
Stairs

Chasing
Each Other Walking

Lying 20,981 - - 7 - 11 -

Running - 20,948 - 17 - 7 4

Sitting on a chair - 4 20,991 - - - 9

Sitting on the floor - 2 - 20,852 50 - -

Climbing stairs 19 10 - 124 20,950 22 -

Chasing each other - 17 - - - 20,960 -

Walking - 19 9 - - - 20,987

Correct 99.999% 99.998% 99.999% 99.993% 99.998% 99.998% 99.999%

Incorrect 0.001% 0.002% 0.001% 0.007% 0.002% 0.002% 0.001%
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Table 5. Confusion matrix for 200 hidden units and 900 epochs.

Lying Running Sitting on a
Chair

Sitting on
the Floor

Climbing
Stairs

Chasing
Each Other Walking

Lying 16,862 - - - 2 4 -

Running - 20,980 - 499 891 10 9

Sitting on a chair - 4 20,991 - - - 16

Sitting on the floor - - - 18,931 21 - 1

Climbing stairs 47 - - 268 16,569 2 -

Chasing each other 4091 15 - 1302 3517 20,984 18

Walking - 1 9 - - - 20,956

Correct 80.296% 99.999% 99.999% 90.148% 78.9% 99.999% 99.998%

Incorrect 19.704% 0.001% 0.001% 9.852% 21.1% 0.1% 0.002%

4. Discussion

The purpose of this pilot study was to compare the training time of the LSTM model
using a common PC with typical specifications. Specifically, a simplified experimental
protocol was used to determine the effect of the number of epochs and hidden units, and
only a single accelerometer with a low sampling frequency (20 Hz) was used. In addition,
to minimize model complexity, a basic LSTM model was used.

The results of this study showed the model had the best accuracy within the range of
300–500 epochs for the three conditions of hidden units (100, 150, and 200), followed by a
gradually decreasing trend (Table 2, Figure 5). Hence, the increase in training time based
on the increase in the two factors (numbers of epochs and hidden units) did not always
yield a high accuracy. The results reveal that, whereas the overall model accuracy varied
according to the number of hidden units, the highest accuracy was found at approximately
250–400 epochs. This result was compared with the results of previous studies with similar
conditions (regarding motion classification using the LSTM algorithm). Abbaspour et al.
(2020) collected the acceleration data of six motions including smartphone-based walking
and running, then checked the accuracy of the deep-learning model after training and
subsequent motion classification [16]. Two methods were used for the algorithm: a CNN
alone and a CNN combined with LSTM (CNN–LSTM). The accuracy of the two models
was compared, and the CNN model achieved a 94% accuracy at 200 epochs whereas
the CNN–LSTM model achieved a 97% accuracy at 250 epochs. For the CNN–LSTM
model, the accuracy was higher than the CNN model despite the need for an additional
50 epochs. In the study of Kim et al. (2020), the participants were instructed to wear an
inertial measurement unit (IMU) sensor and perform 14 motions in total [17]. During each
motion, 18 datasets (including nine datasets of 3-axis acceleration, 3-axis gyroscope, and
3-axis magnetic field data) were obtained for use in deep learning. Moreover, the training
was performed with 64 hidden units and 400 epochs. As a result, the loss was found to
have adequately converged after 350 epochs, with a 94.73% accuracy, indicating adequate
classification. In these previous studies, the accuracy was high in epoch ranges similar to
those of the present study despite the variation in the number of hidden units and sizes of
the total datasets.

The risk of overfitting was also confirmed through training progression and confusion
matrix (Figure 7, Tables 4 and 5). Although the increase in model complexity and training
frequency caused by the increases in hidden units and epochs resulted in the improvement
of accuracy, overfitting occurred after a certain point, reducing accuracy. Thus, a confusion
matrix was constructed to examine the relationship of misclassifications to different motions.
A greater number of errors were found in the training results in Table 5 in comparison
with Table 4, despite the higher numbers of epochs and hidden units. This was attributed
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to overfitting, which is the excess learning of the training data by the model, whereby
errors occur when processing new data (i.e., the validation or test dataset) rather than
the previously learned data (i.e., the training dataset). In other words, as a hidden unit is
used in the internal computation of deep learning, this may increase structural complexity
because of the increased number of computations per epoch in deep models with multiple
hidden units, which has been reported to increase the probability of overfitting [18]. The
overfitting may arise in the presence of too many epochs or hidden units. Table 5 shows
that the motions lying, sitting on the floor, and climbing stairs had in fact been misclassified
as chasing each other. In chasing each other, the variability of motion is high because the
participant increases speed to catch the opponent’s tail or protect his or her own tail from
the opponent during slow movements. Hence, the variation in acceleration is substantially
high (Figure 3) and was irregular across all participants so that an algorithm that overfit
the training data could not adequately classify data with such high variability. In order to
solve this problem, it is suggested that the number of attached sensors be increased [19],
or an improved LSTM model such as a lightweight deep-learning model with reduced
computational power and latency [20] or LSTM with Deep Q-Network [21] be attempted.

There were several limitations of this study. First, the sensor data used in this study
was different from the generally collected motion data. When performing dynamic move-
ments (i.e., walking, running, climbing stairs), the movements of all subjects were controlled
at a constant speed for each movement. This may be different from the motion data col-
lected in a daily living environment, and this was considered to be the reason for showing
a fairly high accuracy even though a simple model was used in this study. Results of the
model used in this study when validated using the WISDM dataset, which is public data
measured with a position (right thigh), sampling (20 Hz), and single sensor (accelerometer)
similar to this study [22], showed a classification accuracy of approximately 84%. Although
the sensor used was different (not attached to the body by using the sensor built into
the smartphone and with a different sensor measuring range), it was revealed that this
is a lower value than that showing an accuracy of up to 90% or more in previous studies
applying various models (Bi-directional LSTM, CNN, Convolutional LSTM, LSTM-RNN,
etc.) [23–25]. This is a pilot study focusing only on the comparison of the accuracy and
training time according to the change of the hidden unit and epoch of the basic LSTM
model using a single acceleration sensor for arbitrary motions. Most of the previous studies
suggest only the results according to the selected hidden unit and epoch for the deep-
learning model, and these reports have limitations in direct discussion with the current
results. However, approaches using various sensor combinations and improved models
are in progress to improve classification accuracy [11,12,26–28], and it will be necessary to
compare them through various sensor conditions, improved models, and data processing
in terms of training efficiency in the future.

In the case of commercial activity classification software using a traditional IMU-based
hierarchical algorithm such as using threshold, the accuracy of general activity classification
is very high, but classification error occurs a lot when changing postures (i.e., transition)
such as sit-to-stand [29,30]. In general, the application of deep-learning models is often
applied to reduce such classification error, but in this study, a fragmentary comparison of
training time and accuracy was performed using data for each activity except transition.
Therefore, when classifying continuous motion in real life, the classification accuracy
presented in this paper is predicted to significantly decrease. In the future, it is necessary to
improve the model and apply various dynamic situations, and in this process, a comparison
of the accuracy of the model through various combinations of the number and types of
sensor data should be performed.

Additionally, the number of subjects used for training and validation of the model is
very small. The accuracy varied according to the data constituting each item, even when
the proportions of training, test, and validation datasets were equal. This is presumed to
be due to the small sample size (n = 22) resulting in deviations according to the condition.
Thus, a larger number of participants should be recruited for further studies to reduce such
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deviations. In addition, because the data in this study were collected solely from healthy
undergraduates in their 20s, the classification of the motions of individuals in other age
groups with varying physical functions by the trained model could lead to errors. Thus,
further studies regarding the development of motion classification models should use an
experimental design that reflects a wider range of participant ages.

5. Conclusions

The motion classification accuracy of the LSTM-based model was high, which implies
that deep-learning models can learn to classify motion based on the form of data desired by
the investigator in lieu of the conventional fixed set of motions of a sensor and its software.
The training complexity increased as the number of hidden units increased so that the
runtime of a single epoch increased, and as the number of epochs increased, the number of
iterations increased. Hence, the increase in hidden units and epochs resulted in an increase
in training time, as presented in Table 2 for actual conditions. However, the increase in
model complexity and training time did not ensure an increase in accuracy (Table 3). Thus,
before such problems arise, training should be terminated to improve the accuracy and
construction of the algorithm more efficiently with a simultaneous fall in training time. The
possibility of training in epoch ranges without overfitting or reduced accuracy was verified,
even in a typical PC environment. The results of this study are anticipated to contribute to
the development and use of efficient motion classification models.
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