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Abstract: The lateral line system is an essential mechanosensory organ for organisms such as fish; it
perceives the fluid environment in the near-field through the neuromasts on the lateral line system,
supporting behaviors (e.g., obstacle avoidance and predation in fish). Inspired by the near-field
perception ability of fish, we propose an artificial lateral line system composed of pressure sensors
that respond to a target’s relative position by measuring the pressure change of the target vibration
near the lateral line. Based on the shortcomings of the idealized constrained modeling approach, a
multilayer perceptron network was built in this paper to process the pressure signal and predict the
coordinates on a two-dimensional plane. Previous studies primarily focused on the localization of
a single dipole source and rarely considered the localization of multiple vibration sources. In this
paper, we explore the localization of numerous dipole sources of the same and different frequency
vibrations based on the prediction of the two-dimensional coordinates of double dipoles. The
experimental results show that the mutual interference of two vibration sources causes an increase
in the localization error. Compared with multiple sources of vibration at the same frequency, the
positioning accuracies of various vibration sources at different frequencies are higher. In addition, we
explored the effects of the number of sensors on the localization results.

Keywords: artificial lateral line; underwater localization; artificial neural network; multi-source
vibration

1. Introduction

With the continuous development of human scientific and technological civilization,
the resources and spaces in the ocean have become more important as a proportion of
national resource development. The development of marine resources and the protection
of maritime rights and interests are integral parts of achieving a solid ocean state, which
is of great strategic importance for all countries [1,2]. At the same time, to build a power
ocean, it is imperative to develop appropriate underwater detection equipment and related
technologies; underwater positioning technology is the most critical underwater detection
technology, and how to perform accurate positioning in the complex ocean environment is
a problem that needs to be urgently solved.

In traditional underwater detection technology, acoustic-based underwater localiza-
tion techniques have been widely studied by researchers [3–5]. They have achieved good
localization results, but near-field targets are susceptible to mutual interference, such as
noise between marks [6,7]. Sonar and visual detection technology in a specific environment
(narrow space, turbid waters) is ineffective. Due to the natural shielding effects of seawater,
the GPS positioning of land navigation cannot be used for underwater positioning. The
complex environment, such as ocean noise, interferes significantly with the perceived effect
of sonar, and the traditional optical detection equipment is limited by underwater refraction,
insufficient light, and other factors [8,9]. To solve these problems, the underwater detection
equipment can sense the target position in the near-field environment and guarantee the
successful execution of the mission of underwater detectors. The development of a new
underwater positioning technology is an urgent need.
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Fish and some amphibians have susceptible underwater perceptions of the lateral line
system on both sides of the fish body. The lateral line system is an essential organ for fish
and these amphibians to obtain information about their surroundings [10,11]. With the help
of this organ, fish and these amphibians can perform behaviors, such as clustering, prey lo-
calization, obstacle avoidance, and target recognition in complex underwater environments.
The aquatic environment is complex and variable. When light conditions in the external
environment are insufficient, fish rely on their unique lateral line perception systems to
sense information about the surrounding flow field [12–14]. A more representative one
is the Mexican cavefish, which has lived in this way under dark conditions for a long
time [15].

The lateral line system of fish consists of two main components: the superficial
neuromast, which perceives the flow velocity in the near-field environment, and the canal
neuromast, which is sensitive to pressure changes in the near-field environment [16], as
shown in Figure 1. The perceptual functions of these two structures differ because of their
different distributions on the lateral line system and differences in their structuring [17,18].
It has been shown that the superficial neuromast is more sensitive to velocity changes in
the flow field. In contrast, the canal neuromast can respond better to pressure changes
in the flow field environment [19]. Based on the properties and mechanisms of the fish
lateral line system to perceive the surrounding flow field, it provides a new idea for the
underwater localization of the underwater detector to accurately perceive the surrounding
near-field environment.

Superficial neuromast

Flow

Cupula

Canal neuromast 

External flow
Low pressureHigh pressure

Canal flow

Figure 1. Lateral lines and neuromasts of fish. Black dots indicate superficial neuromasts (SN), white
dots indicate canal neuromasts (CN), and light-colored lines indicate the approximate distribution
of CNs.

In this paper, we propose using an array of integrated pressure sensors to locate dipole
sources in the near-field. Similar to the lateral fish line, the sensor arrays are arranged
in parallel and are more compact compared to the cross-type arrangement. In addition,
based on the collected pressure variation data, we constructed a multilayer perceptron
(MLP) neural network algorithm for dipole source localization. With the flexibility of
the network structure, strong nonlinear capability, and strong robustness, the multi-layer
perceptron network (MLP) is outstanding in solving nonlinear problems. It has been
widely used in control systems, biomedicine, agriculture, data management, environmental
engineering, and other fields [20–24]. Considering the small number of samples collected
in the experimental environment, we used data augmentation to expand the number of
samples. For example, the original data samples were equally segmented, and fast Fourier
transform extracts the sub-samples. For the frequency multiplication phenomenon that
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occurs in the signal, we attempted to extract the frequency multiplication signal as a feature
and found that this move could significantly improve localization accuracy.

Most of the existing studies focus on the localization of single dipole sources and
rarely consider the localization of double dipole sources. This is because the flow field
formed by a double dipole source is more complex than that of a single dipole source, and
interference and superposition may occur between the waves generated by the two spheres.
Based on the data augmentation of single dipole source localization and the method of
extracting multiplier signals as features, we explored the problem of localization of double
dipole sources at the same and different frequencies. The experimental results show that
the localization of double dipole sources at different frequencies is more accurate than
localization at the same frequency. This is mainly because the features extracted from the
data collected at different frequencies are more significant.

The main contributions of this work are as follows:

1. In this paper, we used the MLP network. Based on the time domain signal of the
pressure variation obtained from the experimental acquisition, we used the time-
frequency analysis method to extract the frequency domain features as the input to
the network. By analyzing the frequency domain of the call, we found that the sign
appears to be a frequency doubling phenomenon, so we investigated the feasibility of
the frequency-doubled movement as the effective signal. The experimental results
show that the increase of the feature dimension improved the accuracy of localization.

2. In this paper, we explored the little-studied dual-vibration source localization. We
investigated the effects of the differences in frequencies on the localization results
from the perspective of the same and different frequencies, respectively. The experi-
mental results show that, compared to single dipole localization, the error of double
dipole localization increases for the same frequency, and the error of double dipole
localization for different frequency vibrations shows a decreasing trend.

3. In this paper, we investigated the influence of the arrangement and number of sensors
on localization, and how to obtain the best localization effects by reasonable and
adequate performances with a certain number of sensors. The experimental results
show that increasing the number of sensors and space dimensions can improve the
localization accuracy to a certain extent.

The remainder of the paper is organized as follows. The related works about the design
of the artificial lateral line array and algorithm of underwater localization are presented
in Section 2. The perception method and experiment set are presented in Section 3 and
Section 4, respectively. Experimental results on localization—both the single dipole source
and double dipole source—are discussed in Section 5. Finally, the conclusion is provided in
Section 6.

2. Related Work

For the underwater target localization problem, most of the related works focus on the
dipole source localization perspective, because the flow field changes generated by the fins
and tails of underwater animals are similar to the flow field formed by the dipole source.
The localization for underwater targets can be simplified to dipole localization [25]. In
previous studies, many kinds of artificial lateral arrays have been designed and fabricated
for the localization and tracking of underwater targets. The flow field information was
obtained by these artificial arrays and information processing methods to predict the
position or the direction of motion of the target, and some breakthrough results were
obtained. The following summarizes the previous work from two aspects: array design
and information processing methods of neural networks.

2.1. Design of Artificial Lateral Line Array

Artificial cilia sensor arrays designed by simulating the structure of the superficial
neuromast (SN) are more representative designs [26–32]. For example, Liu et al. developed
a cross-cross-shaped artificial lateral array by designing a sensor that mimics a cilia bundle
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to successfully localize a dipole source, verifying the sensing capability of artificial later-
als [28,29]. Asadnia et al. created a novel sensor by mounting polymer cilia with electrodes
at the bottom, fabricated by stereolithography, on a thin film, and a one-dimensional array
of 10 such sensors. A one-dimensional array composed of such sensors responded well to
dipole stimulation [32].

Another part of the lateral line system is the canal neuromast (CN), which is a primary
morphology (one of them) of the fish lateral line system and is the most visual representa-
tion of the lateral line system of the fish trunk [33]. The design and fabrication of bionic
sensors that mimic the CNs are also hot spots explored by related scholars [34–38]. For
example, Jiang et al. developed an artificial pipeline array by integrating a cantilevered
sensing unit in polydimethylsiloxane (PDMS) with a high-pass filtering capability to atten-
uate low-frequency stimuli [34]. Liu et al. developed an artificial lateral array, mimicking
pipeline laterals by encapsulating an artificial cilia sensor inside an open-hole pipeline and
simulating the structure of a lateral pipeline neural mound; compared to the sensor, directly
exposed to the fluid, the construction of the mimic pipeline lateral line can effectively
suppress the noise [38].

Artificial sideline arrays developed using commercial pressure sensors for dipole
source detection have also received extensive attention and intensive research [39–41]. For
example, Jiang et al. developed a sideline array integrating IPMC velocity modal and
pressure sensors to achieve multimodal sensing fusion and reduce localization errors [39].

In summary, researchers have conducted much work in simulating lateral line systems
for structural mimicry and the rapid development of lateral line arrays using commercial
sensors. Various sensors and artificial lateral line arrays have been designed and developed
based on different sensing principles, which are becoming closer to biological lateral line
systems in structure, and their performances are gradually improving. However, there is
still a significant gap in the sensing capability of the existing physical lateral line system.
Most of the research focuses on the lateral line arrays themselves, and the actual sensing
capability of the lateral line arrays needs to be further investigated.

2.2. Neural Network Approach for Underwater Localization

Various signal processing methods have been used for signal processing for under-
water localization. It is divided into two main directions. First, building a dipole source
flow field model and using different constraint methods to resolve the model [7,42–44].
Second, a neural network modeling method was built to mimic the fish in a complex
environment by training over a long period to complete various activities and behav-
iors, building neural networks to process the received signals. Abdulsadda et al. used a
multilayer perceptron network (MLP) to extract pressure amplitudes as features for local-
ization [26]. Zheng et al. used generalized regression networks for underwater localization
experiments [41]. Liu et al. used artificial neural networks (ANNs) to identify the coordi-
nates, frequency, and amplitude of vibration sources and achieved an accuracy of 93% [45].
Jiang et al. achieved dipole source localization in 2D and 3D using MLP networks [39].
Wolf et al. used the long short-term memory (LSTM) model to process pressure-varying
time series data. They were able to effectively improve the robustness of the network using
the memory function of the LSTM model [46].

Previous research has shown that using artificial neural networks for underwater local-
ization is an effective method. However, collecting data based on experimental platforms
causes insufficient data volume, which makes the neural network lack sufficient training
and causes overfitting. In addition, most of the studies focus on the localization of a single
dipole source; in fact, most situations underwater have multiple objects moving at the same
time, and the research on how to perform accurate localization under the conditions of
interference from various things needs to be further studied.

3. Method

The characteristic parameter estimation algorithm (based on the target flow field model
and some ideal condition assumption constraints) is very different from the actual flow
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field environment, making the localization in practical experiments ineffective. This paper
proposes a neural network-based underwater target localization method that discards
the need for accurate modeling and trains a neural network model using pressure data
collected by an artificial lateral line sensor array for underwater target localization.

3.1. All Principles of Perception

The artificial lateral line array passes through the fluid medium and measures informa-
tion about the pressure variation of the vibrating source to describe the flow field variation
of the target, which can be explained by the theory of potential flow [47]. The flow field
variation generated by an underwater target can be reduced to a dipole source model. A
typical dipole source is generated by a constant frequency sinusoidal vibration of a rigid
sphere of continuous volume [48].

As shown in Figure 2, the target sphere (xs, ys) moves up and down sinusoidally
perpendicular to this plane with amplitude A and displacement equation S = A sin ωt. At
the sensor (x1, y1), the pressure change p(i) that can be received is [45]:

p(i) = ρ
R3Sω2

2
· xs − x1(

(xs − x1)
2 + (ys − y1)

2
) 3

2
(1)

R

Target:(xs,ys)

(x1,y1)

SensorsS
 =

 A
co

s(
ω

t)

X

Y

Figure 2. Schematic of dipole source localization in a 2D space.

3.2. Neural Network Algorithm for Localization

The pressure variation information collected from the artificial lateral line array sensors
is complex (concerning the vibration source). It can lead to significant deviations from the
ideal pressure signal in practical measurements. For example, the boundary conditions of
the tank tend to produce factors such as the motion between waves, non-ideal fluids, and
sensor arrays. The variability between sensors due to manufacturing factors and the zero
point drift that occurs during sensor use can lead to interference with the analog signal
output from the detector [49]. Therefore, it is not easy to obtain the ideal analytical solution
by building an accurate flow field model to calculate the coordinates of the vibration source.
Fish extract helpful information from the surrounding noise-filled flow field environment
based on their well-developed biological neural networks. Inspired by this physiological
mechanism, we used neural networks to process pressure signals.

MLP is a very typical feedforward neural network consisting of an input layer, multiple
hidden layers, and an output layer, and it is the most widely used network structure for
nonlinear prediction and classification [50]. Moreover, due to the simple design, adaptive
learning capability, and robust noise performance [51], MLP networks are used in many
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research works to process signals on sideline sensors. The MLP network used in this paper
is shown in Figure 3; its input dimension was the number of manually extracted features.
We chose to use frequency domain features as the input features of the network. The time
domain signal was first processed using FFT, and then the amplitude at the blob vibration
frequency or the corresponding octave frequency was extracted as the input to the network.

Figure 3. Schematic diagram of the MLP neural network for signal processing. The input dimension
is equal to the number of features, and the output node is the predicted dipole coordinate.

4. Experiment Setup

In this section, we describe the construction of the experimental setup, the design
of the sensing array, the calibration of the sensors, the preprocessing of the data, and the
setting of the hyperparameters of the network.

4.1. Experiment Device

All experimental results were performed on a platform built in the laboratory. The
testing platform mainly contained a 100 × 50 × 50 cm water tank filled with silicone oil
at a depth of 15 cm, as shown in Figure 4. The artificial lateral line array was fixed at the
center of the water tank by an aluminum rod set at the center of the platform and moved to
8 cm underwater (the upper surface from the horizontal) for positioning the experiment. A
50 mm diameter ball was attached to the shaker by a stainless iron rod of 200 mm in length
and 5 mm in diameter, and the ball vibrated vertically along the height direction of the
water tank. The drive of the ball to produce sinusoidal motion was generated by a signal
generator and amplified by a power amplifier, which transmitted the sinusoidal signal to
the shaker, making the shaker drive the ball to produce sinusoidal motion. The frequency
and amplitude of the sinusoidal motion of the ball can be adjusted by the signal generator
and the power amplifier.

Vibrating 
Direction

Dipole Source
Sensor Array

Silicone oil

BarExciter

Power 
Amplifier

Signal 
Generator

Figure 4. The experimental platform comprises the water tank and vibration part.

The vibrator was mounted on a filament holder that allowed the position of the slight
ball vibration to be adjusted by a stepper motor. The fixing frame of the lateral line array
was not in contact with the tank and the fillet holder to avoid the noise caused by the
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vibration from interfering with the pressure variation data. Section 2 mentions that the
frequency of the fish lateral line pipeline neural mound response is between a few Hz to
tens of Hz, so this paper selected a frequency of 8 Hz for single vibration source positioning
experiments and used 10 Hz and 8 Hz for double vibration source positioning experiments
at different frequencies, which was within the response range of the lateral line system. A
vibration direction is a vertical-horizontal plane and the amplitude of vibration at 8 Hz
frequency is about 3.2 mm, and the vibration amplitude at 10 Hz frequency is about 3.7 mm.

4.2. Design of Sensor Array and Sensor Calibration

The artificial lateral line sensor we designed mainly mimicked the function of the
ductal neural mound of the lateral line system of the fish trunk, and the system as a whole
resembled the shape of the fish trunk. The design took two parallel rows, as shown in
Figure 5c, and each row consisted of four Freescale pressure sensors MPXV5004GC6U
powered by a 5 V power supply, as shown in Figure 5d. The sensors were distributed at
equal intervals of 25 mm along the horizontal direction with a distance of 30 mm between
two rows, as shown in Figure 5a,b. The purpose of this design was to capture more pressure
variations in the flow field and to facilitate the localization of the dipole source. The body
length was defined as the maximum length of the sensing array, and on the system we
designed, the maximum length (body length) was 100 mm.

(a) (b)

(c) (d)

Figure 5. Sensor array fabrication. (a) Schematic diagram of the housing structure. (b) Back view of
the fabricated sensor array. (c) Front view of the sensor array. (d) Freescale pressure sensor.

Although the sensors were factory calibrated for sensitivity, there was a reasonable
error in the sensitivity of the sensors due to the factory process. To ensure the correctness
of the pressure signal for dipole positioning, we calibrated this batch of sensors using a
digital pressure sensor. The signal amplitudes of the sensors used for the experiments in
the laboratory environment are shown in Figure 6, and Table 1 shows the sensitivity of each
pressure sensor after calibration.
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Figure 6. Output signal amplitude of eight sensors in a laboratory environment.

Table 1. Sensitivity of 8 sensors after calibration.

Pressure Number Proportional
Constant (Mpa/V) Pressure Number Proportional

Constant (Mpa/V)

P1 0.103 P5 0.079
P2 0.081 P6 0.078
P3 0.082 P7 0.092
P4 0.084 P8 0.101

4.3. Data Pre-Processing

We conducted experiments on the localization of single and double dipole source
vibrations in the two-dimensional plane. To determine the relative positions of the dipole
spheres, we set the coordinate system at the location of the central axis of the sensor array
as the coordinate origin. To train the neural network model, the plane 140 × 240 mm
was divided into a 20 × 20 mm grid to form 91 data acquisition points. Five sets of data
were acquired at each acquisition point for 455 collections of experimental data. The data
sampling frequency was 1000 Hz, and 14 seconds of data were collected each time, totaling
14,000 data points. These data were randomly divided into a training set and a test set
according to a ratio of 8:2. The ball was moved at each data collection point, and the
obtained pressure signal was used to train the neural network.

Figure 7 shows the pressure vibration signal acquired by the pressure sensor when the
sphere was at the (20 mm, 0 mm) position. Using MATLAB’s time-frequency tool, the time
domain signal acquired by the pressure transducer could be converted into the frequency
domain signal by using the fast Fourier transform (FFT).

For the MLP network, we converted the signal into a frequency domain signal, ex-
tracted the output voltage amplitude at a specific frequency, multiplied it by the individual
pressure sensor sensitivity to obtain the pressure amplitude, and then normalized the data.

S′j(i) =
Sj(i)− Sj(M)

Sj(σ)
(2)

here, Sj(i) denotes the signal amplitude of sensor j. Sj(M) and Sj(σ) are the mean and
standard deviations of sensor j, respectively.
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(a) (b)

(c) (d)

Figure 7. When the dipole is located at (20 mm, 0 mm): (a) Time domain signal from sensor 1 to
sensor 4. (b) Time domain signal from sensor 5 to sensor 8. (c) Frequency domain signal of sensor 1.
(d) Frequency domain signal of sensor 8.

4.4. Data Augmentation

Considering that the amount of data in the training set is too small, we chose to cut
each copy of 14,000 data points equally for the data augmentation processing. At the same
time, we could explore the influence of different data-cutting methods on the training
results. From the frequency domain signal of the original data, there was a multiplication
phenomenon in the pressure data, which may have been due to the limitations of the
boundary conditions of the experimental platform leading to the interference superposition
between the waves generated by the vibration, etc. Since all the data were collected at the
same venue, the multiplication signals could be considered valid signals to a certain extent.

Generally, the pressure amplitude of the minor ball vibration frequency was selected
as the input feature of the MLP network because the multiplier signal was prominent; we
also likened the multiplier amplitude to the feature and compared the results with and
without the multiplier signal. The data could be equally divided into 2 or 14 parts and
combined with the extracted features method. The method of combining the single sphere
vibration data of MLP-1 to MLP-6 is detailed in Table 2. The data segmentation part of the
table indicates the features of the sample data, for example, (7000, 2), where 7000 indicates
the length of this training batch sample data and 2 shows the number of equal parts of
the original data. The amount of the feature amplitude means the amplitude on a specific
frequency is extracted.
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Table 2. Classification of several data augmentation and feature extraction methods.

Method Data Segmentation Feature Amplitude

MLP-1 (14,000, 1) 8 Hz
MLP-2 (14,000, 1) 8 Hz, 16 Hz, 24 Hz, 32 Hz
MLP-3 (7000, 2) 8 Hz
MLP-4 (7000, 2) 8 Hz, 16 Hz, 24 Hz, 32 Hz
MLP-5 (1000, 14) 8 Hz
MLP-6 (1000, 14) 8 Hz, 16 Hz, 24 Hz, 32 Hz
MLP-7 (14,000, 1) 8 Hz
MLP-8 (14,000, 1) 8 Hz, 16 Hz, 24 Hz, 32 Hz
MLP-9 (7000, 2) 8 Hz

MLP-10 (7000, 2) 8 Hz, 16 Hz, 24 Hz, 32 Hz
MLP-11 (1000, 14) 8 Hz
MLP-12 (1000, 14) 8 Hz, 16 Hz, 24 Hz, 32 Hz
MLP-13 (14,000, 1) 8 Hz, 10 Hz
MLP-14 (14,000, 1) 8 Hz, 16 Hz, 24 Hz, 32 Hz 10 Hz, 20 Hz, 30 Hz, 40 Hz
MLP-15 (7000, 2) 8 Hz, 10 Hz
MLP-16 (7000, 2) 8 Hz, 16 Hz, 24 Hz, 32 Hz 10 Hz, 20 Hz, 30 Hz, 40 Hz
MLP-17 (1000, 14) 8 Hz, 10 Hz
MLP-18 (1000, 14) 8 Hz, 16 Hz, 24 Hz, 32 Hz 10 Hz, 20 Hz, 30 Hz, 40 Hz

For the double dipole localization experiments, we explored the effects of the same-
frequency and different-frequency vibrations on the localization results. For the same-
frequency vibration, we extracted the amplitude of 8 Hz and its multiples as the feature
input. For the different-frequency vibration, we extracted the amplitudes on 8 Hz and
10 Hz, and their multiples as the feature inputs, respectively. The combination with the
data increment method is detailed in Table 2 for MLP-7 to MLP-18.

MLP-7 to MLP-12 are experimental combinations of double dipole localization with
same-frequency vibrations and MLP-13 to MLP-18 are experimental combinations of double
dipole localization with different-frequency vibrations. To ensure the comparability of the
experimental results, the hyperparameters of the MLP network used for a single dipole
localization and double dipole localization were kept the same.

4.5. Hyperparameter Setup

The setting of hyperparameters is self-explanatory for how well the network model fits.
First, the number of input nodes in the MLP network is equal to the feature input dimension.
For example, when using the model to train single dipole localization experimental data,
the number of input nodes should be set to 8 if only the amplitude at the vibration frequency
is extracted as a feature and 32 if the amplitude at the multiplier frequency is added as a
feature. Second, each output node represents the predicted coordinates of each dipole on
each axis. Each hidden layer node represents a nonlinear activation, which takes the ReLU
function as the activation function.

f (x) = max(0, x) (3)

The training set for the localization experiments consists of a series of known dipole
coordinates and the corresponding pressure amplitudes from the sensor signals. Parame-
ters, such as the number of hidden layers and nodes and the learning rate, are determined
by the optimal network structure obtained through training.

We first conducted a single dipole localization experiment on a plane with 91 positions.
There were 72 training points and 19 test points according to the ratio of 8:2. The optimal
network structure was determined after constant tuning of the experiments on single
dipoles. The optimal network structure had two hidden layers, and the numbers of nodes
in the hidden layer were 100 and 50, respectively. The number of epochs was set to 1000,
and the learning rate was set to 0.001. To achieve better comparability of the results, the
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hyperparameters of the experimental training network for double dipole localization were
kept the same as those of the single dipole training network.

5. Result and Discussion

This section presents the localization results of dipoles. The localization accuracy was
improved as more feature dimensions were extracted from the signal. This advantage can be
visualized in the localization results for single- and multi-source vibrations. The localization
results for multi-source vibrations with different frequencies were more prominent than
those with the same frequencies. Finally, we investigated how the arrangement and number
of sensors affected localization accuracy.

5.1. Experimental Localization Results for a Single Vibration Source

Figure 8 shows the localization results of the single dipole in the two-dimensional
plane. The blue square dots and red dots indicate the actual and predicted positions of the
test points, respectively, and the rest are the training data points. To characterize the test
results, we used the absolute errors of the positions in the x and y directions of the training
set and the average Euclidean distance error to judge the training results, respectively. The
following equation defines the Euclidean distance error.

ED =

√
(xi − Xi)

2 + (yi −Yi)
2 (4)

xi and yi represent the predicted x and y coordinates, respectively. Xi, Yi denote the actual
x and y coordinates, respectively.

(a) (b) (c)

(d) (e) (f)

Figure 8. Experimental localization results of MLP in two dimensions. (a) Localization results of
MLP-1. (b) Localization results of MLP-2. (c) Localization results of MLP-3. (d) Localization results
of MLP-4. (e) Localization results of MLP-5. (f) Localization results of MLP-6.

Figure 8a–f show the results of different data segmentation and feature extraction
methods for individual dipole localization, respectively. As shown in Table 3, when the
data are divided equally into two, and only the amplitude at 8 Hz is extracted as the feature,
the mean Euclidean distance (MED), mean absolute error along the x-axis (MAE-x), and
mean absolute error along the y-axis (MAE-y) are 1.4678, 0.9710, and 0.9552 cm, respectively,
while the data are divided equally into two. The amplitudes at the vibration frequency
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and octave are extracted as the features; the MED, MAE-x, and MAE-y are reduced to
1.4678, 0.9710, and 0.9552 cm, respectively. In addition, similar results can be obtained
to compare MLP-2 and MLP-1, MLP-6, and MLP-5. Based on the localization results of
the single two-dimensional dipole, we can conclude that the localization accuracy can be
significantly improved by upgrading the feature dimension.

Table 3. The mean absolute error of the results in FIG-8.

Method MAE-x (cm) MAE-y (cm) MED (cm)

MLP-1 0.6711 0.8391 1.1547
MLP-2 0.3318 0.4359 0.5868
MLP-3 0.9552 0.9710 1.4678
MLP-4 0.3093 0.4252 0.5691
MLP-5 0.6199 0.6886 1.0348
MLP-6 0.5269 0.7028 0.9334

Figure 9 shows the absolute error between the actual and predicted positions of the
19 test points of MLP-3 and MLP-4.

Figure 9. The absolute error of all test points along the x, y and ED directions.

5.2. Experimental Localization Results for the Double Vibration Source

We conducted multi-source vibration experiments at the same frequency and at
different frequencies to investigate the effect of the difference in frequency on the two-
dimensional positioning of the multi-source dipole. In contrast to the grid points regularly
divided by a single dipole source, we randomly generated 100 sets of two spheres to vary
the relative positions of two dipoles. We set the dipole coordinates closer to the lateral line
system as (x1, y1) and the coordinates of the more distant dipole as (x2, y2). Where, consid-
ering the hardware conditions, the two dipole coordinates satisfy: x1 ∈ [2, 4], x2 ∈ [12, 14],
|x1 − x2| ≥ 10, y1, y2 ∈ [−8, 8].

In the following, we will explore the effects of the vibrations of the same and different
frequencies on the localization of the double dipole from the differences and similarities of
the vibrations.
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5.2.1. Same Frequency Multi-Source Vibration Localization Results

Figure 10a–f shows the multi-source dipole two-dimensional localization results by
different data segmentation and feature extraction methods, respectively. From the local-
ization error statistics in Table 4, the localization error of the spheres closer to the artificial
lateral line (ALL) is much smaller than the localization error of the spheres farther away
from the ALL, regardless of the combination method. Comparing MLP-7, MLP-9, and MLP-
11, the MED of the closer spheres decreases from 0.6153 to 0.3162 cm and then decreases to
0.1749 cm as the segmentation increases (i.e., the amount of data becomes more extensive).
This result indicates that the neural network fits better as the data increase. Similar results
are obtained when comparing MLP-8, MLP-10, and MLP-12.

(a) (b) (c)

(d) (e) (f)

Figure 10. Experimental localization results of MLP in two dimensions. (a) Localization results of
MLP-7. (b) Localization results of MLP-8. (c) Localization results of MLP-9. (d) Localization results
of MLP-10. (e) Localization results of MLP-11. (f) Localization results of MLP-12.

Table 4. The mean absolute error of the results in FIG-10.

Method MAE-x1(cm) MAE-y1(cm) MED1(cm) MAE-x2 (cm) MAE-y2 (cm) MAD2(cm)

MLP-7 0.3378 0.4813 0.6153 0.6119 2.1918 2.3547
MLP-8 0.1727 0.2428 0.3147 0.3877 0.8551 1.0042
MLP-9 0.1475 0.2565 0.3162 0.4415 2.3220 2.4308
MLP-10 0.1303 0.1391 0.2188 0.3786 0.7005 0.8741
MLP-11 0.1160 0.1156 0.1749 0.4525 2.7091 2.8520
MLP-12 0.1155 0.1151 0.1784 0.2853 1.4828 1.5730

Although increasing the dimensionality of the feature by extracting the amplitude of
the multiplier can reduce the error, for example, from the localization results of MLP-9 and
MLP-10, the MED of the more distant sphere plummets from 2.4308 to 0.8741 cm. However,
the localization error of the more distant globe from the ALL is generally significant,
indicating that the network does not accurately localize the more distant sphere. This is
mainly because both dipoles vibrate at 8 Hz, making the signal from the more distant blob
quickly drowned out by the call from the closer chunk. The MLP network input is the
amplitude feature, which makes the features of the more distant sphere not effectively
represented.
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5.2.2. Different Frequency Multi-Source Vibration Localization Results

Figure 11a–f shows the experimental localization results of different data segmentation
and feature extraction methods. From the localization error statistics in Table 5, because
the two spheres vibrate at different frequencies, even the spheres far from the ALL are
accurately localized. From the localization results of MLP-13, even if only the amplitudes
of 8 and 10 Hz were extracted, the MED errors of the pellets closer to the ALL and the
bullets further away from the ALL were 0.3037 and 0.5688 cm, respectively, which were
at a relatively low level. As the number of data increases, for example, comparing the
localization results of MLP-13, MLP-15, and MLP-17 for the closer blob, the localization
error of the more relative chunk has a decreasing trend. Its MED, MAE-x, and MAE-y
decreased from 0.3037 cm, 0.1933 cm, and 0.2094 cm to 0.1117 cm, 0.0751 cm and 0.0675 cm;
however, this trend was not reflected in the more distant blob.

(a) (b) (c)

(d) (e) (f)

Figure 11. Experimental localization results of MLP in two dimensions. (a) Localization results of
MLP-13. (b) Localization results of MLP-14. (c) Localization results of MLP-15. (d) Localization
results of MLP-16. (e) Localization results of MLP-17. (f) Localization results of MLP-18.

Table 5. The mean absolute error of the results in FIG-11.

Method MAE-x1(cm) MAE-y1(cm) MED1(cm) MAE-x2(cm) MAE-y2(cm) MAD2(cm)

MLP-13 0.1933 0.2094 0.3037 0.2709 0.4643 0.5688
MLP-14 0.0718 0.0734 0.1157 0.2094 0.3573 0.4382
MLP-15 0.0907 0.1834 0.2160 0.3752 0.6794 0.8296
MLP-16 0.1187 0.0839 0.1577 0.1866 0.3052 0.3970
MLP-17 0.0751 0.0675 0.1117 0.2565 1.1492 1.2086
MLP-18 0.0820 0.1009 0.1469 0.1444 0.8245 0.8563

The results of both MLP-14 and MLP-16 are better, and their MED errors on the two
blobs are about 0.1 cm and 0.4 cm. MLP-14 and MLP-16 extract the amplitudes on 8 Hz and
10 Hz and their multiples for eight feature dimensions. This result indicates that increasing
the dimensionality of the features improves the fitting ability of the network.

5.3. Effect of Sensor Arrangement and Number on Localization Error

How to obtain better positioning results by a reasonable arrangement with a certain
number of sensors was the focus of this paper. In this paper, two parallel rows of sensor
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arrays were divided into three contracts for comparison with the use of sensors; the sensors
were numbered S1, S2, S3, and S4 from left to right from the first row, and similarly,
the second row was divided into S5, S6, S7, and S8 respectively. We have divided four
permutations, as detailed in Table 6.

Table 6. Classification of different combinations of sensors.

Type Sensor Number Number of Sensor

Type-1 S1, S2, S3, S4 4
Type-2 S5, S6, S7, S8 4
Type-3 S2, S3, S6, S7 4
Type-4 S1, S2, S3, S4, S5, S6, S7, S8 8

The localization experiments for single and multiple vibration sources were performed
using different distributions and numbers of sensors. To better represent the localization
results, we used the best combination of data segmentation and feature extraction methods,
respectively. For the single-source vibration, we used a combination method similar to
MLP-4, and for a multi-source beat, we used MLP-10 and MLP-16, respectively.

Figure 12 and Table 7 shows the results of the sensor arrangement and number for
localization of a single dipole. Type-1 and Type-2 have close errors in MAE-x, MAE-y, and
MED, with values around 0.5, 0.6, and 0.8 cm. Type-3 has higher errors than both Type-1
and Type-2 because Type-3 has two sensors per row in the vertical direction. Although the
total number of sensors is the same as Type-1 and Type-2, a lot of 2D spatial information is
missing when performing 2D dimensional localization. In addition, the localization error
decreases significantly when a whole part of the sensor is used. This result guides the
design of 2D arrays of sensors and the number of sensors can be increased on a 1D display
to improve the accuracy of the sensors.

Table 7. The mean absolute error of the four arrangements.

Method MAE-x (cm) MAE-y (cm) MED (cm)

Type-1 0.4813 0.6233 0.8447
Type-2 0.4675 0.6359 0.8356
Type-3 0.5187 0.6625 0.8937
Type-4 0.3093 0.4252 0.5691

Figure 12. Influence of the sensor arrangement and number on the individual dipole localization.
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Figure 13 shows the results of the localizations of multi-source vibrations for different
sensor arrangements and numbers. Figure 13a shows the results for the same frequency
vibration and Figure 13b shows the results for different frequencies. Among them, the
errors of the localization results for Type-1 and Type-2 are similar in absolute error for both
dipoles, indicating that the one-dimensional lateral line array can be performed regardless
of the single dipole localization or multiple dipole localizations.

(a) (b)

Figure 13. Influence of the sensor arrangement and number on the double dipole localization.
(a) Same frequency vibration. (b) Different frequency vibration

The localization error is more significant for the dipole further away from the ALL
for multiple dipole localizations. When vibrating at the same frequency, the MAE-x and
MAE-y of Type-3 increased by 44.9% and 78.4% year-on-year relative to Type-2. The MAE-x
and MAE-y increased by 27.2% and 32.1% year-on-year for Type-3 close to Type-2 when
vibrating at different frequencies. The results show that the number of sensors on the 1D
array was the key to the 2D localization accuracy.

6. Conclusions

This paper presents the ALL system with an integrated pressure sensor and the
method of underwater localization using an MLP neural network. To compensate for
the lack of data, a data augmentation method was used to segment the collected data,
increasing the amount of data for the experiment and reducing the localization error. Due
to the limitation of the experimental boundary, the signals were inevitably multiplied,
and there was a connection between the multipliers of the signals due to the uniqueness
of the testing platform. The localization results based on a single dipole proved that the
signal’s multiplier signal was not noise. The localization results were better when the
multiplier signal was used as a valid signal than when the amplitude of the vibration
frequency was extracted singly. Based on the results of multiple dipole localization, the
vibrations of different frequencies increase the dimensionalities of the extracted features
and dramatically reduces the localization errors of two dipoles.

The experimental results of the multi-source vibration localization at different frequen-
cies show that the MLP network can predict dipole coordinates well, as long as the features
are suitable and the dimensionality is sufficient. However, the drawback of this method is
that it requires artificially provided features, and it cannot achieve accurate localization
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when it encounters the same frequency vibration and cannot extract more features. Based
on this, in future work, convolutional neural networks can be used to exploit the data
information fully. In addition, the development of smaller and high-precision sensors and
the realization of data fusion between different sensors are also bases for achieving the
precise positioning of underwater targets.
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