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Abstract: Aiming at the problems of low efficiency and poor accuracy in conventional surface
defect detection methods for aero-engine components, a surface defect detection model based on an
improved YOLOv5 object detection algorithm is proposed in this paper. First, a k-means clustering
algorithm was used to recalculate the parameters of the preset anchors to make them match the
samples better. Then, an ECA-Net attention mechanism was added at the end of the backbone
network to make the model pay more attention to feature extraction from defect areas. Finally, the
PANet structure of the neck network was improved through its replacement with BiFPN modules to
fully integrate the features of all scales. The results showed that the mAP of the YOLOv5s-KEB model
was 98.3%, which was 1.0% higher than the original YOLOv5s model, and the average inference
time for a single image was 2.6 ms, which was 10.3% lower than the original model. Moreover,
compared with the Faster R-CNN, YOLOv3, YOLOv4 and YOLOv4-tiny object detection algorithms,
the YOLOv5s-KEB model has the highest accuracy and the smallest size, which make it very efficient
and convenient for practical applications.

Keywords: aero engine; surface defect detection; YOLOv5; attention mechanism

1. Introduction

As the core of aircraft, aero engines work in harsh environments involving high
temperature, high pressure and high load over long periods of time, their components are
subjected to aerodynamic force from flowing gas and they are impacted by foreign objects.
Cracks, gaps, burns, pits and other damage thus occur frequently [1]. The consequences of
such defects can be fatal and the financial costs very high. Therefore, it is very important
to detect defective aero-engine components in time and ensure the flight safety of aircraft.
Defect detection is a necessary task for the extension of the service lives of these parts, as
replacing them is far more expensive [2].

At present, the methods for surface defect detection of aero-engine components gen-
erally include the borescope inspection, magnetic powder, ray, penetration, eddy current
and ultrasonic methods. These methods have achieved good performances for detection of
aero-engine components, but many defects are too small to detect with these methods, and
detection work mainly relies on experienced inspectors, who perform intensive work and
can easily miss tiny defects [3]. There is thus an urgent need for computer vision detection
methods that can replace manual methods.

In recent years, with the development of deep learning, computer vision technology
has been applied in many fields, such as face recognition, object detection and automatic
driving. Object detection algorithms based on computer vision are generally divided into
two categories: two-stage and one-stage algorithms. Two-stage algorithms are based on
the candidate regions and include R-CNN [4], Fast R-CNN [5] and Faster R-CNN [6].
One-stage algorithms can directly obtain the position and category probability of the
object, and they include YOLO [7] and SSD [8]. Recent research has shown that the
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Vision Transformer model (ViT) can achieve comparable or even superior performance
in image classification tasks, as it uses self-attention rather than convolution to aggregate
information across locations [9]. Andriyanov et al. used random fields and likelihood ratios
to analyze the development of convolutional neural networks intended for use in solving
recognition problems, as well as metrics designed to assess the quality and reliability of
object detection [10]. Anitha et al. provided a complete view of unsupervised anomaly
detection for high dimensional data and proposed a hybrid framework to produce an
unsupervised anomaly detection algorithm [11]. Alexey et al. showed that reliance on
CNNs is unnecessary and proved that a pure transformer directly applied to sequences
of image patches can perform very well in image classification tasks, attaining excellent
results compared to the most advanced CNNs, while the ViT model required substantially
fewer computational resources to train [12].

Many scholars have been working to combine object detection algorithms with prac-
tical application scenarios and have achieved significant results. Kou et al. designed an
anchor-free feature selection mechanism and a dense convolution structure and introduced
them into the YOLOv3 network to improve the detection speed and accuracy of the algo-
rithm in detecting steel strip surface defects [13]. Andriyanov et al. proposed an intelligent
system for the estimation of the spatial positions of apples based on YOLOv3 and a D415
RealSense Depth Camera, which obtained the position estimates of the apples with high
accuracy in a symmetric coordinate system [14]. Tulbure et al. undertook a comprehensive
analysis of modern object detection models that can be used for defect detection applica-
tions in industry and analyzed the applicable detection models under different leading
constraints, providing an important reference for industrial defect detection [15]. Aiming at
the problems of complex architecture and low detection accuracy in traditional aero-engine
sensor fault detection algorithms, Du et al. proposed an Inception-CNN model and used it
for aero-engine sensor fault detection, achieving 95.41% detection accuracy with the sensor
failure dataset [16].

However, applications of object detection algorithms for surface defect detection of
aero-engine components are limited, and the recognition efficiency and accuracy need
to be improved. In order to improve the accuracy and speed of surface defect detection
of aero-engine components, a defect detection model based on an improved YOLOv5
algorithm is proposed in this paper. First, a k-means algorithm was used to cluster the
real labeling boxes of the experimental dataset, optimize the size of the preset anchors
and increase the matching degree between the anchors and the real samples. Next, an
ECA-Net mechanism was added at the end of the backbone network to enhance the feature
expression ability. Then, the PANet structure of the neck network was replaced with BiFPN
modules to improve the feature fusion ability of the model. The experimental results
showed that the model had a high detection accuracy and small size, making it easy to
deploy in mobile terminals, and could better complete surface defect detection tasks for
aero-engine components.

2. Methods and Principles
2.1. YOLOv5 Algorithm

The YOLO algorithm is a one-stage object detection algorithm characterized by the
direct regression of the location and category of an object after feature extraction. It has the
advantages of fast inference speed and high detection accuracy. The author of the YOLO
algorithm then proposed the YOLOv2 [17] and YOLOv3 [18] models successively, and their
performance showed continuous improvements. In 2020, Alexey Bochkovskiy proposed the
YOLOv4 algorithm [19], which modified the backbone network to CSPDarknet53, replaced
the activation function with Mish and added a PANet [20] structure based on the FPN [21]
from YOLOv3. The YOLOv5 model [22] has been improved on the basis of YOLOv4, with
the detection speed being significantly improved and the model size greatly reduced, and
it is more suitable for engineering applications.
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The YOLOv5 algorithm has four models: YOLOv5s, YOLOv5m, YOLOv5l and
YOLOv5x. The depth and width of these models increase in turn, and the feature ex-
traction ability also gradually improves. Considering that our algorithm was intended to be
deployed and applied in mobile terminals in the future, we selected the lightest YOLOv5s
network as the research object, improved it on the basis of our needs and established a
model for detection of surface defects in aero-engine components.

YOLOv5 is mainly composed of three parts: the backbone, neck and head. The
backbone consists of a series of convolutional neural networks used to extract image
features, mainly focus, C3 and SPP modules. The focus module slices the images and
splices them into the channel dimension to integrate the width and height information into
the channel dimension, which can effectively improve the speed of feature extraction. The
C3 module is improved from the structure of the cross-stage partial (CSP) connections [23],
having one less convolution layer and changing the activation function, and its main
function is to extract features from images and reduce the repetition of gradient information.
The spatial pyramid pooling (SPP) module respectively uses three pooling kernels of sizes
5, 9 and 13 to perform max-pooling operations on the images. This module can increase the
receptive field of the network and obtain features of different scales. The neck is the feature
fusion network of the model, where feature pyramid networks (FPNs) and path aggregation
network (PANet) are adopted. The structure of the FPNs transmits semantic information
from the top down, while the PANet additionally transmits location information from the
bottom up on the basis of the FPNs. The head is the prediction network of the model and,
through convolution operations, three groups of feature vectors containing the categories
prediction boxes, confidence and coordinate position are output, which predict at scales of
80 × 80, 40 × 40 and 20 × 20, respectively.

The architecture of YOLOv5s is shown in Figure 1, where k represents the convolution
kernel size, C3(T) represents the C3 module containing a residual structure, C3(F) does not
contain a residual structure, Upsample is the upsampling operation and CBS is the standard
convolution process consisting of Conv (the convolution layer), BN (batch normalization)
and SiLu (activation function).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 3 of 13 
 

The YOLOv5 algorithm has four models: YOLOv5s, YOLOv5m, YOLOv5l and 
YOLOv5x. The depth and width of these models increase in turn, and the feature extrac-
tion ability also gradually improves. Considering that our algorithm was intended to be 
deployed and applied in mobile terminals in the future, we selected the lightest 
YOLOv5s network as the research object, improved it on the basis of our needs and es-
tablished a model for detection of surface defects in aero-engine components. 

YOLOv5 is mainly composed of three parts: the backbone, neck and head. The 
backbone consists of a series of convolutional neural networks used to extract image 
features, mainly focus, C3 and SPP modules. The focus module slices the images and 
splices them into the channel dimension to integrate the width and height information 
into the channel dimension, which can effectively improve the speed of feature extrac-
tion. The C3 module is improved from the structure of the cross-stage partial (CSP) con-
nections [23], having one less convolution layer and changing the activation function, 
and its main function is to extract features from images and reduce the repetition of gra-
dient information. The spatial pyramid pooling (SPP) module respectively uses three 
pooling kernels of sizes 5, 9 and 13 to perform max-pooling operations on the images. 
This module can increase the receptive field of the network and obtain features of dif-
ferent scales. The neck is the feature fusion network of the model, where feature pyramid 
networks (FPNs) and path aggregation network (PANet) are adopted. The structure of 
the FPNs transmits semantic information from the top down, while the PANet addition-
ally transmits location information from the bottom up on the basis of the FPNs. The 
head is the prediction network of the model and, through convolution operations, three 
groups of feature vectors containing the categories prediction boxes, confidence and co-
ordinate position are output, which predict at scales of 80 × 80, 40 × 40 and 20 × 20, re-
spectively. 

The architecture of YOLOv5s is shown in Figure 1, where k represents the convolu-
tion kernel size, C3(T) represents the C3 module containing a residual structure, C3(F) 
does not contain a residual structure, Upsample is the upsampling operation and CBS is 
the standard convolution process consisting of Conv (the convolution layer), BN (batch 
normalization) and SiLu (activation function). 

 
Figure 1. The architecture of YOLOv5s. Figure 1. The architecture of YOLOv5s.



Appl. Sci. 2022, 12, 7235 4 of 13

A loss function is used to measure the extent to which the predicted value of the model
is different from the true value and largely determines the performance of the model. The
loss functions of YOLOv5 include positioning loss (box_loss), confidence loss (obj_loss) and
classification loss (cls_loss). Box_loss calculates the error between the prediction box and
the real labeling box using the GIoU_loss function. Its principle is shown in Equation (1):
for two arbitrary convex shapes A and B, find the smallest convex shape C enclosing both
A and B, then:

GIoU_loss = 1− IoU +
C− (A ∪ B)

C
. (1)

Obj_loss and cls_loss reflect the confidence and classification error of the prediction
box, respectively, and both use the cross-entropy loss function, as shown in Equation (2),
where x is the sample, y is the label value, ŷ is the predicting value of the model and n is
the total number of samples:

l(y, ŷ) = − 1
n∑

x
[y ln ŷ + (1− y) ln(1− ŷ)]. (2)

2.2. YOLOv5 Improvement
2.2.1. K-Means Clustering Algorithm

A certain number of anchors are set in the YOLOv5 algorithm so that the model does
not need to directly predict the scale and coordinates of the object but only needs to predict
the offset between anchors and the label boxes, and then adjust anchors according to the
offset, reducing the difficulty of prediction. The parameters of these preset anchors are
obtained based on the public dataset COCO, which contains a total of 80 categories of
objects that are quite different from the sizes of the defects in our dataset. If the preset
anchors are directly used for training, the convergence speed of the model will be affected
and the detection accuracy will reduce. Therefore, a k-means clustering algorithm is used
in this paper to recalculate the parameters of anchors.

The idea behind the k-means clustering algorithm is to randomly select k clustering
centers at the beginning of the process, distribute the samples to be classified to each cluster
center according to the principle of the nearest neighbor and then recalculate the mean
value of each group of objects to obtain a new cluster center. The above process is iterated
until the optimal cluster center is found. The algorithm was used to perform cluster analysis
for the real annotation frames in the dataset in this study, and three groups of parameters
for new anchors were obtained, as shown in Table 1 in comparison with the preset anchors.
There are three groups of preset anchors in YOLOv5, and each group contains three anchors
of different dimensions and shapes. As shown in Figure 1, Anchor1 is used to detect small
targets in an 80 × 80 feature map, Anchor2 is used to detect medium-sized targets in a
40 × 40 feature map and Anchor3 is used to detect large targets in a 20 × 20 feature map;
for example, (10, 13) in Anchor1 means that the width and height of one anchor are 10 and
13, respectively.

Table 1. Comparison of anchor parameters.

Dataset Anchor1 Anchor2 Anchor3

COCO
(10, 13) (30, 61) (116, 90)
(16, 30) (62, 45) (156, 198)
(33, 23) (59, 119) (373, 326)

Ours
(7, 12)

(14, 59)
(16, 18)

(34, 74)
(47, 30)

(62, 161)

(130, 54)
(167, 257)
(380, 153)

2.2.2. ECA-Net Mechanism

In order to improve the defect detection accuracy of the YOLOv5 algorithm in complex
scenes, make the model focus on the object areas during training and suppress the ex-
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pression of unimportant information, we introduced an ECA-Net mechanism [24] into the
YOLOv5 model. ECA-Net is a type of lightweight attention module that has been improved
on the basis of SENet [25]. It avoids dimensionality reduction and captures cross-channel
interaction in an efficient way. The principle of the ECA-Net module is shown in Figure 2.
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nel weights by performing a fast 1D convolution of kernel size k, where k is proportional to the
channel dimension.

We have the input feature map χ ∈ RW×H×C and output feature map χ̃ ∈ RW×H×C

from the ECA module, as shown in Equation (3):

χ̃ = σ(g(χ) ∗ f )⊗ χ, (3)

where g(χ) is a global average pooling operation; f is a 1D convolution operation with
3 × 3 kernel size, which is then activated by the sigmoid function σ(); and ⊗ represents
element by element multiplication with the original input features.

When the feature maps are input into the ECA-Net module, the global average pooling
of the feature maps is carried out channel by channel without dimensionality reduction,
local cross-channel interaction is captured by paying attention to each channel and its k
neighbors and then the weight of each channel is generated with the sigmoid function. This
method has been proven to guarantee both efficiency and effectiveness. Finally, the original
input features are combined with channel weights to obtain features with channel attention.
The ECA-Net mechanism has fewer parameters, which can learn effective channel attention
with low model complexity, and does not influence the detection speed of the algorithm to
a large extent [26].

2.2.3. BiFPN Module

The BiFPN module is derived from the Google team’s 2019 EfficientDet network [27]. It
strengthens higher-level feature fusion in the processing path, processing each bidirectional
path (top-down and bottom-up) as a feature network layer, through the fusion of weighted
features. The importance of different input features is learned, and differentiated fusion
is carried out for different features [28]. Figure 3a,b show the FPN and PANet feature
fusion structures used in the original YOLOv5 network. FPN carries out multi-scale feature
fusion in a top-down manner, and PANet adds a bottom-up path on the basis of FPN.
Figure 3c shows the BiFPN module, which is the feature fusion part of the EfficientDet
network. It receives five effective feature layers P3–P7 from the backbone feature extraction
network, carries out upsampling and downsampling feature fusion for these feature layers
successively and sets weights for each node to balance features of different scales. In the
figure, the blue route conveys high-level semantic information from the top down, while
the red route conveys low-level location information from the bottom up.
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FPN typically uses the same weight when fusing features of different scales, but these
features contribute differently to the final output, so BiFPN adds additional weight to
each input feature and lets the network know how important each feature is. The fast
normalized fusion weighted fusion method is adopted, as shown in Equation (4):

O = ∑
i

wi
ε + ∑

j
wj
· Ii, (4)

The Relu activation function is used for each weight to ensure that wi ≥ 0, and
ε = 0.0001 is a small quantity used to keep the value stable. The process of cross-scale
connection and weighted feature fusion in BiFPN is shown in Equations (5) and (6):

Ptd
6 = Conv(

w1 · Pin
6 + w2 · Resize(Pin

7 )

w1 + w2 + ε
), (5)

Pout
6 = Conv(

w′1 · Pin
6 + w2 · Ptd

6 + w′3 · Resize(Pout
5 )

w′1 + w′2 + w′3 + ε
), (6)

where Ptd is the middle layer of the top-down feature fusion process; Pin and Pout are
the bottom-up input and output features, respectively; and Conv represents the convolu-
tion process.

2.3. Improved YOLOv5

In this study, three groups of new anchors obtained with the k-means clustering
algorithm were used to replace the preset anchors of the YOLOv5 model so as to increase the
matching degree between the anchors and the real object frames. The ECA-Net mechanism
was added at the end of backbone network to make the network interact efficiently across
channels and pay more attention to feature extraction from defect areas. The PANet
structure of the neck fusion network was improved by replacing it with a BiFPN module
to fully integrate the features of various scales and improve the detection accuracy. The
network structure of the improved YOLOv5s-KEB model is shown in Figure 4, where
Concat_bifpn represents the BiFPN model.
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3. Experiment and Results
3.1. Experimental Environment

The experimental environment for this study was based on a Windows 10 operating
system with 128 GB RAM, PyTorch (version 1.9.1, Soumith Chintala, New York, NY, USA)
as the deep learning framework, Python (version 3.7, Guido van Rossum, Delaware, OH,
USA), CUDA 10.0 and cuDNN 7.4.1. The hardware configuration was as follows: Intel(R)
Xeon(R) Gold 5218 CPU@2.30 GHz, NVIDIA GeForce RTX 2080Ti, 11 GB video memory.

3.2. Dataset

The data used in this paper were the defects on the surfaces of aero-engine components
collected with an industrial camera in repair factories and garages, and these images
were screened and sorted in the post-processing process. As shown in Figure 5, the data
contained four defect types: crack, gap, pit and scratch. There were 1080 original images.
In order to prevent over-fitting in the training process, we used data enhancement methods
to expand the samples. First, independent target cropping was used to extract several
small target defects in the images to strengthen feature recognition. Then, the images
were horizontally flipped to enrich the defect features, and the exposure of the images
was adjusted to expand the images under different exposure levels. Gaussian noise was
also added to the images to enhance the robustness of the model. We obtained a total of
3500 original and enhanced images. The expanded samples were divided into a training set,
validation set and test set according to the ratio 6:2:2. Finally, 2100 images for the training
set, 700 for the validation set and 700 for the test set were obtained. The images in the
dataset had different sizes during training in order to adapt to the structure of the network;
YOLOv5 can resize input images to 640 × 640. Since the YOLOv5 algorithm uses adaptive
image scaling, there were no image distortion problems. After the training, the images
were automatically resized to the original size for display.
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LabelImg labeling software was used to generate xml files containing the image path,
labeling area and label type for the real frame of the defect labeling in the image, as shown
in Figure 6. The “size” item recorded the width, height, size and number of channels of
the original image, and the “object” item recorded the category of the annotation defects
and the horizontal and vertical coordinates of the upper left and lower right corners of the
annotation box. Finally, the xml annotation files were converted into txt files, as required
by the YOLOv5 model, before training with the dataset.
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3.3. Training Parameter Setting

The settings for the training hyperparameters are shown in Table 2. In the training
process, mosaic data enhancement was enabled, and four images were randomly combined
together through cropping, scaling and rotating, thus increasing the number of objects in a
single image, which is conducive to improving the generalization ability of models. The
SGD optimizer was used to update the parameters of the network iteratively. Batch size
was set to 16, and 300 epochs were trained in total. lr0 is the initial learning rate, and lrf is
the cyclic learning rate.

Table 2. The settings for the training hyperparameters.

Hyperparameters Value

lr0 0.001
lrf 0.2

momentum 0.937
weight_decay 0.0005

3.4. Evaluation Indicators

The generally used evaluation indicators for object detection include precision, recall,
average precision (AP), mean average precision (mAP) and frames per second (FPS). FPS
represents the number of images processed per second by the model; it reflects the detection
speed. Precision refers to the probability that all positive samples detected by the model are
actually positive samples, and recall refers to the probability that the model detects positive
samples in actual positive samples. The precision and recall are respectively expressed by
Equations (7) and (8):

Precision =
TP

TP + FP
, (7)

Recall =
TP

TP + FN
, (8)
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where TP (true positives) represents the number of positive samples correctly predicted
by the model, FP (false positives) represents the number of positive samples incorrectly
predicted by the model, and FN (false negatives) represents the number of negative samples
incorrectly predicted by the model. By calculating the IoU of each detection box and real
box, TP, FP and FN can be obtained according to the IoU threshold value. For example, if
the IoU threshold is 0.5, the value of TP is the number of detected frames with IoU > 0.5,
while the value of FP is the number of detected frames with IoU ≤ 0.5. Therefore, TP, FP
and FN are directly related to the selection of the IoU threshold.

According to the above analysis, precision and recall are influenced by the IoU thresh-
old; if the threshold rises from 0 to 1, there will be a series of precision and recall events.
AP refers to the area enclosed by coordinate axes and the curve drawn with precision as
the vertical axis and recall as the horizontal axis, and mAP can be obtained by means of the
AP of all categories. AP and mAP are defined by Equations (9) and (10), where N represents
the number of all categories, P is precision and R is recall.

AP =
∫ 1

0
P(R)dR, (9)

mAP =

N
∑

i=1
APi

N
, (10)

3.5. Ablation Studies

We designed ablation studies to verify the optimization effect of each improved
module: model A used the k-means clustering algorithm to recalculate the parameters of
new anchors to match our dataset, and then replaced the initial anchor with them. We
also disabled the autoanchor function of the YOLOv5 algorithm. In model B an ECA layer
was added at the end of the backbone network. In model C the PANet structure of the
neck network was improved by replacing it with BiFPN modules. YOLOv5s-KEB is the
model proposed in this paper, which uses the improved methods from models A, B and
C simultaneously. Comparisons of the parameters of each model and the results of the
ablation studies are shown in Tables 3 and 4, respectively, where the inference time refers to
the average time required for the model to infer a single image, and FPS (detection speed)
is calculated based on the total time taken by the model to recognize an image, consisting
of the sum of the pre-process time, inference time and non-maximal suppression (NMS)
time. Weight represents the volume of the model.

Table 3. Comparison of parameters of each model.

Model K-Means ECA BiFPN Weight Inference Time 1

YOLOv5s × 2 × × 14.4 MB 2.9 ms
A

√
× × 14.4 MB 2.3 ms

B ×
√

× 14.4 MB 2.9 ms
C × ×

√
16.5 MB 2.8 ms

YOLOv5s-KEB
√ √ √

16.5 MB 2.6 ms
1 The average time required for the model to infer a single image. 2 The symbol ×means that the improvement
will not be used, while

√
means to use.

The results showed that, compared to the original YOLOv5s model, the inference time
of model A was reduced by 20.7%, mAP was increased by 0.8% and FPS was improved by
4.5%, which indicates that the anchors regenerated by the k-means algorithm reduced the
inference time and also improved the detection accuracy and speed of the model. For model
B, the mAP increased by 0.3% compared to the original YOLOv5s model, thus verifying the
effectiveness of introducing the attention mechanism, and hardly affected the model size
and inference time. This indicates that the ECA mechanism improved the generalization
ability and detection accuracy for some types of defects with only a few parameters added.
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The BiFPN module was used in model C, which increased in volume by 14.6% and resulted
in a 3.4% reduction in detection speed. However, the mAP increased by 0.4%, indicating
that the BiFPN module integrated the defect features of different scales more fully.

Table 4. Comparison of evaluation indicators for each model.

Model
AP

mAP FPS
Crack Gap Pit Scratch

YOLOv5s 94.9% 99.5% 98.4% 96.5% 97.3% 47.98
A 95.7% 99.6% 99.2% 97.9% 98.1% 50.12
B 95.6% 99.5% 98.9% 96.5% 97.6% 49.33
C 95.0% 99.5% 98.9% 97.2% 97.7% 46.37

YOLOv5s-KEB 96.9% 99.5% 99.2% 97.6% 98.3% 46.50

From the comparison of the YOLOv5s-KEB model proposed in this paper and the orig-
inal YOLOv5s model, it can be seen that the volume increased by 14.6% and the detection
speed was reduced by 3.1%, but the inference time was reduced by 10.3% and the mAP
was improved by 1.0%. In particular, the detection accuracies for crack and scratch defects
were respectively improved by 2.0% and 1.1%, which was a significant enhancement.

3.6. Comparison of Actual Detection Effects

In order to verify the actual detection effects of the YOLOv5s-KEB model, the original
YOLOv5s model and the YOLOv5s-KEB model were respectively used to test real defect
images. Some of the detection results are shown in Figure 7.
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It can be seen from the comparison of the detection effects that the original YOLOv5s
model had low confidence in crack and pit defect detection, and some scratch defects
were missed or misdetected. Since the YOLOv5s-KEB model introduced an ECA attention
mechanism, it focused on defect areas in the feature extraction process and enhanced the
expression of defect features, so it improved the detection of scratch defects that were
missing or misdetected by the former model. At the same time, the BiFPN module was
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used to improve the feature fusion aspect and fully integrate the features of different scales,
thus improving the detection accuracy for crack and pit defects.

3.7. Comparison of Different Object Detection Algorithms

In order to comprehensively evaluate the performance of the YOLOv5s-KEB model,
we selected the Faster R-CNN, YOLOv3, YOLOv4 and YOLOv4-tiny object detection
algorithms for experiments. We used the same dataset to train and validate each algorithm
and then determined the detection performance for different algorithms. The results are
shown in Table 5.

Table 5. Comparison of detection performance for different algorithms.

Model
AP

mAP% FPS Weight
Crack Gap Pit Scratch

Faster R-CNN 75.4% 78.1% 58.7% 83.1% 73.8% 14.29 109 MB
YOLOv3 82.1% 89.8% 85.1% 76.1% 83.3% 22.63 235 MB
YOLOv4 90.0% 93.2% 86.6% 79.0% 87.2% 18.55 244 MB

YOLOv4-tiny 64.3% 48.8% 45.5% 41.7% 50.1% 85.08 22.4 MB
YOLOv5s-KEB 96.9% 99.5% 99.2% 97.6% 98.3% 46.50 16.5 MB

As shown in Table 5, since Faster R-CNN is a two-stage object detection algorithm
with poor real-time performance, its detection speed was the lowest. The detection speed
of YOLOv4-tiny was the highest, up to 85.08 FPS, but the detection effect for small defects
was poor, and the mAP was only 50.1%, which was far lower than other algorithms. The
detection accuracies of YOLOv3 and YOLOv4 were high, but the detection speeds were low
and the model sizes were quite large. Compared with other object detection algorithms,
the YOLOv5s-KEB model had the highest defect detection accuracy and the smallest size.
The mAP was 98.3% and the weight was 16.5 MB, both of which were far superior to other
algorithms. Furthermore, it has a lightweight structure, which saves training time and
makes it easy to deploy in mobile terminals.

4. Conclusions

Aiming at the problems of low efficiency and poor accuracy in surface defect detection
in aero-engine components, we proposed the YOLOv5s-KEB model based on the YOLOv5
algorithm for surface defect detection in aero-engine components. First, the model uses a
k-means clustering algorithm to optimize the size of the preset anchors and increase the
matching degree between anchors and real samples. After that, the ECA-Net attention
mechanism is added to the end of the backbone network to enhance the ability of feature
expression. Finally, BiFPN modules are used instead of the PANet structure in the neck
network to improve the feature fusion ability of the model. The experimental results show
that, with our self-made dataset, the mAP for the YOLOv5s-KEB model reached 98.3%
and the inference time was 2.8 ms. Compared to the original YOLOv5s model, the mAP
was increased by 1.0% and the inference time reduced by 10.3%, but the detection speed
slightly dropped. Compared with the Faster R-CNN, YOLOv3, YOLOv4 and YOLOv4-tiny
algorithms, our model has obvious advantages in terms of detection accuracy and model
size. In further work, the dataset will be expanded to add micro-defect samples and develop
the ability to identify micro-defects. We will also consider how to improve the detection
speed of the model and apply it to mobile devices.
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