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Featured Application: The proposed algorithm for painting large objects based on a nine-axis
UR5 robotic manipulator can be applicable in many automobile repair shops where paint jobs
can be performed. With the help of a nine-axis UR5 robotic manipulator with the proposed al-
gorithm, vehicles can be automatically painted with the least amount of human manual labor.
Simultaneously, the quality and efficiency of the paint jobs can be drastically improved, since
the UR5 robot maintains its consistency, accuracy, and proficiency while conducting paint jobs.

Abstract: An algorithm for automatically planning trajectories designed for painting large objects is
proposed in this paper to eliminate the difficulty of painting large objects and ensure their surface
quality. The algorithm was divided into three phases, comprising the target point acquisition phase,
the trajectory planning phase, and the UR5 robot inverse solution acquisition phase. In the target
point acquisition phase, the standard triangle language (STL) file, algorithm of principal component
analyses (PCA), and k-dimensional tree (k-d tree) were employed to obtain the point cloud model
of the car roof to be painted. Simultaneously, the point cloud data were compressed as per the
requirements of the painting process. In the trajectory planning phase, combined with the maximum
operating space of the UR5 robot, the painting trajectory of the target points was converted into
multiple traveling salesman problem (TSP) models, and each TSP model was created with a genetic
algorithm (GA). In the last phase, in conformity with the singularities of the UR5 robot’s motion space,
the painting trajectory was divided into a recommended area trajectory and a non-recommended
area trajectory and created by the analytical method and sequential quadratic programming (SQP).
Finally, the proposed algorithm for painting large objects was deployed in a simulation experiment.
Simulation results showed that the accuracy of the algorithm could meet the requirements of painting
technology, and it has promising engineering practicability.

Keywords: genetic algorithm; principal component analyses; standard triangle language; traveling
salesman problem; trajectory planning

1. Introduction

In recent years, UR5 robots have been widely popularized in industrial production
fields such as painting, assembly, and micromanipulation [1]. In the above-mentioned
fields, the painting process is the integral manufacturing procedure for automatically
coating large objects, and it is one of the essential technologies for improving the surface
quality of painted objects, which can then offer better performances under different working
conditions [2–4]. Painting feasibility and trajectory planning are critical in the painting field.

To paint large objects, some engineers tried to mount UR5 robots on a mobile platform
to enlarge the workspace of the UR5 robots [5,6], while other engineers tried to widen
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the workspace by changing the structure of the UR5 robots [7]. However, the method of
changing the structure of the UR5 robots entails enormous cost, and the UR5 robot with
changed structure offers low adaptability. Thus, this paper proposes a UR5 robot which is
mounted on an zyz three-axis motion platform to achieve the painting of large objects.

A well-designed trajectory can improve painting efficiency. Bureerat, S. et al. employed
the MRPEIL-DE algorithm to optimize the trajectory of a six degree-of-freedom (DOF) UR5
robot [8]. Yin, S. et al. utilized mechanical learning methods to devise an energy-saving
trajectory for industrial UR5 robots [9]. Serralheiro, W. et al. proposed employing a non-
based trajectory planning method for time-energy optimization of a completely wheeled
mobile UR5 robot [10]. Kazim, I.J. et al. compared improving the artificial potential field
(APF) by the traditional particle swarm optimization (PSO) algorithm and the serendipity-
based PSO (SBPSO) algorithm to control the path of a universal robot UR5 with collision
avoidance [11]. Kazim, I.J. et al. utilized differential evolution (DE) optimization with the
MATLAB toolbox, which has an applied robot operating system (ROS), to quantify the
contour tracking performance of a collaborative universal manipulator robot (UR5) [12].
Al-Shanoon, A. et al. proposed a novel reliable framework for deep ConvNet combined
with visual servoing using a single RGB camera [13]. Balanji, H.M. et al. proposed a novel
calibration framework based on a single camera and computer vision techniques using
ArUco markers [14]. Vivas, A. et al. designed the implementation of the control of a real
UR5 robot from Matlab/Simulink using ROS [15]. Araki, R. et al. proposed a 6D pose
estimation method for an object from a single RGB image for a robotic grasping task [16].

Nonetheless, most of the above-mentioned algorithms neither consider the singulari-
ties of the kinematics of the UR5 robot’s joints nor meet the requirements of the painting
process. Therefore, this paper proposes a painting algorithm which can generate a painting
trajectory satisfying the painting of large objects. The painting algorithm employs the
standard triangle language (STL) file, algorithm of principal component analyses (PCA),
and k-dimensional tree (k-d tree) to create a digital model of the object to be painted. The
digital model is converted into multiple traveling salesman problem (TSP) models, and
each TSP model is created with a genetic algorithm (GA). The painting trajectory offers
high precision and efficiency.

2. Construction of a Point Cloud Model of the Target Object

STL files are popular in computer graphics application systems, and their file formats
are simple and widely harnessed in machine vision and 3D reconstruction [17,18].

2.1. STL File Parsing

A STL file consists of multiple triangles and can be divided into the American Standard
Code for Information Interchange (ASCII) format and binary format as per the storage
format. The STL file obtained in this paper was suitable for ASCII. The analysis of a STL
file in the ASCII format is shown in Figure 1.
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In Figure 1, ηi, ηj, and ηk represent the x, y, and z components of the triangle patch
normal vector, respectively; vix, viy, and viz represent the x, y, and z coordinates of the i-th
triangular patch, respectively.

2.2. Filling Triangles

The STL file only contains the coordinates of the vertices of the triangles, and the
coordinates of all points in the model cannot be obtained. To obtain the full 3-dimensional
information of the model, the triangles must be filled. This paper utilized the depth-first
search (DFS) to fill the triangles. The triangle is represented by S. The center of the triangle
is represented by o. Lengths of the 3 sides of the triangle is represented by l1, l2, and l3. The
triangle S is later separated into 3 smaller triangles S1, S2, and S3. The algorithm model
and the main flowchart of the filling process are shown in Figures 2 and 3.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 3 of 27  

Solid<name> 
Facet normal: ni,nj,nk 
Outer loop 
Vertex  v1x,v1y,v3z 
Vertex  v1x,v1y,v3z 
Vertex  v1x,v1y,v3z 
End loop 
End facet 
........ 
End solid<name> 

Figure 1. Parsing of a STL file in ASCII format. 

In Figure 1, ηi, ηj, and ηk represent the x, y, and z components of the triangle patch 
normal vector, respectively; vix, viy, and viz represent the x, y, and z coordinates of the i-th 
triangular patch, respectively. 

2.2. Filling Triangles 
The STL file only contains the coordinates of the vertices of the triangles, and the 

coordinates of all points in the model cannot be obtained. To obtain the full 
3-dimensional information of the model, the triangles must be filled. This paper utilized 
the depth-first search (DFS) to fill the triangles. The triangle is represented by S. The 
center of the triangle is represented by o. Lengths of the 3 sides of the triangle is 
represented by l1, l2, and l3. The triangle S is later separated into 3 smaller triangles S1, S2, 
and S3. The algorithm model and the main flowchart of the filling process are shown in 
Figures 2 and 3. 

 
Figure 2. The model of the algorithm that fills triangles inside an STL file. Figure 2. The model of the algorithm that fills triangles inside an STL file.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 27 
 

Filling process starts

The triangle S is inserted into the empty 
stack

d < minimum 
height ?

Is the stack empty?

Filling Process 
ends

Coordinates of o are 
recorded

S1 , S2, and S3 are inserted 
into the stack

An empty stack for 
the purpose of 

containing triangles 
is established

The triangle S at the bottom of the 
stack is obtained and the triangle S 

is taken out of the stack

 The minimum distance d 

from o to the 3 sides of the 
triangle S is calculated

No, the stack is not empty

Yes, the stack is empty

No

Yes

 

Figure 3. The filling process of the DFS algorithm. 

The stopping condition of DFS recursion is that the minimum height corresponding 

to the three sides of the triangle is less than the specified minimum height. This 

requirement is shown in Equation (1), where the minimum triangle height hmin is given. 

( )1 2 3 min, , 2S max l l l h   (1) 

The area of the triangle in Equation (1) is difficult to directly calculate. Therefore, 

Heron’s formula, which is shown in Equation (2), is introduced, and the area is calculated 

from the lengths of the sides. The recursive stop condition is shown in Equation (3). 

( )( )( )

( )

1 2 3

21 2 3

S ε ε l ε l ε l

ε l l l

= − − −

= + +
 (2) 

( )1 2 32 max minS l ,l ,l h    (3) 

The initial vertices are randomly selected as (10, 10, 0), (520, 100, 0), and (260, 410, 0), 

and hmin equals 0.05. The filling results are shown in Figure 4a. 

Commented [M1]: Image and caption need to 

update 

The updates are correct. 

Figure 3. The filling process of the DFS algorithm.



Appl. Sci. 2022, 12, 7219 4 of 25

The stopping condition of DFS recursion is that the minimum height corresponding to
the three sides of the triangle is less than the specified minimum height. This requirement
is shown in Equation (1), where the minimum triangle height hmin is given.

S > max(l1, l2, l3) · hmin/2 (1)

The area of the triangle in Equation (1) is difficult to directly calculate. Therefore,
Heron’s formula, which is shown in Equation (2), is introduced, and the area is calculated
from the lengths of the sides. The recursive stop condition is shown in Equation (3).

S =
√

ε(ε− l1)(ε− l2)(ε− l3)
ε = (l1 + l2 + l3)/2

(2)

S ≥ 2 ·max(l1, l2, l3) · hmin (3)

The initial vertices are randomly selected as (10, 10, 0), (520, 100, 0), and (260, 410, 0),
and hmin equals 0.05. The filling results are shown in Figure 4a.
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However, there are a large number of unfilled lines in Figure 4a, and the filling effect
is not satisfactory. After the filling process had been analyzed, it was found that the
point filling method was harnessed in the filling, which could result in the points on the
straight lines from the center of the triangle to the vertices of the triangle not being filled. If
the number of filling points needs to be increased, the coordinates of the recorded point
during the filling process can be changed into the coordinates of each point above the line
connecting the recorded point and the vertex of the triangle with the same initial value
condition and iteration termination condition. The final filling result is shown in Figure 4b.
Compared to Figure 4a, Figure 4b is better filled, but the time taken to fill Figure 4b was
much longer than to fill Figure 4a. If the accuracy is not high or the time is short, point
filling is recommended. For high-precision conditions, linear filling is recommended.

2.3. Determining the Normal Vector of a Target Point on the Painting Trajectory

In order to ensure that the painting area is uniform during the painting process, it is
necessary to ensure that the axis of the end of the spray gun coincides with the normal
vector of the target point on the painting trajectory. Thus, the normal vectors of the target
model must be obtained. As is shown in Figure 3, the target points on the painting trajectory
can be divided into two types, which include the trajectory points obtained through the
filling algorithm and the vertices of the original triangle.

The points obtained by filling are still coplanar with the original triangles. The normal
vectors of the points obtained by filling can be determined with the normal vector of the
plane. The normal vectors of the triangles can be directly extracted from the STL file.
However, for the normal vectors of the vertices of the original triangle, there is a common
vertex of multiple triangles. Ergo, the normal phase of the plane cannot be employed
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instead of the normal phase of the points. In this paper, local plane fitting and principle
component analysis (PCA) estimation methods were harnessed to create the normal vectors
of the target points [19–21]. In order to acquire the target point field conveniently, the
k-d tree algorithm was harnessed to store the coordinates of the target points [22]. The
step-by-step algorithm is shown in Figures 5 and 6.
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In the actual processing procedure, the normal vector of the target model should take
its external normal phase, and the external normal vector of the model can be determined

by Equation (4), where
¯
p is the center of all target points, and ||x||2 is the second norm of

the vector x.

n =

{
n|‖(p + n)− p‖2 ≥ ‖(p− n)− p‖2
−n|‖(p + n)− p‖2 < ‖(p− n)− p‖2

(4)

2.4. Determining the Pose of a Target Point on the Trajectory

In the actual painting process, the pose matrix is often deployed to describe the rotation
of the target point in space. During the inverse kinematics calculation of the UR5 robot,
the pose of the target point needs to be described by the matrix, and Rodrigues’ rotation
formula can determine the pose of the target point by the axis direction of the target point.

The diagram of Rodrigues’ rotation formula is shown in Figure 7, where X1, Y1, and
Z1 represent the three axes, with O being the origin of the 3-dimensional Cartesian system
after rotating.
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The rotation matrix R is shown in Equation (5),

E cos θ + (1− cos θ)rT × r + sin θ ×

 0 −rz ry
rz 0 −rx
−ry rx 0

 (5)

where E represents the third-order identity matrix, and θ represents the angle created by
vectors n and n0. In Equation (5), r is the vector product of vectors n and n0; n0 = [0 0 1]T,
and n is the normal vector of the point.

2.5. Compression of the Data of Target Points

The design of the painting process parameters ensures that the end of the spray gun
will produce a circle with a radius of r at a specified distance. During the painting process,
it is necessary to ensure that the trajectory coverage during painting is 0.4. The painting
model is shown in Figure 8, and the coverage of Figure 8, denoted by p, is shown in
Equation (6).

p =
4r2 · arccos(d/2r)− d

√
r2 − d2/4

2πr2 (6)
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When the painting trajectory is executed, not all target points are to be painted. Only
the path of key points should be painted. The distance between key points should meet the
requirements of painting uniformity. In Figure 8 and Equation (6) d is employed to reduce
the time and space complexity of the trajectory planning. The compression formula for the
data points is shown in Equation (7).

k = f loor
(

d/
(√

3
))

Px = round(Px/k) · k
Py = round

(
Py/k

)
· k

pz = round(pz/k) · k

(7)



Appl. Sci. 2022, 12, 7219 7 of 25

where Px, Py, and Pz represent the x-y-z coordinates of the target points in the point cloud,
floor represents the floor function, which takes as input a real number q, and gives out as
output the greatest integer less than or equal to q, and round represents the round function,
which rounds off a numeric value to its nearest integer.

3. Nine-Axis UR5 Robot Forward Kinematics Model

The space that the UR5 robot covers is limited, and large-size objects may not be
painted at once. When an area that needs to be painted is outside the working space
of the UR5 robot, the D-H parameters of the UR5 robot must be changed, or auxiliary
equipment must be added to help with the painting. The former is costly. Changing joints
is not conducive to the popularization of UR5 robots. The proposed 6-DOF UR5 robot is
installed on a 3-axis motion platform that moves horizontally, laterally, and vertically to
assist painting. The 3D drawing of the UR5 robot is shown in Figure 9. The 9-axis UR5
robotic manipulator includes the 3-axis motion platform that has 3 prismatic pairs and the
UR5 robot that has 6 revolute pairs. The 6-DOF UR5 robot selected in this paper is a UR5
robot, which is shown in Figure 10.
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The pose of the actual UR5 robot end T is shown in Equation (8).

T = Trans(tx, ty, tz)Rot(x, π)TrobotTtoolTdis

Trans(tx, ty, tz) =


1 0 0 tx
0 1 0 ty
0 0 1 ts
0 0 0 1


Rot(x, π) =


1 0 0 0
0 cos π sin π 0
0 − sin π cos π 0
0 0 0 1


(8)

in which tx, ty, and tz represent the movement of the motion platform along the x, y, and z
axes, respectively, and Trans represents the movement operator. Rot represents the rotation
matrix of the x-axis. Ttool, which is shown in Figure 11, represents the pose of the end-
effector relative to its installation center. Tdis, which is also shown in Figure 11, represents
the end fixture of the UR5 robot’s position. Ttool is determined by the structure of the
end-effector, and Tdis is determined by the parameters of the end fixture of the UR5 robot’s
position. The UR5 robot system has 9 axes which are described in Figure 11. Axes 1 to 6 are
the 6 joints of the UR5 robot. Axes 7 to 9 are the three-dimensional Cartesian coordinate
system of the motion platform.
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Figure 12a is the structural diagram of the 6-DOF UR5 robot composed of 6 revolute
pairs, represented by 1, 2, 3, 4, 5, and 6 and 0 represents the end fixture of the UR5 robot.
In order to analyze the pose change of the UR5 robot’s end fixture coordinates relative to
the end-effector, the D-H model is harnessed to establish the kinematics forward solution
model of the UR5 robot.
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The UR5 robot’s pose change matrix in the D-H model is shown in Equation (9).

i−1
i T = Rot(z, θi)Trans(0, 0, di)Trans(ai, 0, 0)Rot(x, αi)

Rot(z, θi) =


cos θi sin θi 0 0
− sin θi cos θi 0 0

0 0 1 0
0 0 0 1

 (9)

In Equation (9), θi is the angle for which xi−1 spins around zi to become xi; di is
the distance between xi−1 and xi along zi; ai is the distance between zi and zi+1 along xi,
and αi is the angle for which zi spins around xi to become zi+1. Rot(z, θi) represents the
rotation matrix of the z-axis; θi, di, αi, and ai are shown in Figure 12b. i−1

i T is shown in
Equation (10), where s represents the sine function and c represents the cosine function.

i−1
i T =


cθi −sθicαi sθisα aicθi
sθi cθicαi −cθisα aisθi
0 sαi cαi di
0 0 0 1

 (10)

Trobot, which represents the pose of the UR5 robot, is obtained via Equation (11). The
UR5 robot’s pose should satisfy Equation (12), and the D-H parameters of the UR5 robot
are shown in Table 1.

Trobot =
6

∏
i=1

i−1
i T (11)

Trans(x, y, z)−1 ·Rot(x, π)−1 · T · Ttool
−1 =

6
∏
i=1

i−1
i T

(12)

Table 1. The D-H parameters of the UR5 robot.

i θi di/mm αi αi/mm

1 −2π to 2π 89.2 π/2 0
2 −2π to 2π 0 0 425
3 −2π to 2π 0 0 392.3
4 −2π to 2π 109.2 π/2 0
5 −2π to 2π 94.7 −π/2 0
6 −2π to 2π 82.3 0 0
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4. The Inverse Solution Model of Kinematics of the 9-Axis UR5 Robot

Nevertheless, since the system that controls the UR5 robot and the system that controls
the motion platform are separated, communication between the systems may cause prob-
lems, such as delays and errors. In order to improve painting accuracy, the motion platform
cannot be moved frequently. During the painting process, each time the motion platform is
moved, the UR5 robot paints an area. After the painting is completed, the motion platform
is moved again. The recommended operating space of the UR5 robot is shown in Figure 13.
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Figure 13. The working area of the UR5 robot.

The recommended working area in Figure 13 represents the feasible area recom-
mended by the UR5 robot. The area between the maximum working area, which is
represented by Max. working area in Figure 13, and the recommended feasible area
represents the non-recommended feasible area that the UR5 robot may not reach. The
non-recommended area represents the singularity of the UR5 robot. The non-recommended
area takes the largest cylinder contained in the green area in Figure 13 as the largest area
for each painting procedure.

However, the recommended area in Figure 13 is not a complete ball, and the cylindrical
area with a diameter of 151 mm is not recommended. If this area is removed, the volume of
the largest cylinder obtained is 0.25 times that without removal. Therefore, the platform
will be moved slightly. In order to move the platform as little as possible, the green area is
assumed to be a complete ball when the maximum cylinder is calculated.

In order to prevent the UR5 robot from colliding with the platform, it is necessary to
keep the end of the UR5 robot below its installation center during the movement of the
UR5 robot. The area under the side wall of the machine is taken as the effective area. The
volume of the cylinder included in Figure 13 is shown in Equation (13).

V = π(rcosθ)2 · (163− rsinθ) (13)

where r, θ, and V represent the maximal length of the UR5 robot, the radian of the inter-
section of the cylinder, and the maximum machining space of the UR5 robot, respectively.
When θ equals −0.54 rad, the volume of the cylinder is the largest. At this time, the
cylinder has a radius of 727 mm and a height of 602 mm. Due to the existence of the non-
recommended area, the UR5 robot inverse kinematics model is divided into a recommended
area inverse kinematics model and a non-recommended area inverse kinematics model.
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4.1. Inverse Solution Model for Recommended Regions

The three joint axes of the UR5 robot, joint axes 2, 3 and 4, which are shown in
Figure 14, are parallel, and their spatial structure satisfies the Pieper criterion. The closed-
form solution method can be harnessed to solve the angular sequence of the UR5 robot
joint under the target pose constraints.
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Equation (14) determines the pose of the end-effector of the UR5 robot.

6

ä
i=1

i−1
i T = (Trans(tx, ty, tz)Rot(x, π))−1 · T · (Ttool · Tdis)

−1 =


nx ox ax x

′

ny oy ay y
′

nz oz az z
′

0 0 0 1

 (14)

The main idea of the closed-form solution is creating the constraint equation estab-
lished by matrix changes. The constraint matrix of the UR5 robot, which is shown in
Equation (15), is established in accordance with Equation (11). The third row of the left and
right sides of Equation (15) is expanded to establish Equation (16). Equation (16) can be
regarded as the equation set of θ1, θ5, and θ6.

The procedure for finding the values of θ2, θ3, and θ4 is similar.

L = (0
1T−1)Trobot =

6

∏
i=2

i−1
i T = R (15)


cθ6sθ5
sθ6sθ5

cθ5
d2 + d3 + d4 + d6cθ5 + a5sθ5 + a6cθ6sθ5


T

=


nycθ1 + nxsθ1
oycθ1 + oxsθ1
aycθ1 + axsθ1
ycθ1 + xsθ1


T

(16)

By employing Equations (15) and (17), the result can be obtained in Equation (18),

L = (0
1T−1)0

6T(4
5T−1)(5

6T−1) =
4

∏
i=2

i−1
i T = R (17)
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R =


cθ234 0 −sθ234 a3 · cθ23 + a3 · cθ2 + a4 · cθ234
−sθ234 0 cθ234 −a3 · sθ23 − a3 · cθ2 − a4 · cθ234

0 −1 0 d2 + d3 + d4
0 0 0 1

 (18)

where θi1i2···in is defined in Equation (19).

θi1i2···in =
n

∑
j=1

θij (19)

In Equation (18), θ234, θ23, and θ2 can be acquired by the fourth column of R in
Equation (17); θ2, θ3, and θ4 can be obtained afterwards. In Equations (16) and (18), s
represents the sine function and c represents the cosine function. Nonetheless, the solution
involves a large number of inverse trigonometric functions, and the range of the angles
within which the UR5 robot’s joints move is −2π to 2π, which results in multiple solutions.
Therefore, the solution with the smallest Euler distance from the initial joint angle sequence
is selected.

4.2. The Inverse Solution Model for Non-Recommended Regions

In a non-recommended area, the UR5 robot may not be able to achieve certain poses.
It is necessary to move the motion platform to match the position of the UR5 robot. Then,
the inverse solution model of the manipulator can be changed to obtain the minimum
joint rotation radian and the number of movements of the manipulator’s motion platform
under posture and pose constraints. This problem is a nonlinear optimization problem with
constraints. Sequential quadratic programming (SQP) is an iterative method for constrained
nonlinear optimization. When the input value is close to the real solution, the algorithm
has a second-order convergence speed and can quickly solve the target solution [23,24].

4.2.1. The Objective Function and Constraints

In the process of solving the inverse kinematics, in order to avoid singularities, the
platform is allowed to move slightly. The number of movements of the platform and the
total arc of the UR5 robot joint give the objective function, which is shown in Equation (20).

f =

√√√√i=6

∑
i=1

(θi
r − θi)

2 + Kd

(
(xr − tx)

2 +
(
yr − ty

)2
+ (zr − tz)

2
)

(20)

where θi
r and θi are the actual joint curvature and the starting point arc of the UR5 robot.

The target point Kd represents the number of movements of the platform; xr, yr, and zr

represent the actual moving distance.
The error es is allowed in the actual working situation. The constraint condition should

be that the Euler distance between T and the target pose T’ is less than es, which is shown
in Equation (21). √√√√j=3

∑
j=1

(
0
6T j4 − 0

6T′j4
)2
− es ≤ 0 (21)

During the painting process, an error es’ between the end axis of the spray gun and
the target point axis is allowed. The pose constraints are shown in Equation (22).∣∣∣∣arccos

(
n · n0

|n| · |n0|

)∣∣∣∣ < es
′

(22)

where n is the normal direction of T to the z axis, and n0 is the normal direction of T’ to the
z axis.
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4.2.2. The Solution Process of the SQP Algorithm

The SQP algorithm decomposes the problem into the quadratic programming (QP)
sub-problem, obtaining the descending direction d by solving the current angle sequence θk
in the QP problem and updating θk+1 via d until the Karush–Kuhn–Tucker (KKT) condition
is satisfied or the maximum number of iterations is reached. The specific solving process of
the algorithm is described below.

(1) The Lagrange function L(θk, λ) of the current angular sequence θk is constructed,
and the expression of L(θk, λ) is shown in Equation (23).

L(θk, λ) = f (θk) + λg(θk) (23)

where λ is the Lagrangian multiplier, and λ ≥ 0.
(2) The descending direction d of the current angular sequence θk is obtained. Equation (23)

is converted into the solution to d, which is shown in Equation (24).

mind ∇ f (θk)
Td + dT Hkd

2
st : g(θk) +∇g(θk)

Td ≤ 0
(24)

In Equation (24), Hk represents the Hassel matrix of the Lagrangian function L(θk, λ).
(3) The angle sequence in which θk+1 equals θk plus d is updated, and whether the result

of the solution satisfies the KKT condition or reaches the maximum number of iterations is
determined. If the KKT condition is satisfied, the iteration is stopped. Step 2 is repeated if
the KKT condition is not satisfied. The KKT condition is shown in Equation (25) [25].

∇ f (θk) + λg(θk) = 0
λ ≥ 0

g(θk) = 0
λg(θk) = 0

(25)

In the KKT condition, the third condition means that the result of the solution satisfies
the constraint. If g(θk) equals 0, the KKT condition becomes5f (θk), which equals 0. If g(θk)
is smaller than 0 and λ equals 0, the KKT condition also becomes5f (θk), which equals 0.

5. The Painting Trajectory

During the painting process, not only should the trajectory of the motion platform be
planned, but the trajectory of the UR5 robot’s movement should also be planned. During
the painting process, the posture of the UR5 robot end is shown in Equation (26).

Trans(x, y, z) ·Rot(x, p) · Trobot = T · Tdis
−1 · Ttool

−1 (26)

Since Rot(x, π) only affects the directions of the x-axis and z-axis of the 3-dimensional
Cartesian system of the UR5 robot system, it does not change the range of the UR5 robot’s
operating space. Equation (26) can be transformed into Equation (27).

Trans(x, y, z) · Trobot
′
= T · Tdis

−1 · Ttool
−1 (27)

where T’UR5 robot equals Rot(x,π)·TUR5 robot.

5.1. The Trajectory of the Motion Platform

When the size of the object to be painted exceeds the maximum painting area of the
UR5 robot, the auxiliary movement of the motion platform is required to complete the
painting. During the painting process, the motion platform is moved to bring the UR5
robot close to the target area, and the UR5 robot paints the area. After painting, the motion
platform is moved again, and the UR5 robot paints another area. Then, the trajectory
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planning of the motion platform is optimized by taking the least number of movements of
the motion platform as the objective function.

Because the UR5 robot’s permitted painting space is a cylinder and the height of the
painted object is generally less than the maximum height of the painting space, the model
can be projected onto the xy plane. The model can be transformed to cover all target points
with the fewest circles.

5.1.1. The Minimum Envelope Rectangle of the Target Points

Since the number of target points is large, in order to simplify the calculation, a
rectangle enveloping the target points—instead of a set of target points—is harnessed.
The solution model, which is shown in Figure 15, is created by employing the minimum
rectangle method of the main direction target points. The dotted section in the figure
represents the target points; the blue line represents the main direction of the target points,
and the red rectangle represents the minimum envelope rectangle of the target points.
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The method for obtaining the principal direction of the plane is shown in Equation (28).

θ =
atan2(2M11, M20 −M02)

2
(28)

in which θ is the minimum angle between the major axis direction and the direction of the
positive side of the x-axis, and Mpq is the p + q order center moment of the projection surface.

Mpq is shown in Equation (29).

Mpq = ∑
x

∑
y
(x− x)p(y− y)q (29)

where x and y represent the center coordinates of the original target point.

5.1.2. The Minimum Number of Movements of the Motion Platform

When a circle fills a rectangle, the effective filling area of each circle is generally
rectangular. Then, the model can be simplified again by filling the target rectangle with
the smallest number of rectangles inside the circle. The filling model is generally shown
in Figure 16. The smaller rectangle in the figure represents the target rectangle that needs
to be filled. The larger rectangle represents the largest filled area, and the circular areas
outside the largest rectangle represent the areas not recommended for use by the UR5 robot.
Each circle represents the maximum processing range of the system each time. Px and Py
represent the vertical distance and horizontal distance between the target rectangle and the
largest filled area; l and h represent the length and width of the effective rectangle inside
each circle.
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The size of the rectangle inside the circle indicates the effective area size of the circle.
The length and width of the maximum inscribed rectangle in the circle are both

√
2r. The

length and width of the inscribed rectangle of the circle are generally close to
√
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target rectangle is selected. The constraints of the filled model are shown in Equation (30).
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where [lmax/
√

2r] represents the largest integer that does not exceed lmax√
2r

.
Since the number of circles in Figure 16 is an integer, there are many kinds of Px, Py,

h1, and h2 satisfying Equation (29). However, the UR5 robot’s non-recommended area may
cause the movement of the motion platform. The minimum number of target points in the
non-recommended area during processing is the optimization goal, and the optimal Px, Py,
h1, and h2 are obtained by employing the exhaustive method.

5.1.3. The Movement Sequence of the Motion Platform

Reasonably planning the movement sequence of the motion platform can reduce the
movement of the motion platform. During processing, the initial point of the motion
platform is at zero. The movement sequence planning model of the motion platform can
be transformed into a TSP model starting from zero and returning to zero after accessing
all target circle centers. Because the number of points is low, the problem lies in creating a
small TSP model. The problem can be directly solved by employing the example method.
Since each axis of the motion platform is controlled by a separate motor, the Halton distance
between two points is taken as the weight when creating the TSP model.

5.2. The Kinematic Trajectory of the UR5 Robot

According to Figure 8, some painting areas overlap, and, therefore, the greedy principle
is harnessed to include as many target points as possible for each time of painting. The
painting process requires uniform motion during the painting process, and, therefore, the
shorter the total painting path is and the shorter the painting time is, the higher the painting
efficiency is.



Appl. Sci. 2022, 12, 7219 16 of 25

When each area is painted, the painted model can be transformed into a TSP model that
finds the shortest path which can access all of the target points [26]. When different areas
are painted, in order to prevent the UR5 robot from colliding with the processed objects,
the UR5 robot’s joints must be moved after returning to the origin of the 3-dimensional
Cartesian system. Then, the UR5 robot kinematics trajectory planning model can be
transformed into the solution of multiple TSP models.

However, due to the large number of points to be painted, this model is a large TSP
model. Genetic algorithms (GA) are harnessed to create each TSP model [27,28].

5.2.1. The TSP Model Based on the Genetic Algorithm

A genetic algorithm-based computational model that simulates the evolutionary
process of natural selection and genetic mechanisms of Darwin’s theory of evolution is
proposed. The genetic algorithm does not need continuous function limitation and has
a better global optimal solution. The core method of GA is to evaluate the fitness of all
individuals in each generation of the population and select some individuals for genetic
selection, crossover, and mutation to form the next generation population. The main
solution steps of the genetic algorithm are shown in Figure 17.
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5.2.2. Operations Related to the Genetic Algorithm

(1) Coding method: all target points are encoded into one chromosome GiGj . . . GwGk,
and Gi in the chromosome represents the i-th number of the target point. In this genetic
algorithm, each individual has one and only one chromosome.

(2) Weight: the Euler distance between two points is taken as the weight between the
two points.

(3) Chromosome distance and individual fitness: the fitness of the individual f equals

N/
n
∑

i=2
di(i+1), where N represents the gain coefficient. The value of N only affects the value

of fitness and does not affect the final TSP solution result.
(4) Selection operation: the fitness of the population is calculated; the best individual

is screened, and the coding method of the individual is retained. For the remaining
individuals, the individual distribution function is calculated in accordance with their
individual fitness. The maximum and minimum normalization algorithms are employed
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to normalize the distribution function to 0-1. The selection operation process is shown in
Figure 18.
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(5) Crossover operation: in order to ensure the positive optimization of the genetic
algorithm, crossover operations are performed only on non-optimal individuals in the
population. The crossover operator uses the Order Crossover operator. The crossover
algorithm is shown in Figure 19, where Pc represents the crossover probability.
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(6) Mutation operation: in order to prevent the GA from falling into a local optimal
solution, an adaptive mutation rate is harnessed. The equation for calculating the mutation
probability is shown in Equation (31),

Pm =

{
K1( fmax− f )

fmax− favg
, f ≥ favg

k2 , f < favg
(31)

where f max represents the maximum fitness of the group; f is the fitness of the individuals
to be crossed. K1 and K2 are the adaptive parameters. The mutation operation is shown in
Figure 20.
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6. Simulation Experiments

The spray gun of model WA-101 was adopted as the painting equipment, and the offset
distance of the spray gun from the UR5 robot end axis was Ttool = Trans (5.5, 94.5, 165.5).

The painting process requirements are described in this paragraph. The distance
between the fixture and the target point was Tdis, which equals Trans (0, 0, 113), and
the end of the spray gun generated a circle with a radius of 50 mm at this distance. The
maximum position error of the target point was 5 mm, allowing a 5◦ error between the
gun’s end axis and the target’s normal vector.

6.1. The Pose Acquisition of the Target Objects

The analysis of the STL file of a car is shown in Figure 21, and the point cloud model
of the car is shown in Figure 22. The shapes and sizes of Figures 21 and 22 are the same as
the actual three-dimensional model. The target extraction algorithm proposed in this paper
has promising practicality.
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Figure 22. The point cloud model of the car.

The part of the car roof where z coordinates are larger than 1000 mm was taken for the
target points for painting. The normal vector at the end of the target point was created by
employing the PCA algorithm, as is shown in Figure 23 (because the performance of the
computer graphics card was not satisfactory, and only the normal phase of some points is
shown in the figure). As can be seen from Figure 23, the normal vectors of the target points
conform to the shape of the roof, and the algorithm can better establish the normal vectors
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of the target points. After the variable r in Equation (6) had been given a value of 50, the
model of the compression points of the car roof, which is shown in Figure 24, was achieved
as per Equation (7). After Figures 23 and 24 are compared, it is clear that the size and shape
of the target points remain unchanged after compression.
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6.2. Simulation of the Establishment of the Motion Platform Trajectory

After Equation (27) is given values Ttool and Tdis, the distribution of points at the ends
of the UR5 robot joints is shown in Figure 25. By utilizing the smallest rectangle model in
Figure 15, the smallest rectangle containing the target points was obtained, which is shown
in Figure 26.
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The rectangle in Figure 26 has a width of 2635 mm and a length of 1959 mm. Data
in Figure 26 were extracted and employed in Figure 16 and Equation (30) to obtain the
preliminary partition model of the target points, which is shown in Figure 27.
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The model in Figure 27 was created by the exhaustive method. The result is shown in
Figure 28, which describes the minimum number of target points in the non-recommended
area when h1 and h2 are determined. The blue areas in the figure represent an invalid
combination that does not satisfy Equation (30). In this optimal combination, h1 equals 980
mm; h2 equals 980 mm; Px equals 7 mm; and Py equals 3 mm.
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The model in Figure 27 was given values Px, Py, h1, and h2 to obtain the partition
model of the target points which are shown in Figure 29. The red circles in Figure 29 are the
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maximum processing area and the non-recommended processing area of the UR5 robot. C1
represents the coordinates of the i-th circle, and the coordinates of Ci are shown in Table 2.
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Table 2. The center point Ci.

Ci X/mm Y/mm

1 469 2685
2 465 1611
3 461 537
4 1451 552
5 1447 1622
6 1443 2691

All of the possibilities in Figure 29 were iterated, and the processing order with the
smallest total movement of the motion platform was taken. The final painting order of the
UR5 robot was C1 C2 C3 C6 C5 C4. The painting intervals of the UR5 robot are shown in
Figure 30. The dots in different colors in Figure 30 represent different painting intervals.
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6.3. The Establishment of the Motion Platform Trajectory

The target points with the same color in Figure 30 were introduced into and utilized
in GAs, and the population number was set to 5000. The maximum number of iterations is
25,000, and the cross probability was 0.9. K1 equals 0.15, and K2 equals 0.2 in the selection
probability. The GA solution process is shown in Figure 31, and the final painting trajectory
is shown in Figure 32.
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6.4. The Inverse Kinematics Simulation of the UR5 Robot

When the UR5 robot found its inverse kinematics, it generated multiple solutions.
When the UR5 robot’s inverse kinematics were being solved, the angle values of the target
points on the previous painting trajectory were harnessed as the initial angle values, and
the target points on the final painting trajectory in each colored area with the smallest
radian changes from the initial angle values were selected. The solution was the inverse
kinematics of the target points. The position errors and axis errors of the statistical UR5
robot simulation are shown in Figures 33 and 34, respectively.
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As per Figures 33 and 34, the errors are within the technical requirements of painting
large objects, and the algorithm has satisfactory engineering practicability. Since the main
solution in this paper was an analytical solution, when the joint radian of the UR5 robotic
manipulator’s motion platform in the recommended area needed to be solved, an iterative
method was harnessed to solve Equations (14) to (18).

7. Discussion and Conclusions

This paper proposes an algorithm that employs a nine-axis robotic manipulator to
automatically paint large objects. With the proposed algorithm, automatic processing of
complex objects is achieved. The algorithm is divided into three aspects that consist of
extraction of the target model, the establishment of the inverse kinematics model of the
manipulator, and the planning of the target trajectory.

In the section of the proposed algorithm for extracting the target model, as per the
STL file of the target trajectory, the triangles of the target trajectory are extracted. A full 3D
data point cloud model is obtained with a triangle-based filling algorithm. Subsequently,
the PCA algorithm is harnessed to identify the normal vectors of the target points inside
the point cloud model. With the normal vectors, Rodrigues’ rotation formula is harnessed
to extract the pose of each point of the painting trajectory. Finally, the number of target
points is compressed to reduce the time and space complexity of the algorithm so that the
painting process requirements can be satisfied.

In the section of the proposed algorithm where the inverse kinematics model of the
manipulator is established, in conformity with the processing range of the robot, the inverse
solution algorithm is divided into the inverse solution of the recommended region and the
inverse solution of the non-recommended region. The corresponding inverse kinematics
model is established by employing the closed-form solution method and SQP, respectively.

During the planning of the painting trajectory, in line with the point cloud model of the
target points, the minimum envelope rectangles of the target points are found. The target
points are divided into different painting areas in accordance with the minimum rectangles.
For each painting area, a TSP trajectory planning model based on GA is harnessed to plan
the robot’s painting trajectory with which the inverse kinematics model of the UR5 robot
is created.

Not only does the trajectory created by the proposed algorithm consider the singu-
larities of the kinematic joints of the UR5 robot joints, but it also helps the UR5 robot
to paint large objects with precision and efficiency. Multiple reliable simulations of the
painting process on the car roof surface were conducted, and the results show that the
algorithm can meet the technical requirements of painting and that the algorithm has
promising practicability.

The proposed algorithm has several benefits. The trajectory created by the proposed
algorithm allows the motion platform of the UR5 robotic manipulator to have the least
amount of movement while the UR5 robot paints a large object. Therefore, the proficiency
of the painting process can be significantly improved. The standard triangle language
(STL) file, algorithm of principal component analyses (PCA), and k-dimensional tree (k-d
tree) were employed to obtain the point cloud model of the car roof to be painted. The
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point cloud model was later converted into multiple traveling salesman problem (TSP)
models, each of which was created with genetic algorithms (GAs). In this way, the UR5
robot could identify the object to be painted and generate a trajectory to paint the large
object more efficiently.

However, limitations still exist in the current research. The closed-form solution
method and SQP were employed to establish the inverse kinematics model of the UR5
robot. SQP is not intelligent enough and still requires a myriad of training solutions. If a
more intelligent neural network model had been utilized, the preparation time for the entire
painting process would have been reduced. In this research, only the painting trajectory
was created, but the dynamics and velocity-planning of the UR5 robot were not involved.
Therefore, future studies need to focus on a more intelligent neural network model that
helps to establish the inverse kinematics model of the UR5 robot as well as the dynamics
and velocity-planning of the UR5 robot.
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