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Abstract: Initial tunnel support takes on a critical significance in the stability control of surrounding
rocks and the core content of tunnel support design. Its stability and safety are essential to the tunnel.
The support load was optimized using the active surrounding rock load intervention scheme in
accordance with the section form and bearing characteristics of the support structure. The optimiza-
tion scheme of active surrounding rock load was obtained by applying active intervention load to
the initial support of the tunnel to minimize the peak moment of the support structure. An active
adjustment system for tunnel-surrounding rock loads was developed using the function of hydraulic
load transfer and transmission combined with load proportion control. Based on the actual project,
the implementation effect of the surrounding rock load active intervention scheme was verified by
analyzing the measurement results of the supporting structure in the test section and the comparison
section. The results suggest that the application of active intervention load can effectively improve
the stress state of the tunnel initial support structure, significantly reduce the tunnel surrounding
rock bias pressure and the structural peak bending moment, and increase the stability of the support
structure. To control the peak moment of the supporting structure, an active intervention method and
its implementation scheme for the stress of the tunnel supporting structure were proposed, which
reduces the deficiency in which the conventional supporting structure can only passively bear the
deformation pressure of the surrounding rock, effectively improves the stress state of the supporting
structure, and can provide a reference for the development of novel tunnel supporting forms.

Keywords: tunnel; initial support; active support load; load optimization; comparison experiment

1. Introduction

The interaction of a tunnel’s surrounding rock supports has been a focus of research
globally [1–3]. The tunnel support structure is complex and difficult to predict, especially for
initial support, for which loads originate directly from the surrounding rock that is closely
attached to it [4,5]. The actual load distribution law of surrounding rocks is extremely
complicated due to the uncertainty of construction, the complexity of surrounding rock,
and the variability of environment [6]. The measurement results suggest that the stress
concentration bias, and uneven distribution of the surrounding rock load are common in
the initial support [7–9]. The tunnel support system can be considered as a curved beam
structure in its cross section, and its stability is correlated with the load’s size. The load
distribution mode also significantly affects the stability of the system and may even play
a leading role [10]. Accordingly, optimizing and adjusting the load distribution mode
of tunnel support structure takes on a great theoretical and practical significance in the
structural safety of the tunnel construction period, disease control of the tunnel operation
period, and subsequent lining optimization design. The initial support of the tunnel should
bear all the surrounding rock loads at the early stage, and its stress characteristics are
correlated with the safety of the tunnel construction period and the load distribution of the
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subsequent secondary lining. The initial support of the tunnel is the key stress structure
in the tunnel support system [11,12]. The existing research has achieved fruitful results
in the interaction relationship of support surrounding rock, as well as in the analysis and
evaluation of support stress.

In 1912, the Swedish geologist Haim put forward the hypothesis of isotropic isobaric
pressure, holding that the surrounding rock pressure comprises approximately hydrostatic
pressure and that the surrounding rock load borne by the support structure is the self weight
of the overlying surrounding rock. In 1926, according to the elasticity theory, the former
Soviet scholar Jinnet modified the Heim hypothesis and modified the lateral pressure
coefficient [13]. With the increase in tunnel excavation depth, Terzaghi and Protodyakonov
found that the application of classical pressure theory was limited. They improved on this
basis and put forward the collapse arch theory. At this stage, it was considered that the
reaction force provided by the support is not all of the overlying load, and it was recognized
that the surrounding rock has a certain self-bearing capacity [14]. In the 1950s, people
began to use elastic plastic mechanics to solve the problem of roadway support, among
which the most famous are the Fenner and Kasterner formulae. These calculation methods
provide the internal force distribution of the supporting structure in the ideal state [15].
In the 1960s, Austrian scholar L.V. Rabcewicz put forward the New Austrian Tunneling
Method Theory (NATM). The idea of this theory is to make full use of the self-bearing
capacity of the surrounding rock, and the surrounding rock itself becomes an important
part of the supporting structure; the result is a jointly formed bearing circle comprising the
surrounding rock and the supporting structure [16,17]. In the 1970s, Salamon and others
put forward the energy support theory, and they believed that although the total energy
contained in the surrounding rock was conserved, the surrounding rock released part of
the energy in the process of interaction and synergistic deformation between the support
structure and the surrounding rock; this part of the energy was absorbed by the support
structure to achieve stability [18]. In the 1980s, Professor Lunardi from Italy carried out
theoretical and field test research on hundreds of tunnels and gradually established the
geotechnical control deformation analysis method (ADECO-RS method). This new support
method proposes that the load and deformation of the tunnel structure should be considered
before the excavation stage [19]. At the end of 1990s, K. Ovan proposed the concept of
“yield control” type support, i.e., the support is deformed altogether with surrounding
rock before failure [20]. Subsequently, G. Anagnoston and L.Cantieni highlighted that
yield support can be achieved in two forms. One is to fill the compressible layer after
rigid support, and the other is to use the combination of sliding steel frame and high
compressibility shotcrete [21]. Yield support has been applied in a considerable number
of tunnels.

Different forms of fine control methods of load have been proposed as more insights
have been gained relative to the interaction between the surrounding rock support. Nu-
merous studies have been conducted worldwide on the stress characteristics of the initial
support and how to adjust the support stress over the past few years. “Flexible support”
and “pressure-yielding structure” have been proposed based on the concept of energy
absorption and energy dissipation of surrounding rock to adjust and increase the support’s
force. For instance, lining supports, yielding anchor bolts, and retractable steel arches have
been extensively used in the mining field [22,23]. Zhang et al. systematically investigated
the stress characteristics, failure process and evolution characteristics, ultimate bearing ca-
pacity, and deformation of different initial supports by conducting model experiments [24].
In accordance with different yield criteria, Hou et al. investigated the entire process of
support–surrounding rock interactions based on the ideal elastic plastic model [25]. Sun
et al. introduced the spatial effect of excavation surfaces into the interaction relationship
between the support and surrounding rock and studied the entire process of dynamic
interaction between support structure and surrounding rock at the early stage of deep
buried tunnel [26,27]. Qiu et al. proposed the “limited support resistance damper”, and
it is capable of effectively limiting the internal force of the support and controlling the
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stress release of the surrounding rock, which is used to solve the problem of tunnel support
cracking caused by excessive stress [28]. Sun et al. proposed a “flexible support” scheme
(e.g., yielding support bolts) to control the continuous large deformation of surrounding
rock [29]. Existing research has been essentially based on the support characteristic curve
of the surrounding rock of tunnel. The purpose of adjusting and controlling the support
load is achieved by adjusting support stiffness and support timing, which facilitates the
development of the theoretical tunnel system. However, there are also some shortcomings.
For instance, it is difficult to design different load distributions of the surrounding rock
according to different tunnel cross-section forms for increasing the bearing capacity and
long-term safety of the support structure; the bias load cannot be corrected.

On the basis of previous research, this paper proposed a transfer and transmission
method of tunnel surrounding rock load. To minimize the bending moment of the tunnel
support structure, the load of the tunnel support system was optimized by applying
active linkage adjustment loads to the initial support, which was verified in the practical
engineering and provides a reference for the future tunnel support design.

2. Principle of Optimal Adjustment of Tunnel Support Load
2.1. Transfer and Transmission Mechanism of Tunnel Surrounding Rock Load

After tunnel excavation, the stiffness of support structure tends to play a certain role
and provides support reaction with the continuous development of support construction
and subsequent surrounding rock deformation. In general, the magnitude of the support
reaction is correlated with the deformation and support stiffness. The tunnel support
structure can be considered a curved beam structure in the cross section. The peak bending
moment of the curved beam structure can be reduced by adjusting the load distribution of
the structure. After the linkage of loads is established at different positions in the support
cross section, load transfer can be achieved, and the load distribution mode of surrounding
rock can be adjusted and optimized. The final phenomenon aims at increasing the overall
safety and stability of the tunnel support system. The specific principles are presented as
follows (Figure 1).
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Figure 1. Load transfer and transmission principle.

As depicted in the figure, a load transfer adjustment device was set up at a certain
distance between the support structure and surrounding rock, and then the adjustment
devices at different positions were connected in series through the oil pipe, thus rendering
correlations between the loads at different points. The adjustment of load size at different
positions was controlled by the cylinder diameter in the adjustment device. To produce
a ratio of PA, PB, and PC in the figure in the form of x:y:z, the ratio of diameters of the
adjusting oil cylinder A, B, and C was set to

√
x :
√

y :
√

z. Subsequently, the load at the
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adjusting point will always be adjusted in accordance with the original ratio regardless of
the change of the surrounding rock load.

In theory, if the adjustment points are dense enough, any form of load distribution
mode can be obtained using the above method, which is equivalent to establishing a load
transition adjusting layer between the surrounding rock and the support structure of the
tunnel. The adjusting layer correlates the different loads in the support cross section at
a specific proportion using the convergence constraint theory of the surrounding rock
and the load transfer mechanism of hydraulic adjustment devices. Next, the appropriate
proportion of load adjustment distribution was calculated according to the shape of tunnel
section; thus, the active optimization adjustments of tunnel-surrounding rock loads can
be achieved.

2.2. Load Adjustment Distribution Ratio

Under actual conditions, setting adjustment points that are too dense is unlikely.
According to the form and quantity of steel arch frames comprising a tunnel’s cross section
combined with the convenience of field implementation and other factors, 15 adjusting
units were finally determined and arranged in a cross section for a standard three-lane
highway tunnel, and the specific distribution positions are presented in Figure 2.
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After redundant unknown forces X1, X2, and X3 were calculated from the force method
equation, the equilibrium conditions of the isolator or the internal force superposition
formula can be used to yield the following formulas:

M = X1 + X2(y− ys) + X3x + MP
FQ = X2 sin ϕ + X3 cos ϕ + FQP

FN = −X2 cos ϕ + X3 sin ϕ + FNP

 (4)

where MP, FQP, and FNP denote the bending moment, shear force, and axial force of the
section of the basic structure under load, respectively. The internal force of the structure
layer was obtained.

Due to the symmetry of the structure, load, and constraint, the stress of the lining
structure was also symmetrical. Thus, the left half was selected for analysis. Lastly, the
distribution of tunnel bending moment caused by the adjustment of load was examined, as
shown in Figure 4, under the condition that all eight adjustment loads were of unit 1.
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Figure 4. Bending moment distribution caused by unit adjustment load.

By adjusting the size and proportion of loads at different points, the bending moment
of tunnel lining structure was the smallest when the adjusting proportion was distributed
as illustrated in the Figure 5.
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Figure 5. Structure bending moment under optimized adjustment load.

Likewise, the same method can be adopted to obtain the stress of tunnel support
under conventional load. The analysis model and calculation results are shown in
Figures 6 and 7 respectively.
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The above analysis suggests that when the load of the regulating unit of the arch is
1, the arch shoulder and the side wall correspond to 1.2 and 1.4, respectively, and a better
load optimization adjustment effect can be achieved, as shown in Figure 8.
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To analyze the effect of the tunnel load adjusting unit on the support force of the
tunnel, the shallow buried standard three-lane highway tunnel under grade V surrounding
rock was selected as the analysis object. Tables 1 and 2 list specific calculation parameters.

Table 1. Mechanical parameters of surrounding rock [30].

Elastic Resistance
Coefficient
K (MPa/m)

Unit Weight γ (KN/m3) Poisson Ratio µ Lateral Pressure Coefficient λ

150 17 0.4 0.667

Table 2. Mechanical parameters of lining.

Unit Weight γ (KN/m3) Elastic Model E (GPa) Poisson Ratio µ Note

25 29.5 0.2 Width of lining section × height = 100 × 30 cm

Lastly, Figure 9 presents the bending moment of tunnel lining structure before and
after implementation.

The above result showed that the stress state of the tunnel lining structure changed
significantly before and after the implementation of load adjustments. Under the control of
appropriate load adjustment ratios, the bending moment of the part above the arch foot of
the tunnel structure was significantly reduced, with a maximum reduction of 78%.

The structural form of the tunnel initial support in the cross section was similar to the
arch’s structure. Using the principle of the best arch axis for reference, the peak bending
moment of the support structure can be effectively reduced and the load distribution of the
support structure can be optimized by adjusting the pressure of the support reasonably
under the surrounding rock to increase the safety and stability of the support structure. Tak-
ing the three-lane highway tunnel as an example, applying 15 active load adjustment points
on the arch ring of the support structure can significantly improve the stress experienced
by the tunnel support structure.
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3. Design of the Load Adjustment System

The above analysis reveals that a load adjustment layer can be set between the initial
support of the tunnel and the surrounding rock. The load optimization adjustment system
of the tunnel surrounding rock support system comprised a load adjusting unit (Figure 10),
serial oil pipes, pressure equipment, anchor bolts, etc. (Figure 11).

A certain number of load adjusting units were installed symmetrically on the arch
frame of the tunnel, and the units were connected in series with high-pressure oil pipes
to form a closed and connected loop. Different adjusting units had different load ratios
(Figure 12). The optimization and adjustment of load in tunnel cross section can be achieved
by controlling the position and load ratio of the adjusting units.
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The adjustment system can apply prestress at the early stage. Subsequently, the load
was automatically adjusted during the convergence process of the surrounding rock of the
tunnel, and a load linkage between the adjusting units was achieved; finally, the anchor
bolts were used to determine and maintain the final stress after the surrounding rock was
basically stable. The hydraulic load adjustment system largely comprised three parts,
including load adjusting unit, oil pipeline hose, and accessories. The accessories consisted
of a high-pressure ball valve, pressure gauge, etc.
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The load distribution ratio of the load adjusting unit was divided into three types,
which were symmetrically arranged on the left and right sides. The load proportion was
achieved by the change of the area of the oil cylinder at the bottom of the adjusting unit.
Figure 11 presents the specific proportion distribution.

The adjusting units were connected by high-pressure oil pipes, the opening and closing
control was managed by a ball valve, and a pressure gauge was connected to monitor
the pressure.

The adjusting unit and the initial support I-beam of the tunnel were welded into one
through the connecting plate. According to the overexcavation and underexcavation of
the tunnel section, the screw was adopted to adjust the force-bearing tray to contact with
surrounding rock. The adjusting units in the same section were connected in series through
oil pipes to ensure that the same hydraulic pressure exists in the system in order to optimize
the stress experienced by the tunnel’s lining using the load adjustment ratio.

A total of 15 interconnected hydraulic cylinders were used. The respective cylinder
represents a load adjustment point. Each cylinder had the same hydraulic pressure inside.
Different cylinder piston areas were configured in accordance with the load adjustment ratio
to form a cross-sectional load adjustment unit. The load adjustment unit was constructed
together with the initial support, and the initial hydraulic pressure was applied at the first
time after the completion of construction. The adjustment point was closely attached to the
surrounding rock to bear the surrounding rock load. Subsequently, with the development
of the convergence deformation of the surrounding rock of the tunnel, the load between
the load adjustment points was automatically adjusted according to the preset proportion
to minimize the bending moment, i.e., the stress optimization goal of the support structure.

4. Field Implementation Effect of Load Adjustment System

Miaoshan tunnel in Ningbo city, Zhejiang Province, was selected as the support project,
which is part of the Shenhai Expressway connecting line project in the Meishan Port Area
of Ningbo Zhoushan Port. The tunnel section is a standard three-lane highway tunnel with
compound lining. The implementation interval was IV and V grade surrounding rock, and
the implementation length was 100 m. The field implementation is shown in Figure 13.

The monitoring sections with similar surrounding rock conditions were selected to
set in the implementation section and the conventional section (Figure 14), and the load
adjustment results were examined through comparative analysis.
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Figure 13. Field implementation effect of load adjustment unit.

The sensor was fixed on the steel arch together with the embedded parts in the
front section. Five implementation sections were selected as test sections to develop
monitoring and analysis schemes to examine the deformation and stress of the surrounding
rock support structure of the tunnel. Besides conventional settlement and convergence
monitoring of the tunnel, the following optional testing items were added:

(1) Contact pressure between surrounding rock and initial support;
(2) Internal force of the initial spray mixed and steel arch;
(3) Internal force of concrete and steel reinforcement in the second lining mold;
(4) Pressure monitoring of the adjustment system.

The monitoring system adopted the remote automatic acquisition method and sent
back field monitoring data in real time.

The comparison diagram before and after adjustments shows that the stress on the
tunnel structure was more uniform as a whole (Figure 15), and the stress concentration
phenomenon was alleviated and improved significantly. The maximum value decreased
from 9.2 Mpa before adjustment to 4.1 Mpa, and the load difference at the same symmetric
position also decreased significantly from 4.78 Mpa to 0.34 Mpa. As revealed by the
above results, the load adjustment system can effectively reduce the effect of bias on
tunnel structure.

The axial force of reinforcement meter on the internal and external sides of the steel
arch before and after adjustment was compared (Figure 16). The comparison result showed
that the distribution range of axial force of reinforcement meter was larger in the section
without load adjustment, and the maximum axial force appeared at the arch shoulder of
comparison section 1, with the quality of 26.9 kN. After adjustment, the maximum axial
force also appeared at the arch shoulder, with the size of 8.73 kN. The maximum difference
between the internal and external axial forces of the compared section was 17.8 kN and
that of the adjustment section was 5.4 kN.
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The load adjustment system can significantly improve the stress of the structure,
particularly improving the pressure difference between the inner and outer loads caused
by the bending moment.

Based on the synergistic action mechanism of steel arch and shotcrete, combined with
the design parameters and monitoring data of tunnel structure, the bending moment of the
tunnel structure can be reversely obtained (Figure 17).

The results showed in Figure 18 that the maximum bending moment of the comparison
section was located at the arch shoulder. The maximum value of the first comparison
section was 55.7 kN·m, and the maximum value of the second comparison section was
34.9 kN·m. The maximum bending moment of the first adjustment section was 12.4 kN·m,
the maximum bending moment of the second adjustment section reached 16.8 kN·m, and
the maximum bending moment of the third adjustment section was 7.4 kN·m. The results
of a single section indicated that the absolute value of the maximum bending moment
decreased from 55.7 to 16.8, marking a decrease of nearly 70%. The average maximum
value of the comparison and adjustment section decreased from 45.3 before adjustment to
12.2 after adjustment, marking a decrease of 73.1%.
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Figure 18. Reduction in bending moment of the tunnel before and after adjustment.

Based on actual tunnel engineering, the active surrounding rock load intervention
scheme was implemented in the novel tunnel to optimize and adjust the support load. The
analysis and comparison of the internal force monitoring data of the support structure in
the regulation section and the conventional comparison section suggest that the application
of the active support load significantly changes the stress state of the initial support, the
overall stress of the tunnel structure under the active support load is more uniform, the
stress concentration phenomenon is significantly alleviated, and the peak bending moment
and bias pressure of the support structure are effectively reduced.

5. Conclusions

The active intervention means and realization methods of the surrounding rock load
were investigated with the minimization of the peak moment as the control objective in
accordance with the stress characteristics of the initial tunnel support cross-section structure.
The application and verification of the actual project was applied and verified, and positive
results were achieved. The main conclusions are drawn as follows:
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(1) The overall stress characteristics of the initial support structure of the tunnel can be
optimized by locally applying active adjustment loads. To minimize the peak value of
the bending moment, 15 load adjustment units were adopted to apply active loads. A
certain proportion of different active loads can be maintained, which can optimize the
initial support structure of the tunnel.

(2) The regulating system is capable of render the load distribution of tunnel structure
more uniform, reducing the occurrence of stress concentration and inducing load
transfers in the surrounding rock, which is consistent with the optimal stress state of
tunnel structure cross section. The load adjustment system can reduce the structural
bending moment significantly, and the adjustment effect can significantly enhance the
asymmetry of the left and right loads of the tunnel; thus, the tunnel’s bias effect can
be significantly alleviated.

(3) The application of the pre-stressed force of the regulating system effectively reduced
the relaxation load of the surrounding rock. When the active reaction force is applied
first, the stress state of the surrounding rock is improved to a certain extent, thus
leading to a reduction in the overall load. The reduced part of the load is borne by the
surrounding rock.

Expectations: The current tunnel support system comprises mainly passive support.
The stress of the support structure primarily originates from the deformation load of
surrounding rock and the self-weight of loose surrounding rock. The size and distribution
of the deformation load and loose self-weight load of surrounding rocks are complex and
irregular, thus making it difficult to predict the load state of the tunnel support structure.
The active support system is effective in solving the above uncertainties. The stress of the
support structure can be adjusted and optimized after support construction by constructing
a load transition layer or local load adjustment point between the tunnel surrounding rock
and the support. In this study, a load adjustment scheme for local load adjustment points
was implemented. The main research object was the support structure. In the future, the
effect of active adjustment loads on the stability of surrounding rocks should be studied in
depth. Furthermore, other forms of active surrounding rock load intervention means and
methods should be investigated.
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