
Citation: Ai, X.; Wang, Y. The Cube

Surface Light Field for Interactive

Free-Viewpoint Rendering. Appl. Sci.

2022, 12, 7212. https://doi.org/

10.3390/app12147212

Academic Editors: Nikolaos

Doulamis, Nikos Grammalidis and

Kosmas Dimitropoulos

Received: 22 June 2022

Accepted: 12 July 2022

Published: 18 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

The Cube Surface Light Field for Interactive Free-Viewpoint
Rendering
Xiaofei Ai 1 and Yigang Wang 2,*

1 School of Computer Science, Hangzhou Dianzi University, Hangzhou 310018, China; xiaofeiai@hdu.edu.cn
2 School of Media and Design, Hangzhou Dianzi University, Hangzhou 310018, China
* Correspondence: yigang.wang@hdu.edu.cn

Abstract: Free-viewpoint rendering has always been one of the key motivations of image-based
rendering and has broad application prospects in the field of virtual reality and augmented reality
(VR/AR). The existing methods mainly adopt the traditional image-based rendering or learning-
based frameworks, which have limited viewpoint freedom and poor time performance. In this paper,
the cube surface light field is utilized to encode the scenes implicitly, and an interactive free-viewpoint
rendering method is proposed to solve the above two problems simultaneously. The core of this
method is a pure light ray-based representation using the cube surface light field. Using a fast
single-layer ray casting algorithm to compute the light ray’s parameters, the rendering is achieved by
a GPU-based three-dimensional (3D) compressed texture mapping that converts the corresponding
light rays to the desired image. Experimental results show that the proposed method can real-time
render the novel views at arbitrary viewpoints outside the cube surface, and the rendering results
preserve high image quality. This research provides a valid experimental basis for the potential
application value of content generation in VR/AR.

Keywords: image-based rendering; light field; texture mapping; ray casting; virtual reality

1. Introduction

Image-based rendering is a technique of generating a rendering result of an unknown
viewpoint by interpolating through the collected image dataset [1]. One of its research mo-
tivations is the free-viewpoint rendering, i.e., to synthesize images at arbitrary viewpoints
from discrete as well as sparse pre-captured images using appropriate transformations [2,3].
This kind of method does not require building three-dimensional (3D) mesh models of
the scene in advance, and has broad application prospects in content generation, espe-
cially in the field of virtual reality and augmented reality (VR/AR). However, existing
free-viewpoint rendering mainly adopts either the traditional image-based methods or the
learning-based frameworks, and there are still many problems to be further studied.

One of the problems is the limited viewpoint freedom. The core of traditional image-
based methods is the multidimensional representation of the light field [4] which describes
the intensities of light rays passing through any viewpoints and any directions in free space.
Restricting the light field in different dimensions can derive different kinds of light field
representations, thus limiting the freedom of viewpoint to varying extents. For example,
the two-parallel-plane parameterized (2PP) four-dimensional (4D) light field L(u, v, s, t)
limits the viewpoints on a specific plane (camera plane) [5,6]. The 3D light field, such as the
concentric mosaic, limits the viewpoints to a specific viewing circle (camera circle) [7–10].
The simplest 2D light field representation, i.e., the panorama limits the viewpoints to a
single projection center [11–14]. The constraint on viewpoint freedom is helpful to simplify
the dimensions of the light field model as well as reduce its data complexity. However,
the free-viewpoint rendering pursues that the desired images can be rendered at arbitrary
positions and orientations in the observation space. The above methods limit the degree of

Appl. Sci. 2022, 12, 7212. https://doi.org/10.3390/app12147212 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12147212
https://doi.org/10.3390/app12147212
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5044-8474
https://orcid.org/0000-0002-4131-2719
https://doi.org/10.3390/app12147212
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12147212?type=check_update&version=1

Appl. Sci. 2022, 12, 7212 2 of 17

freedom (DoF) of the viewpoints so that the systems based on these methods only provide
restricted viewpoints which does not satisfy the natural interaction between human and
the real-world scenes.

Another problem is the poor time performance of novel view rendering. With the rapid
progress of deep learning, some researchers use the learning-based frameworks to generate
arbitrary views [15–18], trying to alleviate the restriction of the DoF of the viewpoints.
However, this kind of method requires a complex training process, expensive network
computation and takes a lot of time as well as memory for generating a high-resolution
novel view, which cannot guarantee the real-time rendering performance. Both of these two
issues have to be solved in the applications of free-viewpoint rendering in VR/AR. Only
by providing a full viewpoint coverage in the observation space as well as the real-time
rendering performance, can we meet the requirement of content generation in VR/AR [19].

In this paper, we present an interactive free-viewpoint rendering method using the
cube surface light field which is a pure light ray-based scene representation. The complexity
of this representation is independent of the scene’s geometric structures, indicating its
ability to represent anisotropic light fields in arbitrary scenes by a unified model. The basic
pipeline of our method is shown as Figure 1. Firstly, based on the pure light ray-based
scene representation, the input of our method is the cube surface light fields consisting of a
certain number of pre-collected images. Then, our method is divided into two independent
steps: texture processing and geometry processing. In texture processing, we use the 3D
texture compression algorithm to process the cube surface light field images, making its
data amount acceptable to personal computers. In geometric processing, we adopt the
programmable rendering pipeline from cube vertices to frame buffer and use a fast single-
layer ray casting algorithm to render a unit cube mesh as well as computing the parameters
of the desired light rays that are finally used for GPU texture mapping, converting a group
of light rays to a novel view. Given different target viewpoints, our method can render the
corresponding novel views such as viewpoint A and B in Figure 1.

Texture Processing

Geometry Processing

Cube Surface Light Fields

Novel View

Viewpoint B

Single‐layer
Ray Casting

3D Textures Texture Compression

Cube Vertices Ray’s Parameters

Block Compression

GPU
Texture Mapping

Viewpoint A

…

Figure 1. Overview of our interactive free-viewpoint rendering method using the cube surface light
field scene representation.

Compared with the mesh-based rendering, our rendering method is not affected by
the specific geometric structures of the scenes and can be extended to arbitrary scenes
using a unified model, i.e., the cube surface light field representation. Moreover, our
method does not need to solve the integral of the rendering equation for each frame, which
greatly reduces the computational consumption during the rendering. Compared with
the traditional image-based rendering, the proposed method greatly improves the DoF
of the viewpoints, which can render the novel views at arbitrary positions and viewing
directions outside the cube surface. Compared with the learning-based methods, the
proposed method can achieve interactive rendering (IR), and the average frame rate for
rendering a novel view with a resolution of 2048 × 2048 on a personal computer can reach
more than 75 FPS. In summary, the main contributions of this paper are as follows:

Appl. Sci. 2022, 12, 7212 3 of 17

• a pure light ray-based representation that supports implicitly encoding the scenes to a
unified model,

• a free-viewpoint rendering method based on compressed texture mapping and ray
casting, which supports rendering the novel views without any explicit geometry struc-
tures of the scenes, significantly improving the DoF as well as the time performance of
novel view light field rendering with high resolution.

2. Related Work

In the past few years, the free-viewpoint rendering technology has gained a growing
attention from both academia and industry, and has also made promising progress. The
existing methods can be mainly divided into three categories: mesh-based methods, tradi-
tional image-based methods, and learning-based methods. In this section, we give a brief
review on recent works related to our work.

2.1. The Mesh-Based Methods

Mesh-based rendering is one of the most widely-used methods. It uses a 3D mesh
model to represent the geometric structures of the scene and renders the desired views
with various materials of the scenes using the classical illumination methods under the
given viewpoint parameters [20]. To further improve the illumination reality of the scenes,
some researchers have proposed various global illumination rendering algorithms, such as
ray tracing, path tracing, and photon mapping [21]. However, these global illumination
algorithms require a lot of computational resources, and the rendering for a single view
usually takes more time than the rendering using classical illumination methods. For
example, it takes more than two or three hours to render a single indoor scene with
a resolution of 2048 × 1024 using a POV-Ray ray tracing renderer [22]. Although the
advanced game engine [23] can achieve real-time ray tracing, it also requires the scene-by-
scene optimization as well as the support of advanced hardware, e.g., Nvidia RTX.

2.2. Traditional Image-Based Methods

The image-based methods take the convenience of capturing images to solve the ren-
dering of the geometry-complex scenes from the perspective of image processing, relieving
the requirement of geometric pre-modeling of the scenes. This kind of method mainly
focuses on the light field representation [4]. Due to the high-dimensional characteristics of
the light field, obtaining a complete light field always consumes many resources including
both time and space. The recently proposed methods try to simplify the light field from
different dimensions to generate the simplified light field representations and to solve the
rendering for the specific scenes [24–26]. For example, the 2PP light field simplifies the
seven-dimensional (7D) plenoptic function L(x, y, z, θ, φ, λ, t) (the wavelength λ of an
arbitrary light ray in the direction of (θ, φ) from the position of (x, y, z) at time t) to a 4D
light field function by restricting the viewpoints on a plane. The concentric mosaic further
restricts the viewpoint on a regular circle [8,25], deriving a 3D representation of the light
field. In computer graphics, the simplest representation of the light field is the panorama,
which describes all the light rays from all directions in the observation space to a fixed
viewing position. It has been widely used for content generation in VR [11,26]. This kind
of method limits the DoF of viewpoints to varying extents and thus does not provide the
real free-viewpoint rendering.

2.3. Learning-Based Methods

With the development of machine learning and deep learning, the research on the
neural representation of the scenes has gradually increased. As a representative work,
NeRF [15] pushes the neural scene representation to a new high level [27,28]. Related works
based on the NeRF, including NeRF in the wild [29], NeRF body [30], and Point-NeRF [31],
Human-NeRF [32], extend the NeRF to various applications. A comprehensive review of
neural rendering has been reported in [33]. This kind of method mainly establishes the

Appl. Sci. 2022, 12, 7212 4 of 17

neural representation of the scenes from the pre-captured images, and then renders the
desired views through various network structures. Some methods support rendering novel
views from relatively sparse pre-captured images and even achieve the free-viewpoint
rendering [34]. However, these methods require an expensive per-scene optimization
process which takes a lot of time and memory for rendering a single view. For example,
NeRF takes hours or days to optimize a specific scene [15]. The real-time performance
using the neural scene representations remains to be further studied.

3. Cube Surface Light Field Representation

The core idea of the cube surface light field representation is to parameterize the
light rays on the two intersections with the cube surface and use the color value at the
first intersection of the light ray and the object’s surface to be the color of this light ray,
constructing a pure ray-based 4D light field representation of the scenes, as shown in
Figure 2.

+X

+Y

+Z

RGB

C

A(u, v)

B(s, t)

Figure 2. The cube surface light field representation. The parameters of each light ray are defined by
the two intersections (A and B) with the cube surface and the ray’s colors are defined by the RGB
color at the first intersection with the object’s surface.

The light rays in free space can be divided into two categories. The first category of
light ray does not intersect with the objects in the scene, and almost does not influence the
objects’ appearance. The second category of light ray intersects with the scene’s objects and
has a significant impact on the objects’ appearance, resulting in light and dark effects on
the objects’ surfaces. The origination of such light rays either can be from one or more light
sources or can be the reflected light rays on the surface of an adjacent object. In particular,
the images captured by a camera have already encoded the final impact of the light rays
from these two originations on the appearance of the scene. Therefore, only the second
category of light ray is concerned in the study of free-viewpoint rendering, and we do not
distinguish whether the light ray is from the light source or the reflection from the adjacent
objects’ surface.

The cube surface light field uses a unified cube geometry to parameterize the set of
the second category of light ray in free space and uses the pairs of intersected points on
the cube surface to be the parameters of light rays. We define that the center of the cube
geometry is located at the origination of the 3D Cartesian coordinate system (CCS), and the
edge length is the same as the size of the scene’s bounding box. According to the twelve
edges of the cube geometry, its surface can be divided into six sub-planes, corresponding to
+X, +Y, +Z, −X, −Y, −Z planes, respectively. Therefore, the cube surface can be defined by
a 2D function composed of six sub-planes, as shown in Equation (1), in which (x, y) refers
to the 2D coordinates of the interior points on each sub-plane.

Appl. Sci. 2022, 12, 7212 5 of 17

C :
6
∑

i=1
Πi(x, y)⊂ R2 (1)

On the cube surface, the origination of each light ray is defined by the 2D coordinates
at the first intersections with the light rays and the cube surface, and the directions of
the light rays are defined by the 2D coordinate at the second intersections with the light
rays and the cube surface. The color values of each light ray are defined as the color at
the first intersections with the light rays and the scenes, which are described by the RGB
color representation. Consequently, the cube surface light field can be defined as a set of
RGB color values of the light rays parameterized by the intersection pairs with a specific
cube surface, as shown in Equation (2), in which m and n refer to the serial number of
the sub-plane where the originations and directions of the light rays are parameterized.
Similarly, (u, v) and (s, t) refer to the 2D coordinates of arbitrary interior points on the m-th
sub-plane and on the n-th sub-plane, respectively.

L :
6

∑
m=1

(
Πm(u, v)×

6

∑
n=1

Πn(s, t)

)
→ RGB (2)

Obviously, for all the light rays that intersect with the scene, the two intersections with
the cube surface cannot be on the same sub-plane of the cube surface. Therefore, m and n
must not get the same value at the same time in the cube surface light field. According to
Equation (2), each light ray has been defined as a six-tuple (m, u, v, n, s, and t) so far. Since
m and n are both enumeration values, their definition domains are integers between [1, 6].
To facilitate the parametric representation of the light field, the cube surface, as shown in
Figure 3a can be expanded along any of its twelve edges, producing different cube map
layouts, such as vertical and horizontal cross layouts, as shown in Figure 3b. We use the
horizontal layout as shown in Figure 3c to present each sub-view of the cube surface light
field.

+X

+Y

+Z

‐X

‐Y

‐Z

+X +Y +Z ‐X ‐Y ‐Z

(c)(b)

+X

‐X ‐Z

+Y

‐Y

+Z

(a)

Figure 3. The different layouts of cube map. (a) six face are marked by +X to −Z, (b) the cross layout
and (c) the horizontal layout.

Intuitively, the texture coordinates can be used to further simplify Equation (2), re-
sulting in the final representation of the cube surface light field denoted by Equation (3).
Seeing from the dimension of u and v, each coordinate (u, v) represents a set of light rays
from a fixed position, which can be described as a light field sub-view like in the traditional
2PP light field representation. Meanwhile, seeing from the dimension of s and t, each
coordinate (s, t) represents a set of light rays from a fixed direction, which can be described
as a sub-aperture image like in the 2PP light field representation.

L : I(u, v)× I(s, t)→ RGB (3)

One advantage of the cube surface parameterization is that it is easy to sample the
light field. The two adjacent edges of each sub-plane are divided into several segments
uniformly or non-uniformly. By connecting the endpoints of the two opposite segments,
the sub-plane can be subdivided into several small square or rectangular blocks. The
barycentric coordinates of each square or rectangular can be selected as the sampling points

Appl. Sci. 2022, 12, 7212 6 of 17

of the cube surface light field. This representation also helps to compress the light field
images at each sampling point. The images generated by the sampling points on the same
sub-plane have only translational transformation in both horizontal and vertical directions.
If the equidistant sampling strategy is adopted in the sampling stage, the relationship
between the image pixels of these viewpoints is easy to be quantitatively described by
parallax, which facilitates the prediction and compression of adjacent views. It is also
conducive to subsequent rendering, i.e., the light field rendering of an arbitrary scene
only requires drawing a simple unit cube geometric. By intersecting the desired light rays
with the cube surface, the light ray’s parameters can be computed and used to query the
color value of the novel viewpoint pixels. The computational consumption for testing
intersection with the light rays and cube surface is relatively low, which makes the cube
surface light field rendering possible to achieve real-time performance.

4. Ray Casting Based Interactive Novel View Rendering

The rendering of the cube surface light field can be achieved by a general cube geomet-
ric proxy which can be rendered by the traditional rasterization or ray casting algorithm. To
improve the computational efficiency of the ray parameters, we use a ray casting algorithm
for fast ray computation of the cube surface light field and use GPU 3D texture mapping to
convert light rays into pixel colors in the frame buffer. The rendering framework, as shown
in Figure 1, mainly includes texture processing and geometry processing.

4.1. Texture Processing

The texture processing is to pre-process the cube surface light field images, generate
3D textures from multi-view images, and compress the 3D textures to reduce the texture
memory required during the rendering.

4.1.1. 3D Texture Generation

The representation of the cube surface light field is a set of cube maps and each cube
map is arranged linearly from +X to −Z, as shown in Figure 3c. According to the position
of each viewpoint in the sampling points, an image matrix with m rows and n columns can
be generated directly for each cube face, as shown in Equation (4), where Iij represents the
cube map in the i row and the j column.

Mm×n =

 I00 ... I0n
... Iij ...

Im0 ... Imn

 (4)

To generate a 3D texture, it requires to convert the 2D matrix of images, i.e., Equation (4)
into a linear space. Therefore, we adopt the transverse scanning strategy (zigzag) to
transform the image matrix, and the depth of 3D texture z is simply computed by z(i,j) =
m ∗ j + i, z ∈ [0, i ∗ j). Each sub-plane can be represented as a 3D texture Ti(d, x, y) denoted
as Equation (5), where x and y represent the image coordinates of the cube surface light
field, respectively.

Ti(z, x, y) =
[
Iz(0,0)(x, y), ..., Iz(0,n)(x, y), ...,

Iz(0,n)(i, j), ..., Iz(m,0)(x, y),

..., Iz(m,n)(x, y)
] (5)

4.1.2. Block Compression

The data amount of 3D textures generated in the previous stage is usually very large.
For a light field with a resolution of m× n× w× h, the memory of a single 2D texture is
w× h× 4 bytes and the memory of all textures is m× n× w× h× 4 bytes. Here, m× n
refers to the rows and columns of the image matrix, i.e., the angular resolution of this

Appl. Sci. 2022, 12, 7212 7 of 17

light field, and w× h refers to the pixel width and height of each image, i.e., the spatial
resolution of this light field. For example, when an RGBA light field with a resolution of
100× 100× 512× 512 is assumed to occupy 8-bit for each channel, it means that the angular
resolution of this light field is 100× 100 and the spatial resolution is 512× 512. Moreover, if
we use the In-Core texture mapping strategy, it requires 9.8 GB of memory in the rendering.

Obviously, rendering directly using the uncompressed texture mapping strategy is not
realistic for personal computers. To reduce the texture memory required for the cube surface
light field rendering, these 3D textures are compressed in the block compression stage.
First, each texture in the 3D texture is divided into several sub-blocks, each containing
4 × 4 pixels. Since the light field data is usually used to describe the color appearance
of the scene, in each 4 × 4 pixel block, the colors in these 16 pixels have little change,
as shown in Figure 4, indicating that a color disk with only a few colors can be used to
represent the whole 4× 4 pixel block, and the color of each pixel in the sub-block can
be computed according to the color disk and a set of coefficients. Since each sub-block
is only represented by a color disk with a few colors, the storage required for this 3D
texture can be reduced. Assuming that the colors in the disk are evenly distributed in the
linear color space defined by the gray scale of the RGB value using the transformation of
Y = 0.3 ∗ R + 0.59 ∗ G + 0.11 ∗ B, the colors and coefficients of two endpoints (Ymax and
Ymin) can be used to further compress the color disk. The compressed texture first store two
endpoints of the linear color space and all other colors can be obtained by interpolating
these two endpoints with different coefficients.

A

(a)

A

B

C

D

(b)

A B

C D

Figure 4. The color similarity within 4× 4 pixel blocks in a single image (with permission from
Ref. [35]). (a) the selected four 4× 4 pixel blocks: A, B, C and D, (b) the enlarged pixel details for
each block.

Because the pixels of the light field images are represented by four-channel RGBA, in
order to obtain a larger compression rate, 8 bytes are used to store each 4× 4 pixel block
in the block compression stage, so that each pixel can be represented by an average of
0.5 bytes. The file for each block includes two endpoints of color, which are the brightest
(c0 = Ymax) and darkest (c3 = Ymin) color values in these 16 pixels. Both colors are stored
in R5G6B5 format, i.e., 5 bits, 6 bits, 5 bits per channel, and 2 bytes per color. Since there
is no transparency in the cube surface light fields, the A channel here can be ignored. In
addition, two additional colors are used to further improve the compression rate, which
are computed by Equation (6) with α = 2/3, β = 1/3 for c1 and α = 1/3, β = 2/3 for c2.

Z = α ∗ X + β ∗Y (6)

Therefore, each 4× 4 pixel block are represented by four colors c0, c1, c2, c3. At the
same time, each block contains 16 pixels, and 16 coefficients are required to represent all the
pixel colors. Each index requires two bits of memory cost, and an additional four bytes are
required to store all the 16 indexes. The color of each pixel in the pixel block is encoded by
the nearest color in four colors, and is represented by a query table: c0 : 00, c1 : 01, c2 : 10,
c3 : 11. With the block compression, the data amount of each pixel block can be reduced to
1/8. In our experiments, we use DirectDraw Tex to compress the light field images into a

Appl. Sci. 2022, 12, 7212 8 of 17

separate DirectDraw Surface (DDS) container and then pass the DDS file to the fragment
shader as a 3D texture for the subsequent GPU texture query of light rays.

4.2. Geometry Processing

The purpose of geometry processing is to compute the parameters of the desired
light rays and to query each ray’s color from the cube surface light field textures. Since
we use a unified cube geometry to parameterize the light rays by two intersections. This
makes it possible to compute the desired light rays parameters only by computing the two
intersection points between the rays emitted from the viewpoint and the cube surface. Since
the cube surface light field uses the cube map to store the light rays, the color value of the
corresponding light rays can be directly fetched by texture mapping, and the computational
complexity of the light ray query is O(1).

Figure 5 shows the relationship between an arbitrary pixel in the image plane of a
novel viewpoint and the cube surface light field. Given the viewpoint parameters (camera
parameters), all the light rays from this viewpoint to each pixel in the image plane can be
defined, and the intersection points between each light ray and the cube surface can also be
computed. Both generating light rays from the viewpoint to the image plane and testing
intersections can be achieved by a single-layer ray casting. Different from traditional ray
casting, single-layer ray casting only needs to query the pixel colors from the outermost
image, instead of superimposing the pixel colors of all the intersected images.

Novel Viewpoint

Image Plane

r

(u, v)
(s, t)

(x, y)

Cube Surface Light Field

Figure 5. Relationship between a desired novel viewpoint, pixel in image plane and the cube surface
light field in the rendering.

Due to the simplicity and regularity of the cube surface, computing the intersections is
so simple that the cube surface light field rendering can achieve real-time performance on
personal computers. After computing the light rays parameters, we need to query the color
of these light rays. If the desired light ray is just located at a sampled point, the sampled
color can be used for the color of this light ray. If the desired light ray is located in the
under-sampled regions, different interpolation rendering can be used in texture mapping to
blend the adjacent sampled light rays. In the cube surface light field rendering, the nearest
neighbor interpolation (NNI), linear interpolation (LI), and bilinear interpolation (BLI)
algorithms can be used to deal with those under-sampled light rays. In this paper, bicubic
interpolation (BCI) and cubic B-spline interpolation (CBSI) algorithms are expanded to
further reduce the aliasing artifacts. Algorithm 1 describes the pipeline of rendering novel
views from arbitrary viewpoints.

Appl. Sci. 2022, 12, 7212 9 of 17

Algorithm 1 Interactive Novel View Rendering

Input: The set of block compressed light fields, L; The cube geometry, C : {vmax, vmin};
The current camera matrix, M4×4 : {vpos, vdirections};

Output: The frame buffer for novel view, I;
1: Clear all the pixel colors in I to 0x000000;
2: for all pixels P(x, y) ∈ the image plane do
3: Generate a camera ray ri from vpos to pi(x, y), ri = v + t ∗ d;
4: tmin = min((vmin − v)/d, (vmax − v)/d);
5: tmax = max((vmin − v)/d, (vmax − v)/d);
6: t0 = max(max(tmin.x, tmin.y), tmin.z);
7: t1 = min(min(tmax.x, tmax.y), tmax.z);
8: if t0 < t1 and t0 > 0.0 then
9: v0 = v + t0 ∗ d;

10: v1 = v + t1 ∗ d;
11: Get the texture coordinates of v0 and v1, v0 −→ (ui, vi), v1 −→ (si, ti);
12: Select N rays (uj, vj, sj, tj) adjacent to (ui, vi, si, ti);

13: Ipi(x,y) =
N
∑

j=1
L(uj, vj, sj, tj) ∗ωj;

14: end if
15: end for

4.2.1. Bicubic Interpolation Rendering

Without losing generality, assuming a ray passing through a direction (s∗, t∗) is under-
sampled, BCI rendering requires searching for the adjacent sampled light rays in the u and
v dimensions. For each under-sampled light ray, the 4 × 4 adjacent sampled light rays
are selected and blended according to the specific weights. The blending equation can be
described as Equation (7).

L(u, v, s∗, t∗) =
3

∑
i=0

3

∑
j=0

L(ui, vj, s∗, t∗) ∗ω(ui, vj) (7)

where the weight ω(ui, vj) is computed by Equations (8) and (9).

ω(ui, vj) = ω(dui) ∗ω(dvj) (8)

ω(d) =

(a + 2) ∗ |d|3

−(a + 3) ∗ |d|2 + 1, if |d| ≤ 1
a ∗ |d|3

−5 ∗ a ∗ |d|2

+8 ∗ a ∗ |d| − 4 ∗ a, if 1 < |d| ≤ 2
0, otherwise

(9)

in which the range of a is (−1, 0), and generally it is taken as a fixed value, i.e., −0.5. The
distances dx and dy are computed by Equation (10) and Equation (11), respectively.

dui = ui − u (10)

dvj = vj − v (11)

Similarly, assuming that a light ray passing through a position (u∗, v∗) is under-
sampled, the color of this light ray can be computed by blending the corresponding light
rays in the s and t dimensions using Equation (7).

Appl. Sci. 2022, 12, 7212 10 of 17

4.2.2. Cubic B-Spline Interpolation Rendering

For those under-sampled light rays, the CBSI rendering selects the 4× 4 adjacent
sampled light rays and blends them according to the different weights. This blending
equation is the same as Equation (7), and the difference is the computation of ω(d) which
is defined by Equation (12).

ω(d) =

2
3 − (1− |d|2) ∗ |d|2, if |d| ≤ 1
1
6 ∗ (2− |d|)

3, if 1 < |d| ≤ 2
0, otherwise

(12)

It is worth noting that the cube surface light field is represented by a set of cube maps.
In the light ray query stage, it is necessary to implement the viewpoint space ray query
as well as the image space ray query. The above two interpolation methods can be used
when querying light rays by texture mapping, and in general, CBSI can achieve better
anti-aliasing effects. Considering that the resolution of the image space is much larger than
that of the viewpoint space, in order to reduce the computational consumption, simple
interpolation methods such as NNI and LI are used for the light ray query. For the query in
the viewpoint space, it is necessary to use an appropriate interpolation algorithm such as
CBSI to avoid a large computation deviation of light rays.

5. Results and Discussion

We use OpenGL and GLSL to implement the proposed rendering method on a personal
computer with Intel Xeon(R) CPU E5-1650v4 @3.60 GHz CPU, 16 GB RAM, and Nvidia
Quadro P4000 GPU. In this section, we first analyze the DoF of renderable viewpoints in
ray space. Then, we study the time performance of our method and compare it with the
path tracing rendering. The quality of images rendered by various interpolations and path
tracing are evaluated finally.

5.1. Ray Space Analysis

The cube surface light field is presented by a set of cube maps arranged by the
texture coordinates, i.e., the sampling points. Each sampling point in the viewpoint space
represents all the light rays starting from this point to the whole image space. All the
sampling points in the viewpoint space amalgamated to form a viewpoint cube map.
Therefore, the coverage of the viewpoint cube map has an important impact on the DoF of
the subsequent rendering.

Considering that it is easier to understand the light ray’s distribution in ray space, we
convert the light rays in 3D space (Cartesian coordinate system, CCS) to ray space (Polar
coordinate system, PCS). Without losing generality, the light ray’s projection on the XOY
plane is taken as an example to analyze the ray space distributions. Given an arbitrary light
ray R in 3D space, its projection on the XOY plane can be marked as Figure 6a. The angle
with the +X axis is denoted as θ and the distance between this projection line to the origin
of CCS is denoted as r. Taking θ and r to be the two coordinate axes of the new coordinate
system, this light ray R is converted from CCS to PCS, as shown in Figure 6b. We define
the domain of θ as from −π to π. When a light ray intersects with the positive of the X-axis
in CCS, r is positive. On the contrary, r is negative. Each light ray is marked by a black dot
and all the light rays constitute the shaded area in PCS.

Appl. Sci. 2022, 12, 7212 11 of 17

+Y

+X

r

(a)

R

O

r

‐

(b)

R

O

+Y

+X

(e)

r

‐

(f)

‐a a

r

‐

(d)

‐a a

+Y

+X

(c)

Figure 6. The distributions of light ray in two different coordinate systems. (a) a single ray in CCS,
(b) a single ray in PCS, (c) 2PP light field in CCS, (d) 2PP light field in PCS, (e) the cube surface light
field in CCS, (f) the cube surface light field in PCS.

The traditional 2PP light field has been widely studied, and its light ray’s spatial
distributions are shown in Figure 6c,d. It can be seen that the 2PP light field can only
represent a subset of light rays, and cannot completely describe the light rays in the whole
observation space. Therefore, only a part of viewpoint images can be provided in the
rendering stage.

Figure 6f shows the light ray’s distribution of the cube surface light field in ray space.
It can be seen that the angular domain θ is symmetric in (−π,π), which covers the whole
observation space outside the cube surface. The domain of the light ray’s distance r is
symmetric on (−a, a) where a is half of the square of the diagonal length, and the light rays
are uniformly distributed in the closed area composed of θ and r.

5.2. Time Performance

To evaluate the time performance of the proposed method, we use a cube surface light
field of the Cornell Box with a resolution of 64× 64× 256× 256 for all of our experiments.
The under-sampled light rays are all processed by the CBSI, and the images with the reso-
lutions of 512× 512, 1024× 1024, 2048× 2048, 4096× 4096 are rendered for this evaluation.
We count the frame rate of generating 100 novel views using our interactive rendering as
well as the path tracing rendering with the corresponding resolutions. The comparisons of
these two kinds of frame rates are shown in Figure 7. It is worth noting that the frame rate
of the path tracing rendering refers to the time consumption when each pixel represents by
only one light ray. Although the configuration in the path tracing rendering will lead to
aliasing artifacts, this evaluation only considers the time performance of different methods.

It can be seen that different rendering resolutions have little influence on the frame
rate. With the improvement of rendering resolution, the frame rate does not decrease or
increase significantly. This is because 3D texture mapping is implemented in GPU with
parallel acceleration. Under the same rendering resolution, our method can get a higher
frame rate than the path tracing rendering, and the highest frame rate reaches more than
250 FPS. In contrast, the average frame rate of the path tracing rendering is about 30 FPS,
indicating that our method gets better time performance. This is because our rendering

Appl. Sci. 2022, 12, 7212 12 of 17

only requires querying light rays from the pre-sampled cube surface light field, and the
complexity for the light ray query is O(1) by using compressed 3D texture mapping.

0

100

200

300

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

F
ra
m
e
R
at
e

Frame

0

100

200

300

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

F
ra
m
e
R
at
e

Frame

0

100

200

300

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

F
ra
m
e
R
at
e

Frame

0

100

200

300

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

F
ra
m
e
R
at
e

Frame

Our Method Path Tracing

(a) (b)

(c) (d)

Figure 7. The time performance of rendering the cube surface light field with various image reso-
lutions. (a) rendering resolution is 512 × 512, (b) rendering resolution is 1024 × 1024, (c) rendering
resolution is 2048 × 2048, (d) rendering resolution is 4096 × 4096.

At the same time, we also count the frame rate when using different interpolation
methods (NNI, LI, BLI, BCI, and CBSI) to render novel views with a fixed image resolution
of 2048× 2048 pixels. As can be seen from Figure 8, different interpolation methods have
an obvious influence on the rendering frame rate, and more complex interpolation methods
will appropriately reduce the frame rate of interactive novel view rendering. This is because
the complex interpolation algorithm requires blending more light rays, which increases the
computation consumption. When the CBSI is used for processing the under-sampled light
rays, the average frame rate of the proposed method is about 75 FPS (the lowest average
frame rate), i.e., the worst-case can still meet the real-time requirement for human eyes.
This is due to the simplicity of our single-layer ray casting algorithm and the GPU parallel
acceleration of the light ray query, making the rendering in real-time.

In this evaluation, the memory usage of our method is about 384 MB for the cube
surface light field images, while the memory usage of the path tracing rendering is almost
negligible because of the geometric simplicity of the Cornell Box scene. Our method uses
the cube surface light field to encode the whole scene’s geometry and appearance. In
contrast to traditional mesh-based methods, our method does not depend on the geometric
complexity of the scene, i.e., the geometric complexity of the scene can hardly influence
the rendering efficiency. However, the traditional mesh-based methods must consider the
rendering overhead caused by various scenes’ geometric structures. Moreover, mesh-based
large scene rendering is still a problem to be further studied. Compared with the learning-
based methods, our method can achieve interactive free-viewpoint rendering. For example,
the local light field fusion [6] limits the viewpoints of the light field in a local small range,
while the viewpoint of our method is arbitrary in arbitrary positions and directions outside
the cube surface. NeRF [15] takes a lot of time to render a single image while our method
can reach more than 75 FPS on a personal computer with moderate configurations.

Appl. Sci. 2022, 12, 7212 13 of 17

0

100

200

300

1 9 17 25 33 41 49 57 65 73 81 89 97

F
ra
m
e
R
at
e

Frame

0

100

200

300

1 9 17 25 33 41 49 57 65 73 81 89 97

F
ra
m
e
R
at
e

Frame

0

100

200

300

1 9 17 25 33 41 49 57 65 73 81 89 97
F
ra
m
e
ra
te

Frame

0

100

200

300

1 9 17 25 33 41 49 57 65 73 81 89 97

F
ra
m
e
R
at
e

Frame

0

100

200

300

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

F
ra
m
e
R
at
e

Frame

(a) (b)

(c) (d)

(e) (f)

92.7 89.4 87 84.1 75

0

100

200

300

1 2 3 4 5

F
ra
m
e
R
at
e

Interpolation Method

NNI LI BLI BCI CBSI

Figure 8. The time performance of rendering the cube surface light field using different interpolations.
(a) NNI, (b) LI, (c) BLI, (d) BCI, (e) CBSI, (f) the average frame rate of each interpolation method.

In addition, the proposed method is compared with a related method, i.e., 2PP light
field to study its performance. To ensure the fairness of this experiment, we use the same
approach, i.e., CBSI to render the 2PP light field. The difference is that the input data is no
longer the cube surface light field images of the Cornell Box scene but the 2PP light field
images which viewpoints are co-planar and imaging planes are also located on a common
plane. We report the average frame rate and memory usage of our method and 2PP method
when rendering 100 novel views with a resolution of 2048× 2048 pixels, as shown in Table 1.
The similar results should be extended to other resolutions and interpolations.

Table 1. Comparison of memory usage and frame rate between our method and the 2PP light field.

Item
Method

2PP Light Field Rendering Cube Surface Light Field Rendering

Memory Usage (MB) 128 384

Average Frame Rate (FPS) 75 75

As can be seen from Table 1, the average frame rate of 2PP light field rendering is
basically the same as our method, but the memory usage is less than the proposed method.
This is because 2PP light field only represent a subset of light rays in the scene, which
reduces the total light field data amount but also limits the DOF of rendering viewpoints.
On the contrary, by sampling all the light rays on the cube surface, our method can provide
free-viewpoint rendering, even though the data amount is greater than the 2PP light field.

Appl. Sci. 2022, 12, 7212 14 of 17

5.3. Rendering Quality

To evaluate the quality of images rendered by our method, we use the cube surface
light field with a resolution of 64× 64× 256× 256 and compare the images rendered by
several light field interpolation methods with the images rendered by the path tracing.
Partial images rendered with a resolution of 2048 × 2048 pixels are shown in Figure 9.

As can be seen from Figure 9, the rendering results by the cube surface light field can
reconstruct the global illumination effect of the scene. Especially, a more accurate global
illumination effect can be rendered when a more appropriate interpolation method is used.
For example, the NNI rendering produces aliasing artifacts, while the CBSI rendering
produces smoother images. It also proves from another aspect that our method can be used
to accelerate the path tracing rendering. This is because our method records the light rays
generated by the path tracing rendering in advance, and only a light ray query is needed in
the rendering stage.

NNI LI BLI BCI CBSI Path Tracing

V
ie
w
p
o
in
t
A

V
ie
w
p
o
in
t
B

V
ie
w
p
o
in
t
C

你好

NNI LI BLI BCI CBSI

Figure 9. The comparison of novel views rendered by different methods (each column) at different
viewpoints A, B and C (each row).

To further illustrate the quality of rendered images, we use the non-reference image
evaluation indexes, BRISQUE [36] and NIQE [37] to evaluate all images in viewpoint A and
report the results in Table 2. The lower the values of BRISQUE and NIQE are, the better the
image quality is. As can be seen from Table 2, the best BRISQUE and NIQE are achieved
by the path tracing rendering and the CBSI rendering, respectively. Moreover, the CBSI
rendering gets the second higher BRISQUE score. This is because each pixel is represented
by no more than 16 rays in the cube surface light field rendering while more than 100 rays
are blended for each pixel in the path tracing rendering which makes the rendered images
smoother. Different interpolation rendering can produce different visual effects, indicating
that the more correlated light rays are selected, the more accurate the results are for the
under-sampled light rays.

We compare the images rendered by our method with the reference images rendered
by the path tracing when 1000 rays are sampled from each pixel and report the SSIM and
PSNR in Figure 10. The CBSI rendering and the NNI rendering get the highest SSIM and
PSNR, respectively. This is because the CBSI rendering produces smoother images that are
closer to the images rendered by the path tracing rendering. However, the CBSI rendering
will blur the edges in the rendered images, making its PSNR lower than others.

Appl. Sci. 2022, 12, 7212 15 of 17

Table 2. The BRISQUE and NIQE evaluations on the novel views rendered by different methods.
The green number indicates the best result among the different interpolation methods, and the red
number indicates that path tracing method gets better results.

Viewpoint Index
Method

NNI LI BLI BCI CBSI Path Tracing

A
BRISQUE 39.16 38.7 38.42 37.65 37.08 30.29

NIQE 4.94 4.78 4.65 4.6 4.49 11.16

B
BRISQUE 35.76 35.66 35.28 35.58 34.74 17.91

NIQE 4.8 4.72 4.52 4.52 4.45 10.32

C
BRISQUE 36.32 36.01 35.47 35.68 34.86 26.24

NIQE 4.92 4.74 4.52 4.55 4.43 11.06

0.9156
0.9162

0.9176

0.9155

0.9196

0.913

0.914

0.915

0.916

0.917

0.918

0.919

0.92

1 2 3 4 5

S
S
IM

Interpolation Method

21.4004
21.3359

21.1929

21.0218

21.2604

20.8

20.9

21

21.1

21.2

21.3

21.4

21.5

1 2 3 4 5

P
S
N
R

Interpolation Method

(a) (b)

NNI LI BLI BCI CBSI NNI LI BLI BCI CBSI

Figure 10. The comparisons between different interpolation methods and the path tracing rendering
using (a) SSIM and (b) PSNR.

5.4. Limitations

All the light field data used in our experiments are synthesized by the path tracing
rendering and thus one of our future works is to construct the cube surface light field
from the real-captured images and achieve interactive free-viewpoint rendering. Moreover,
various vision tasks, such as image relighting and refocusing that benefit from the cube
surface light field representation, will also be further investigated.

6. Conclusions

To overcome the limited viewpoint freedom and poor time performance in free-
viewpoint rendering, this paper has proposed a novel method that encodes the whole
scene by the cube surface light field and renders the novel views using a single-layer ray
casting algorithm. We adopted a texture compression algorithm to make the light field’s
data amount acceptable for a personal computer and processed the under-sampled light
rays using several light field interpolation methods, including the BCI and CBSI. The cube
surface light field represents all the light rays that have a significant impact on the scene’s
appearance, indicating that the DoF of the viewpoints during the rendering can be at
arbitrary positions and viewing directions outside the cube surface. Experimental results
have demonstrated that the proposed method significantly improves the DoF of rendering
compared with traditional 2PP light field methods. Moreover, results have also proved that
our method has the advantages of real-time performance (more than 75 FPS on a moderate
computer) and can render arbitrary views interactively while ensuring high image quality.

Appl. Sci. 2022, 12, 7212 16 of 17

Author Contributions: Conceptualization, X.A. and Y.W.; methodology, X.A. and Y.W.; software,
X.A.; validation, X.A. and Y.W.; formal analysis, X.A.; investigation, X.A.; resources, X.A.; data
curation, X.A.; writing—original draft preparation, X.A.; writing—review and editing, X.A. and Y.W.;
visualization, X.A. and Y.W.; project administration, Y.W.; funding acquisition, Y.W. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by Zhejiang Provincial Science and Technology Program in China
under grant number 2021C03137.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, C.; Chen T. A survey on image-based rendering-representation, sampling and compression. Signal Process. Image Commun.

2004, 19, 1–28. [CrossRef]
2. Collet, A.; Chuang, M.; Sweeney, P.; Gillett, D.; Evseev, D.; Calabrese, D.; Hoppe, H.; Kirk, A.; Sullivan, S. High-Quality Streamable

Free-Viewpoint Video. ACM Trans. Graph. 2015, 34, 69. [CrossRef]
3. Hedman, P.; Philip, J.; Price, T.; Frahm, J.; Drettakis, G.; Brostow, G. Deep Blending for Free-viewpoint Image-based Rendering.

ACM Trans. Graph. 2018, 37, 257. [CrossRef]
4. Adelson, E.; Bergen, J. The Plenoptic Function and the Elements of Early Vision. In Computational Models of Visual Processing;

Landy, M., Movshon, J., Eds.; MIT Press: Cambridge, MA, USA, 1991; pp. 2–20.
5. Levoy, M.; Hanrahan, P. Light Field Rendering. In Proceedings of the 23rd Annual Conference on Computer Graphics and

Interactive Techniques, New Orleans, LA, USA, 4–9 August 1996; pp. 31–42.
6. Mildenhall, B.; Srinivasan, P.; Ortiz-Cayon, R.; Kalantari, N.; Ramamoorthi, R.; Ng, R.; Kar, A. Local Light Field Fusion: Practical

View Synthesis with Prescriptive Sampling Guidelines. ACM Trans. Graph. 2019, 38, 29. [CrossRef]
7. Shum, H.; He, L. Rendering with Concentric Mosaics. In Proceedings of the 26th Annual Conference on Computer Graphics and

Interactive Techniques, Los Angeles, CA, USA, 8–13 August 1999; pp. 299–306.
8. Shum H.; Ng, K.; Chan, S. A virtual reality system using the concentric mosaic: Construction, rendering, and data compression.

IEEE Trans. Multimed. 2005, 7, 85–95. [CrossRef]
9. Overbeck, R.; Erickson, D.; Evangelakos, D.; Pharr, M.; Debevec, P. A System for Acquiring, Processing, and Rendering Panoramic

Light Field Stills for Virtual Reality. ACM Trans. Graph. 2018, 37, 197. [CrossRef]
10. Hedman, P.; Ritschel, T.; Drettakis, G.; Brostow, G. Scalable Inside-out Image-Based Rendering. ACM Trans. Graph. 2016, 35, 231.

[CrossRef]
11. Szeliski, R. Image Alignment and Stitching: A Tutorial. In Foundations and Trends® in Computer Graphics and Vision; Aaron, H., Ed.;

Now Foundations and Trends: Boston, MA, USA, 2006; pp. 1–104.
12. Sumantri, J.; Park, I. 360 Panorama Synthesis from a Sparse Set of Images on a Low-Power Device. IEEE Trans. Comput. Imaging

2020, 6, 1179–1193. [CrossRef]
13. Richardt, C.; Pritch, Y.; Zimmer, H.; Sorkine-Hornung, A. Megastereo: Constructing High-Resolution Stereo Panoramas. In

Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013;
pp. 1256–1263.

14. Fan, C.; Lo, W.; Pai, Y.; Hsu, C. A Survey on 360° Video Streaming: Acquisition, Transmission, and Display. ACM Comput. Surv.
2020, 52, 71. [CrossRef]

15. Mildenhall, B.; Srinivasan, P.; Tancik, M.; Barron, J.; Ramamoorthi, R.; Ng, R. NeRF: Representing Scenes as Neural Radiance
Fields for View Synthesis. Commun. ACM 2022, 65, 99–106. [CrossRef]

16. Liu, L.; Gu, J.; Lin, K.; Chua, T.; Theobalt, C. Neural Sparse Voxel Fields. In Proceedings of the Advances in Neural Information
Processing Systems 33 (NeurIPS 2020), Virtual, 6–12 December 2020; pp. 15651–15663.

17. Lombardi, S.; Simon, T.; Saragih, J.; Schwartz, G.; Lehrmann, A.; Sheikh, Y. Neural Volumes: Learning Dynamic Renderable
Volumes from Images. ACM Trans. Graph. 2019, 38, 65. [CrossRef]

18. Sitzmann, V.; Thies, J.; Heide, F.; Nießner, M.; Wetzstein, G.; Zollhöfer, M. DeepVoxels: Learning Persistent 3D Feature Embeddings.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–17 June 2019;
pp. 2437–2446.

19. Magnor, M.; Sorkine-Hornung, A. Real VR—Immersive Digital Reality; Springer: Cham, Switzerland, 2020.
20. Kajiya, J. The Rendering Equation. In Proceedings of the 13th Annual Conference on Computer Graphics and Interactive

Techniques, Dallas, TX, USA, 18–22 August 1986; pp. 143–150.

http://doi.org/10.1016/j.image.2003.07.001
http://dx.doi.org/10.1145/2766945
http://dx.doi.org/10.1145/3272127.3275084
http://dx.doi.org/10.1145/3306346.3322980
http://dx.doi.org/10.1109/TMM.2004.840591
http://dx.doi.org/10.1145/3272127.3275031
http://dx.doi.org/10.1145/2980179.2982420
http://dx.doi.org/10.1109/TCI.2020.3011854
http://dx.doi.org/10.1145/3329119
http://dx.doi.org/10.1145/3503250
http://dx.doi.org/10.1145/3306346.3323020

Appl. Sci. 2022, 12, 7212 17 of 17

21. Pharr, M.; Humphreys, G. Physically Based Rendering: From Theory To Implementation; Morgan Kaufmann Publishers Inc.: San
Francisco, CA, USA, 2004.

22. Persistence Of Vision Pty., Ltd. Persistence of Vision Raytracer (Version 3.6). Software. 2022. Available online: http://www.
povray.org/download/ (accessed on 10 June 2022).

23. Epic Games, Inc. Real-Time Ray Tracing: An Overview of Ray Tracing Features in Unreal Engine. Software Document. 2022.
Available online: https://docs.unrealengine.com/4.27/en-US/RenderingAndGraphics/RayTracing/ (accessed on 10 June 2022).

24. Davis, A.; Levoy, M.; Durand, F. Unstructured Light Fields. Comput. Graph. Forum 2012, 31, 305–314. [CrossRef]
25. Broxton, M.; Flynn, J.; Overbeck, R.; Erickson, D.; Hedman, P.; Duvall, M.; Dourgarian, J.; Busch, J.; Whalen, M.; Debevec, P.

Immersive Light Field Video with a Layered Mesh Representation. ACM Trans. Graph. 2020, 39, 86. [CrossRef]
26. Bertel, T.; Yuan, M.; Lindroos, R.; Richardt, C. OmniPhotos: Casual 360° VR Photography. ACM Trans. Graph. 2020, 39, 266.

[CrossRef]
27. Jiang, C.; Sud, A.; Makadia, A.; Huang, J.; Nießner, M.; Funkhouser, T. Local Implicit Grid Representations for 3D Scenes. In

Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020;
pp. 6000–6009.

28. Niemeyer, M.; Mescheder, L.; Oechsle, M.; Geiger, A. Differentiable Volumetric Rendering: Learning Implicit 3D Representations
Without 3D Supervision. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle,
WA, USA, 13–19 June 2020; pp. 3501–3512.

29. Martin-Brualla, R.; Radwan, N.; Sajjadi, M.; Barron, J.; Dosovitskiy, A.; Duckworth, D. NeRF in the Wild: Neural Radiance
Fields for Unconstrained Photo Collections. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 7206–7215.

30. Peng, S.; Zhang, Y.; Xu, Y.; Wang, Q.; Shuai, Q.; Bao, H.; Zhou, X. Neural Body: Implicit Neural Representations with Structured
Latent Codes for Novel View Synthesis of Dynamic Humans. In Proceedings of the 2021 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 9050–9059.

31. Xu, Q.; Xu, Z.; Philip, J.; Bi, S.; Shu, Z.; Sunkavalli, K.; Neumann, U. Point-NeRF: Point-based Neural Radiance Fields. arXiv 2022,
arXiv:2201.08845.

32. Zhao, F.; Yang, W.; Zhang, J.; Lin, P.; Zhang, Y.; Yu, J.; Xu, L. HumanNeRF: Efficiently Generated Human Radiance Field from
Sparse Inputs. arXiv 2022, arXiv:2112.02789.

33. Tewari, A.; Fried, O.; Thies, J.; Sitzmann, V.; Lombardi, S.; Sunkavalli, K.; Martin-Brualla, R.; Simon, T.; Saragih, J.; Nießner, M.; et
al. State of the Art on Neural Rendering. Comput. Graph. Forum 2020, 39, 701–727. [CrossRef]

34. Riegler, G.; Koltun, V. Free View Synthesis. In Computer Vision—ECCV 2020. Lecture Notes in Computer Science; Vedaldi, A., Bischof,
H., Brox, T., Frahm, J., Eds.; Springer: Cham, Switzerland, 2020; pp. 623–640.

35. Adhikarla, V.; Vinkler, M.; Sumin, D.; Mantiuk, R.; Myszkowski, K.; Seidel, H.; Didyk, P. Towards a Quality Metric for Dense
Light Fields. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA,
21–26 July 2017; pp. 3720–3729.

36. Mittal, A.; Moorthy, A.K.; Bovik, A. No-Reference Image Quality Assessment in the Spatial Domain. IEEE Trans. Image Process.
2012, 21, 4695–4708. [CrossRef] [PubMed]

37. Mittal, A.; Soundararajan, R.; Bovik, A. Making a “Completely Blind” Image Quality Analyzer. IEEE Signal Process. Lett. 2013, 20,
209–212. [CrossRef]

http://www.povray.org/download/
http://www.povray.org/download/
https://docs.unrealengine.com/4.27/en-US/RenderingAndGraphics/RayTracing/
http://dx.doi.org/10.1111/j.1467-8659.2012.03009.x
http://dx.doi.org/10.1145/3386569.3392485
http://dx.doi.org/10.1145/3414685.3417770
http://dx.doi.org/10.1111/cgf.14022
http://dx.doi.org/10.1109/TIP.2012.2214050
http://www.ncbi.nlm.nih.gov/pubmed/22910118
http://dx.doi.org/10.1109/LSP.2012.2227726

	Introduction
	Related Work
	The Mesh-Based Methods
	Traditional Image-Based Methods
	Learning-Based Methods

	Cube Surface Light Field Representation
	Ray Casting Based Interactive Novel View Rendering
	Texture Processing
	3D Texture Generation
	Block Compression

	Geometry Processing
	Bicubic Interpolation Rendering
	Cubic B-Spline Interpolation Rendering

	Results and Discussion
	Ray Space Analysis
	Time Performance
	Rendering Quality
	Limitations

	Conclusions
	References

