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Abstract: Previous works trained the Transformer and its variants end-to-end and achieved remark-
able translation performance when there are huge parallel sentences available. However, these
models suffer from the data scarcity problem in low-resource machine translation tasks. To deal with
the mismatch problem between the big model capacity of the Transformer and the small parallel
training data set, this paper adds the BERT supervision on the latent representation between the
encoder and the decoder of the Transformer and designs a multi-step training algorithm to boost the
Transformer on such a basis. The algorithm includes three stages: (1) encoder training, (2) decoder
training, and (3) joint optimization. We introduce the BERT of the target language in the encoder
and the decoder training and alleviate the data starvation problem of the Transformer. After the
training stage, the BERT will not further attend the inference section explicitly. Another merit of
our training algorithm is that it can further enhance the Transformer in the task where there are
limited parallel sentence pairs but large amounts of monolingual corpus of the target language. The
evaluation results on six low-resource translation tasks suggest that the Transformer trained by our
algorithm significantly outperforms the baselines which were trained end-to-end in previous works.

Keywords: transformer; latent representation; machine translation; low-resource; BERT

1. Introduction

With the development of deep learning, neural machine translation (NMT) [1,2]
makes significant progress and outperforms the statistical machine translation on the
language pairs with an abundance of the parallel corpus. Among these NMT models,
the Transformer [3] is well known for producing state-of-the-art (SOTA) performance in
many translation tasks [4–6]. The Transformer consists of a multi-layer encoder and a
multi-layer decoder. The encoder reads the source language sequence and maps it into
a fixed-length representation, and the decoder decodes the fixed-length representation
and outputs the target language sequence. Previous studies trained the encoder and the
decoder synchronously in an end-to-end fashion.

However, the Transformer suffers in low-resource translation tasks [7–11] where there
is not a large-scale parallel corpus available. The core of this problem is the mismatch
between the big model capacity and the small training parallel data available. When there
is only a small scale of translation instances available, it is challenging to optimize the
parameters of the Transformer very well, leading to the unsuitable representation of the
input sentence from the encoder and the undesired translation result from the decoder.
The reason is that training the big translation model in the end-to-end fashion with a
small training dataset will lead to a severe overfitting problem. Therefore, how to alleviate
the overfitting problem and further improve the Transformer in low-resource machine
translation is garnering much attention.

To better optimize the parameters of transformers in low-resource machine trans-
lation and prevent the overfitting problem, we design a three-stage training approach
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as an alternative to the traditional end-to-end training method. Specifically, we add the
BERT supervision on the latent representation between the encoder and the decoder of
the Transformer. On such basis, we train the encoder and the decoder independently to
alleviate the mismatch problem between the model capacity and the training data since the
facts are Capacity(Encoder)� Capacity(Transformer) and Capacity(Decoder)� Capac-
ity(Transformer). The overall training algorithm includes three stages: (1) encoder training,
(2) decoder training, and (3) joint optimization. Joint optimization fine tunes the parameters
to make the encoder and the decoder better matched in the latent space.

First, the BERT is the fine-tuning-based representation model that can produce accu-
rate contextual embeddings of sentences [12]. Based on this fact, we argue that the BERT
can be treated as a good representation of the semantic space and try to make the encoded
representation of the source sentences align with their target sentences in the BERT repre-
sentation when training the Transformer, as shown in Figure 1. An exemplary encoding
representation will benefit the model convergence and final performance of the Transformer.
A recent work [13] proposed a multilingual Transformer which implicitly learned shared
representation of many different languages in the semantic space. Sennrich et al. [14] ex-
plored the strategy to include monolingual training data in the training process without
changing the model structure and found that using synthetic data to fill the source side is
more effective.

Figure 1. The principle of our approach: aligning the source language and the target language in
latent space.

Second, adding BERT supervision enables us to independently train the encoder and
the decoder of the Transformer (shown in Figure 2), which is different from the previous
works that trained the Transformer end-to-end. According to the neural network theory,
the model capacity is directly related to the number of hidden units, the layer depth, and
the operations [15]. The model capacity of the entire Transformer is bigger than that of its
encoder or its decoder. If there is only a small-scale training dataset, smaller models are
less prone to overfitting. Therefore, it is reasonable to believe that independently training
the encoder and decoder in the Transformer helps mitigate the mismatch problem between
the big model capacity of the Transformer and the small parallel training dataset and thus
contribute to a better-trained Transformer than that trained end-to-end.

Third, training the decoder of the Transformer uses the monolingual corpus of the
target language. Provided the scenario of low parallel corpus but high monolingual target
language corpus, a byproduct of BERT supervision is that we can further improve the
translation performance by training the decoder with the large-scale monolingual corpus
of the target language.

Although Zhu et al. [16] used the BERT in machine translation, there are two critical
differences between our approach and the BERT-fused model. First, our approach does not
change the structure of the Transformer. The parameter of the Transformer trained with
our algorithm is far less than that of the BERT-fused model. Second, the BERT-fused model
exploits the representation from the BERT by feeding it into all layers, while we use the
BERT as the learning target of the encoder. The Transformer trained with our algorithm
infers faster than the BERT-fused model. Our approach also differs from the previous
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machine translation approaches, which used a pre-trained language model to improve the
encoder and decoder of NMT [17–19]. The contributions of this paper are as follows:

• We boost the Transformer by adding the BERT constraint on the latent representation in
low-resource machine translation. As such, we design a training algorithm to optimize
the Transformer in a multi-step way, including encoder training, decoder training,
and joint optimization. It alleviates the mismatch problem between the capacity of the
Transformer and the training data size in low-resource machine translation.

• We provide a new way to incorporate the pre-trained language models in machine
translation. Compared to the BERT-fused methods, a significant advantage of our
approach is that it improves the performance of the Transformer in low-resource trans-
lation tasks without changing its structure and increasing the number of parameters.

• Adding BERT supervision enables us to further improve the Transformer with a large-
scale monolingual target language dataset in the sense of a low parallel corpus but a
high monolingual target language corpus.

The remainder of this paper is structured as follows. Section 2 describes related work.
Section 3 introduces our approach. Section 4 describes the experiment setting. Section 5
reports the results and the analysis. Finally, Section 6 presents our conclusions.

Figure 2. Illustration of end-to-end training and BERT supervised training of the Transformer.
The facts are Capacity(Encoder) � Capacity(Transformer) and Capacity(Decoder) � Capac-
ity(Transformer).

2. Related Work

All related works are listed in Table 1. They are divided into the following categories.

Table 1. Comparison of the related models.

Category Models Key Idea

Transformer and
its variants

NMT-JL [20], Seq2Seq [1] Advancing the translation quality
via neural networks and attention mechanisms.

Attention is all you need [3] It relies entirely on an attention mechanism
to draw global dependencies between sources.

GRET [21]
A novel global representation enhanced
the Transformer to model the global
representation explicitly in the Transformer.

Transparent [22]
The encoder layers were combined
just after the encoding is completed
but not during the encoding process.

DLCL [23]

An approach based on a dynamic
linear combination of layers to
memorizing the features extracted
from all preceding layers.
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Table 1. Cont.

Category Models Key Idea

MT Methods with
Pre-training

Language Models

Elmo [24], Xlnet [25],
Roberta [26], GPT [27]

The pre-training language models
are effective for the machine learning.

BERT [12]

Designing the BERT to pre-train deep
bidirectional encoder representations
from unlabeled text to produce
contextualized embedding.

MASS [17]
Adopting the encoder–decoder framework to
reconstruct a sentence fragment with
the remaining part of the sentence.

CTNMT [28] Integrating the pre-trained LMs
to neural machine translation.

NMT-BERT [19]
The pre-trained models should be
exploited for supervised neural
machine translation.

BERT-fused [16]

Using BERT to extract representations for
input sequences. Then the representations
are fused with each layer of the NMT model
through attention mechanisms.

Low-resource
Machine
Translation Models

NMT-TL [29] Proposing transfer learning for NMT.

NMT-EPL [30] Utilizing English as a bridging language.

DLMT [31] Dual-learning mechanism for
machine translation.

NMT-RT [32] A new round-tripping approach.

NMT-Attention [33] An unsupervised method based on
an attentional NMT system.

NMT-lexically aligned [34]
Optimizing the cross-lingual alignment
of word embeddings on unsupervised
Macedonian–English and Albanian–English.

NMT-regularization factors [35] Exploring the roles and interactions of the
hyperparameters governing regularization.

2.1. Transformer and Its Variants

Neural machine translation (NMT) models advance the translation quality via neu-
ral networks and attention mechanisms [1,20]. Among these models, the Transformer
reaches a new state of the art. It relies entirely on an attention mechanism to draw global
dependencies between source and target and achieves strong results on several large-scale
tasks, dispensing with recurrence and convolutions [3]. Weng et al. [21] designed a novel
global representation that enhanced the Transformer (GRET) to model the global repre-
sentation explicitly in the Transformer. The encoder generated an external state for the
global representation, which was then fused into the decoder during the decoding process
to improve generation quality. Bapna et al. [22] pointed out that the vanilla Transformer
was hard to train if the depth of the encoder was beyond 12. They successfully trained a
16-layer encoder by attending the combination of all encoder layers to the decoder. In their
approach, the encoder layers were combined just after the encoding was completed but not
during the encoding process. To make the Transformer deeper, Wang et al. [23] propose
an approach based on a dynamic linear combination of layers to memorize the features
extracted from all preceding layers. They demonstrate that layer normalization is helpful
to learning deep encoders. The encoder was optimized smoothly by relocating the layer
normalization unit. However, the above works mainly focus on the translation tasks with
numerous sentence pairs, and the models were trained in an end-to-end fashion.
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2.2. MT Methods with Pre-Training Language Models

Previous works have shown that the pre-training language models [24–27] are effec-
tive for the machine learning task. Jacob Devlin et al. [12] designed the BERT to pre-train
deep bidirectional encoder representations from unlabeled text to produce contextualized
embedding. The pre-trained BERT model can be fine-tuned with just one additional output
layer to create state-of-the-art models in semantic tasks. Kaitao Song et al. [17] adopted the
encoder–decoder framework to reconstruct a sentence fragment with the remaining part
of the sentence by masked sequence-to-sequence pre-training. Their approach achieved
state-of-the-art accuracy on the unsupervised English–French translation. To avoid the
catastrophic forgetting, Jiacheng Yang et al. [28] proposed the CTNMT to integrate the pre-
trained LMs to neural machine translation. Clinchant et al. [19] studied how the pre-trained
models should be exploited for supervised neural machine translation. They compared
various ways to integrate the pre-trained BERT model with the NMT model and studied
the impact of the monolingual data used for the BERT training on the final translation
quality. Zhu et al. [16] proposed an algorithm named the BERT-fused model, in which the
BERT is used to extract representations for an input sequence. Then the representations
are fused with each layer of the NMT model through attention mechanisms. All the above
methods increased the model parameters while lowering the translation speed.

2.3. Low-Resource Machine Translation Models

The lack of parallel data is challenging for NMT model training. Qi et al. [36] indi-
cated that pre-trained embeddings are particularly effective in low-resource environments.
Zoph et al. [29] first employed transfer learning for NMT. Specifically, they utilized the
trained parent model parameters to initialize a child model, and then trained on the desired
low-resource pair. Sennrich et al. [14] used monolingual training data during training of
NMT systems for the low-resource NMT task. In addition, parallel data also can be included
in these pre-training approaches [37–39]. Ahmadnia et al. [30] utilized English as a bridging
language to improve the quality of the Persian–Spanish low-resource. DLMT [31] proposed
a dual-learning mechanism for machine translation, e.g., English to French translation
(primal) versus French to English translation (dual). Through the dual-learning process,
one agent represents the model of the primal task while the other represents the model
of the dual task, then we ask them to communicate and learn from each other through
reinforcement learning. Ahmadnia et al. [32] applied a new round-tripping approach that
incorporates dual learning [31] for automatic learning from unlabeled data but transcends
prior work through effective leveraging of monolingual text. Xu et al. [33] proposed an un-
supervised method based on an attentional NMT system for Spanish–Turkish low-resource.
Chronopoulou et al. [34] optimized the cross-lingual alignment of word embeddings on
unsupervised Macedonian–English and Albanian–English. The recent work [35] analysed
the roles and interactions of the hyperparameters governing regularization and presented
a range of values applicable to low-resource NMT.

3. Approach
3.1. Latent Representation Using the BERT

In the Transformer, the encoder turns each input token into one embedding vector and
generates the hidden representations through the attention mechanisms, and the decoder
maps the hidden representations in the latent space into the target sentence. In previous
works, the Transformer was trained end-to-end without any restriction on the latent space.
Only the dimension of the latent representation was treated as a hyperparameter and
optimized through the validation experiments. In a low-resource translation task, end-to-
end training of the Transformer will very likely lead to ineligible representations. Since
the BERT has achieved great success in language understanding tasks, we argue that it
can be treated as a good representation of the semantic space. A good representation will
benefit the model convergence and final performance. Thus, this paper selects the BERT as
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the latent representation of the encoder and makes the source sentences and their target
sentences align in this specific space. The reasons are as follows:

First, previous works have shown that language model pre-training is effective for
improving many natural language processing tasks. Sascha Rothe et al. [40] used the BERT
as the encoder and the GPT2 as the decoder to form an encoder–decoder framework. It
proved that an ideal encoder is good for the performance. Second, the BERT is the first
fine-tuning-based representation model that produces contextual embeddings and achieves
state-of-the-art performance on an extensive suite of sentence-level tasks. It is a subtle
and accurate representation of the word in a sentence. Third, the BERT is a variant of the
Transformer architecture, which is similar to the encoder in the Transformer.

By adding the BERT constraint on the latent representation, we make it possible to
train the encoder and the decoder of the Transformer independently. Let x be the source
sentence, and y be the corresponding target sentence, then the learning target of the encoder
on x is the output of the BERT on y in the encoder training. The decoder of the Transformer
is to map the latent representation into the target language. In decoder training, the input
is the representation of y from the BERT, and the output is y.

We introduce the BERT of the target language to generate the training data set from
the parallel corpus for the encoder and the decoder training. That is, the training data
sets for the encoder and the decoder training are in the form of (x, the BERT(y)) and (the
BERT(y), y), respectively. We describe the training algorithm in the following section.

3.2. Training Algorithm

According to the motivation above, we design a training algorithm to optimize the
Transformer, as shown in Algorithm 1. The training algorithm includes three stages: (1) en-
coder training, (2) decoder training, and (3) joint optimization. Concerning the fact that
independently training the encoder and the decoder cannot make the encoder and decoder
fully match in the latent space, we add the joint optimization in the training algorithm to
further fine tune the encoder and decoder in a few epochs. The subsequent experiments
also prove that joint optimization is good for performance.

Algorithm 1 The Training Algorithm

Data set construction:

• Parallel corpora set A = {(x1, y1), . . . (xn, yn)}
• Compute theBERT(yi) for each yi in A

• Build the dataset B and C

B = {(x1, theBERT(y1)), . . . (xn, theBERT(yn))}
C = {(theBERT(y1), y1), . . . (theBERT(yn), yn)}

(1) Training Encoder using dataset B

(2) Training Decoder using dataset C

(3) Joint optimization for Encoder and Decoder

using data set A

Let X and Y be the sentences of the source language and the target languages, respec-
tively, t is the Transformer, g is the encoder in the Transformer, and f is the decoder in the
Transformer. We represent the translation process as Y = t(X) = f (g(X)). The capacity of
the Transformer t is larger than that of the encoder g or the decoder f . When only a small
training data set is available, the smaller models are less likely to overfit the training data.
Therefore, it is reasonable to believe that independently training the encoder and decoder
of the Transformer helps mitigate the mismatch problem between the training data set and
the model capacity and will end up with a translation model which performs better than
that trained directly in an end-to-end fashion. We generate the training datasets for encoder
training and decoder training in the preprocessing step.
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3.2.1. Encoder Training

As shown in Algorithm 1, the encoder and the BERT map the source language x and
the target language y into latent space, respectively. The learning goal of the encoder is the
latent representation from the BERT Berty. The input of the encoder is the source language
Ix, and its output is Encx = Encoder(Ix). Meanwhile, the BERT maps the input target
language y into Berty: Berty = BERT(y). We extend the length of each source sentence and
target sentence to 512 by adding pad tokens.

The encoder training objective is to penalize the mean-squared error MSE loss between
Berty and Encx:

Lenc =‖ Encx − Berty ‖2
2 (1)

In Equation (1), both the output of the encoder and the BERT are three-dimensional matrices.
The structure of the encoder is from the Transformer [3], which consists of six stacked

layers. Each layer comprises two sub-layers, namely a multi-head self-attention layer
and a fully connected feed-forward layer. Each sub-layer has residual connection and
normalization.

3.2.2. Decoder Training

As mentioned, machine translation can be divided into the encoding stage and the
decoding stage. The decoder maps the latent representations into the target sentences in the
decoding stage. Since we make the encoded representation of the source sentences align
with their target sentences in the BERT representation when training the encoder of the
Transformer, we use Berty as the input of the decoder and y as the large output in decoder
training, as

y ∼ DecBert = Decoder(Berty) (2)

where Berty represents the output of y from the pre-training model Bert. We expect DecBert
to be close to y in Equation (2). This forms an autoencoder similar network. We assemble
DecBert and y together to train the decoder, as shown in Algorithm 1.

The decoder of our network is from the Transformer [3]. Each decoder consists of
six stacked layers. Each layer contains three sub-layers. Different from that of the encoder,
the sub-layers of the decoder add a masked multi-head self-attention mechanism.

3.2.3. Joint Optimization

Joint optimization further makes the encoder and decoder fully matching in the latent
space in a few epochs. After the first two stages, the encoder and decoder are joined
together and optimized using the parallel corpus. The fine-tuned network is used in the
translation tasks from the source language Ix to the target language y. The encoder maps Ix
into Encx, as described

Encx = Encoder(Ix) (3)

The decoder maps Encx into Decy, as described

Decy = Decoder(Encx) (4)

The joined encoder–decoder network is fine-tuned to map Ix into y,

y ∼ Decy = Decoder(Encoder(Ix)) (5)

4. Experimental Setting
4.1. Data and Metric

In the experiments, we evaluate our approach on six low-resource translation tasks, in-
cluding German→English (De→En), Romanian→English (Ro→En), Vietnamese→English
(Vi→En), German→Chinese (De→Zh), Korean→Chinese (Ko→Zh), and Russian→Chinese
(Ru→Zh). The first three tasks (the target language is English) are IWSLT’ 14 De→En,
WMT’ 2016 Ro→En, and IWSLT’ 14 Vi→En tasks, which had 160K, 130K, and 600K parallel
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sentences in training data sets, respectively. We use tst2010, tst2011, and tst2012 as the test
set for De→En translation, newstest2016 as the test set for Ro→En translation, and tst2014
as the test set for Vi→En translation, respectively. The last three tasks (the target language
is Chinese) use the TED parallel corpus [36] containing De→Zh, Ko→Zh, and Ru→Zh.
The three training sets contain 140K, 160K, and 130K sentence pairs, respectively. Each of
the three testing sets contains 3000 sentences different from that in the training sets.

The evaluation metric is case-insensitive BLEU calculated by the multi-bleu.perl
script [41]. BLEU is

BLEU = BP× exp

(
N

∑
n=1

wn pn

)
(6)

BP =

{
1, c > r
e1−r/c, c ≤ r

(7)

where r is the source sentence, c is the translation result, N is the item number of N-gram,
wn is the coefficient of N-gram, and pn is the precision of N-gram matching.

4.2. Implementation Details

We adopt the pre-trained BERT provided by PyTorch-Transformers [42]. For the
translation tasks from other languages to English, we choose the BERT of English with
12 layers and 768 hidden dimensions. For the translation tasks from other languages to
Chinese, we choose the BERT of the Chinese model with the same settings as the BERT of
English. We extend the source language sentences and the target language sentences to
512 tokens with a pad operation to match the BERT model.

We used Adam [43] to optimize the network with β1 = 0.9, β2 = 0.98 and
weight − decay = 0.0001. The initial learning rate is 0.0005 with the inverse sqrt learn-
ing rate scheduler. We set the dimension of all the hidden states in the Transformer trained
with our algorithm to 768 to match the output of the pre-trained BERT model. Due to the
parameter amount of the BERT, we set the batch size to 256 during the model training. In
the inference stage, we set the beam width to 5 and length penalty to 0.6 following [3].

For other languages to English translation tasks, we performed the following oper-
ations on all data: (a) lower casing and accent removal, (b) punctuation splitting, and
(c) white space tokenization. We preprocess all sentences by BPE [44] and set the size of
the sub-words to 32K for each language pair. For translation tasks from other languages to
Chinese, we add spaces around every character for Chinese and Korean Hanja.

4.3. Baselines

This paper compares the Transformer (base) trained with our algorithm with the fol-
lowing approaches that trained end-to-end, including Transformer (base) [3], Transformer
(big) [3], Transformer-based on transfer learning [29], DeepRepre [45], RelPos [46], and
BERT-fused model [16]. Since the proposed approach is used for the Transformer training,
we compare the resulting Transformer from our algorithm with the Transformer and its
variants which were trained in the traditional end-to-end way. We also compare our ap-
proach with the BERT-fused model, which incorporates the BERT of the source language as
additional information in the encoding and the decoding stages.

It is worth noting that we use “Ours” to represent the Transformer (base) trained with
our multi-step algorithm. All the baselines are trained in the traditional end-to-end way
until they are converged.

5. Results and Discussion
5.1. Comparison with Baselines

Table 2 shows the translation performances of the baselines and the Transformer (base)
trained with our approach on the six low-resource translation tasks. It is clear that the
Transformer (base) trained with our algorithm achieves the highest BLEU values on these
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tasks. Compared with Transformer(base) trained end-to-end, the improvements achieve
4.2%, 2.5%, 6.4%, 4.6%, 3.3%, and 4.5% on the six tasks, respectively.

Table 2. The translation performance of the baselines and our approach.

Approaches De→En Ro→En Vi→En De→Zh Ko→Zh Ru→Zh

Transformer-
based Methods

Transformer (base) 34.98 32.06 27.87 27.88 30.24 25.43

Transformer (big) 34.85 31.98 27.82 27.79 30.28 25.35

Transformer-based
transfer learning 35.01 32.10 27.75 27.72 30.13 25.15

RelPos 35.12 32.15 28.57 28.12 30.51 25.69

DeepRepre 35.41 32.27 28.48 28.35 30.59 26.14

Incorporating
Bert Methods

Bert-fused NMT 36.34 32.35 29.04 28.82 30.79 26.29

Ours 36.45 32.86 29.65 29.17 31.24 26.57

Among the baselines, the Transformer (base), the Transformer (big), and the Transformer-
based transfer learning produce similar performances. RelPos and DeepRepre obtain better
performances than the Transformer (base), the Transformer (big), and the Transformer-
based transfer learning since they extract better representation using a deep attention
mechanism. The BERT-fused model improves the translation quality by incorporating the
BERT semantic information in the encoding and the decoding stages.

Compared to the Transformer (base) trained end-to-end, our approach improves the
performance of the Transformer (base) about 1∼2 BLEU point. Our approach is obviously
better than the RelPos and DeepRepre. It suggests that adding BERT supervision alleviates
the data hungry problem of the Transformer and improves its performance in low-resource
machine translation. From another viewpoint, adding the BERT supervision can transfer
the BERT knowledge into the Transformer and makes this model converge very well.

Table 3 shows the number of parameters and the average inference time of each model
in the test stage. We use the average inference time of Transformer (base) as the standard.
The inference time of any other model is a multiple of the standard. The BERT-fused model
has the most parameters and the slowest inference speed. This is because it incorporates the
BERT in the inference process as additional knowledge of the encoding and the decoding
modules. The Transformer (big) and DeepRepre also have more parameters than the
Transformer (base). Although the BERT-fused model has a good translation quality, its
inference speed is very slow. The parameter number of our approach is the same as that of
the Transformer (base) and far less than that of the BERT-fused model. Since our approach
does not change the structure of the Transformer (base), its inference speed is faster than
the BERT-fused model.

Table 3. The parameters and average inference speed between the baselines and our approach.

Approaches Parameters Avg. Time

Transformer (base) 87 M 1.0×

Transformer (big) 124 M 1.29×

Transformer-based
transfer learning

87 M 1.0×

DeepRepre 111 M 1.25×

RelPos 87 M 1.0×

BERT-fused NMT 197 M 1.41×

Ours 87 M 1.0×

Considering the comprehensive performance of the Transformer trained with our
algorithm in terms of translation quality, model parameters, and inference speed, we draw
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the conclusion that the proposed training approach is effective for the Transformer in
low-resource machine translation.

Table 4 shows three examples De→En, Ro→En, and Vi→En, which indicates that the
proposed approach is effective.

Table 4. Examples from Tranformer(base) and our approach on De→En, Ro→En, and Vi→En.

De→En

Source
Und warum? Weil sie Dreiecke verstehen und sich-selbst-ver
stärkende geometrische Muster sind der Schlüssel um stabile
Strukturen zu bauen.

Target And why? Because they understand triangles and self-reinforcing
geometric patterns are the key to building stable structures.

Transformer(base) And why? Because they understand triangles and self-reinforcing
geometric patterns, they are crucial to building stable structures.

Ours And why? Because they understand triangles and self-reinforcing
geometric patterns are key to building stable structures.

Ro→En

Source
Ban s, i-a exprimat regretul că divizările în consiliu s, i între
poporul sirian s, i puterile regionale “au făcut această situat, ie
de nerezolvat”.

Target
He expressed regret that divisions in the council and among
the Syrian people and regional powers “made this situation
unsolvable”.

Transformer(base)
Ban expressed regret that the divisions in the council and
between the Syrian people and the regional powers “have made
this situation unresolved”.

Ours
Ban expressed regret that divisions in the council and
between the Syrian people and regional powers “have made
this situation intractable”.

Vi→En

Source
Từng d̄ồng_tiền d̄ều d̄ược cân_nhắc và tiền học thêm tiếng Anh và toán
d̄ược d̄ặt riêng ra bất_kể việc khoản nào phải trừ bớt d̄i, thường thì
d̄ó là quần_áo mới; quần_áo chúng_tôi lúc nào cũng là d̄ồ cũ.

Target
All the dollars were allocated and extra tuition in English and
mathematics was budgeted for regardless of what missed out,
which was usually new clothes; they were always secondhand.

Transformer(base)
Every dollar is considered and English and math tutoring
is set separately no matter what is deducted, usually new
clothes; our clothes are always second-hand.

Ours
All the money was allocated, extra English and math tuition
was budgeted, whatever was missed, usually new clothes;
they were always second-hand.

5.2. Effectiveness of Joint Optimization

Unlike the end-to-end training methods, our algorithm trains the Transformer in a
three-stage fashion, which includes (1) encoder training, (2) decoder training, and (3) joint
optimization. We design joint optimization to further fine-tune the parameter in the
Transformer, so that the encoder and the decoder can perfectly match in the latent space.
The first two stages are necessary, and the third stage is optional in theory. Therefore, we
only analyze the results with and without joint optimization in the ablation experiment.

To verify the effectiveness of this training operation, we conduct ablation studies
on the above translation tasks as shown in Table 5. We compared the performances of
different optimization epochs. For simplicity, we use EncT, DecT, JO to represent encoder
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training, decoder training, and joint optimization, respectively. The third line “EncT + DecT”
represents the model only going through the encoder training and the decoder training.
We also list the performance of the Transformer (base) trained end-to-end.

Table 5. The effectiveness of joint optimization. EncT, DecT, JO represent encoder training, decoder
training, and joint optimization, respectively.

Models De→En Ro→En Vi→En De→Zh Ko→Zh Ru→Zh

Transformer (base) 34.84 32.06 27.87 27.88 30.24 25.43

Ours

EncT + DecT 30.88 26.51 22.11 22.82 25.33 18.95

EncT + DecT + JO (40 epoch) 33.77 31.19 28.12 27.58 28.71 23.23

EncT + DecT + JO (80 epoch) 35.28 31.67 28.38 28.03 29.59 25.87

EncT + DecT + JO (full training) 36.38 32.86 29.65 29.17 31.24 26.57

As shown in Table 5, when the Transformer only goes through the encoder training and
the decoder training independently, its performance is lower than that of the Transformer
(base) trained end-to-end. This is because the encoder and the decoder do not not fully
match in the latent space. The performance of the Transformer goes up significantly as joint
optimization epochs increase from 40 to 80. The model obtains the highest BLEU 36.38 in
De→En task after the full fine-tuning, which shows that joint optimization can boost the
Transformer after independently training the encoder and the decoder. With the increase of
the epoch of joint optimization, the performance of the Transformer increases. The results
on the other tasks also confirm this point.

5.3. Effectiveness of the BERT Fine-Tuning

In decoder training, we studied whether the parameters of the BERT model need to be
frozen. To this end, we adjusted the training sequence. First, we trained the decoder of the
Transformer. Then, we trained the encoder of the Transformer. Finally, we performed joint
optimization in the third stage. Table 6 lists the performances of the Transformer on the
six tasks.

Table 6. The effectiveness of the BERT Fine-tuning.

Strategy De→En Ro→En Vi→En De→Zh Ko→Zh Ru→Zh

BERT frozen 35.86 32.46 29.08 28.76 30.81 26.29

BERT fine-tuning 36.38 32.86 29.65 29.17 31.24 26.57

Obviously, compared to the case where the BERT is frozen, the BLEU of the Trans-
former improves when the BERT is fine-tuned in the decoder training. This is because
we used the pre-training model to get good initialization parameters and further improve
through fine-tuning. It suggests that the BERT fine-tuning is good for machine translation.
At the same time, however, the training time and the memory will increase if the BERT is
fine-tuned in the training process. From Tables 2 and 6, we prove that training the Trans-
former with our approach is much better than training it end-to-end no matter whether the
BERT is frozen.

5.4. Effectiveness of the Large-Scale Monolingual Corpus of the Target Language

As mentioned, in the scenario of low parallel corpus but high monolingual target
language corpus, a byproduct of BERT supervision is that we can further improve the
translation performance by training the decoder with the large-scale monolingual corpus of
the target language. To validate this point, we conducted experiments on the De→En task,
in which we added the extra large-scale monolingual English corpus TED and WMT to the
original training dataset IWSLT’14 in decoder training. The TED includes 500,000 English
sentences from www.kaggle.com (accessed on 8 January 2020) , and the WMT includes

www.kaggle.com
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4,000,000 English sentences from www.statmt.org (accessed on 8 January 2020) . The results
are listed in Table 7. “EncT + DecT” represents the encoder training and decoder training
using the IWSLT’14; “+TED” and “+WMT” mean that we add the TED and WMT to train
the dataset in decoder training.

Table 7. Effectiveness of the decoder training using an additional large-scale monolingual corpus
of the target language. DecT(+TED) and DecT(+WMT) mean that we used the additional TED and
WMT in decoder training, respectively.

Approaches De→En

EncT + DecT 30.88

EncT + DecT(+TED) 31.33

EncT + DecT(+WMT) 31.27

EncT + DecT(+TED) + JO 35.87

EncT + DecT(+WMT) + JO 35.35

Comparing the “EncT + DecT(TED)” with the “EncT + DecT”, we found that using an
additional monolingual corpus TED in the decoder training improves the performance of
the Transformer. This finding also holds when we used an additional corpus WMT. The
results in the fifth and the sixth rows show that joint optimization can further improve the
performance of the “EncT + DecT(TED)” and the “EncT + DecT(WMT)”.

6. Conclusions

The data scarcity problem occurs when we use the Transformer in low-resource
machine translation tasks. This paper proposed a simple but very effective algorithm to
deal with the mismatch problem between the big model capacity of the Transformer and
the small training dataset available. The training algorithm uses the BERT as a constraint
of the latent semantic space and trains the Transformer in three stages, including encoder
training, decoder training, and joint optimization. Independently training the encoder
and the decoder helps to alleviate data scarcity and enables the Transformer to converge
well. Joint optimization is used to make the encoder and decoder fully match in the
latent space. With the supervision of the BERT, we transferred the BERT knowledge into
the Transformer and made this model converge very well. The experiments on six low-
resource translation tasks demonstrate that the Transformer trained by our algorithm
significantly outperforms the baselines, including Transformer (base), Transformer (big),
Transformer-based Transfer learning, RelPos, DeepRepre, and Bert-fused NMT, which are
trained end-to-end in previous works. Compared with the Transformer (base) trained end-
to-end, the Transformer (based) trained with our algorithm obtains 4.2%, 2.5%, 6.4%, 4.6%,
3.3%, and 4.5% performance improvement in terms of BLEU on the six tasks, respectively.
Compared to other the BERT-fused methods, a major advantage of our approach is that it
improves the performance of the Transformer without changing its structure and increasing
the number of parameters. The experiments also suggest that the BERT fine-tuning is good
for the performance when training the Transformer with our algorithm. A byproduct of
the proposed algorithm is that it enables us to further improve the translation performance
by training the decoder with the large-scale monolingual corpus of the target language.
In summary, our approach significantly improves the performance of the Transformer in
low-resource translation tasks. More details can be found in the supplementary document
and code.

In the future, we will investigate the generalization of the proposed approach to other
end-to-end NMT models.

www.statmt.org
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