
Citation: Zhao, P.; Luo, Z.; Li, J.; Liu,

Y.; Zhang, B. Machine Learning

Sorting Method of Bauxite Based on

SE-Enhanced Network. Appl. Sci.

2022, 12, 7178. https://doi.org/

10.3390/app12147178

Academic Editors: Andrea Prati, Luis

Javier García Villalba and Vincent

A. Cicirello

Received: 28 June 2022

Accepted: 12 July 2022

Published: 16 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Machine Learning Sorting Method of Bauxite Based on
SE-Enhanced Network
Pengfei Zhao 1, Zhengjie Luo 1, Jiansu Li 1, Yujun Liu 2 and Baocheng Zhang 3,*

1 Department of Mechanical and Electronic Engineering, School of Mechanical Engineering, North University
of China, No. 3 Xueyuan Road, Taiyuan 030051, China; wings215@nuc.edu.cn (P.Z.);
s202106129@st.nuc.edu.cn (Z.L.); jslihongcha@126.com (J.L.)

2 China Unicom Taiyuan Branch, Taiyuan 030001, China; lixinxjx@163.com
3 Department of Mechatronics Engineering, School of Engineering, Ocean University of China,

Qingdao 266100, China
* Correspondence: zbc2014088@ouc.edu.cn

Abstract: A fast and accurate bauxite recognition method combining an attention module and a
clustering algorithm is proposed in this paper. By introducing the K-means clustering algorithm
into the YOLOv4 network and embedding the SE attention module, we calculate the corresponding
anchor box value, enhance the feature learning ability of the network to bauxite, automatically learn
the importance of different channel features, and improve the accuracy of bauxite target detection. In
the experiment, 2189 bauxite photos were taken and screened as the target detection datasets, and the
targets were divided into four categories: No. 55, No. 65, No. 70, and Nos. 72–73. By selecting the
category volume balanced datasets, the optimal YOLOv4 network model was obtained after training
7000 times, so that the average accuracy of bauxite sorting reached 99%, and the reasoning speed was
better than 0.05 s. Realizing the high-speed and high-precision sorting of bauxite greatly improves
the mining efficiency and accuracy of the bauxite industry. At the same time, the model provides key
technical support for the practical application of the same type of engineering.

Keywords: bauxite; K-means; SE; YOLOv4

1. Introduction

Bauxite, as the main raw material of alumina and metal aluminum, plays an irreplace-
able role in the manufacturing fields of spacecrafts [1,2], automobiles [3,4], and so on. At
the same time, due to the thermostability and wear resistance of bauxite, it has a wide
range of application value in the fields of refractory [5,6], polishing powder [7], advanced
grinding wheel, and so on.

At present, ore separation mainly depends on manual beneficiation and machine
learning methods. In the traditional beneficiation process, ore separation mainly depends
on the experience of professionals. Now, we use machine learning for ore separation. The
intervention of professionals in ore separation is reduced, which not only improves the
beneficiation capacity, but also reduces the process abnormality and equipment failure
rate. The combination of convolution neural network and spectral technology [8–10],
ore image segmentation [11], ABC-BP (Artificial Bee Colony-Back Propagation) neural
network [12], and other improved methods [13–15] are used to realize the ore classification
of image recognition and effectively solve the problem of manual separation in the process
of ore production.

Traditional manual beneficiation has low separation efficiency and a serious waste
of resources, which cannot meet the development needs of modern industry. The ore
separation method based on machine learning improves the ore separation ability and
solves some problems of traditional manual beneficiation, but the detection speed is not
high and cannot achieve real-time detection in industry. For ore detection based on the
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convolutional neural network, the corresponding region proposals on the bauxite photo are
first generated and then a feature extraction and classification on the region proposals are
carried out, which reduces the speed of ore detection. In order to improve the ore detection
speed, the ore positioning and identification can be processed at the same time, so as to
realize end-to-end optimization and significantly improve the detection speed.

Therefore, a new bauxite separation method is proposed in this paper. Aiming at
the problem of insufficient detection accuracy of self-built bauxite datasets, an improved
YOLOv4 network combining the SE (Squeeze-and-Excitation) attention module and the
K-means clustering algorithm is proposed. The K-means clustering algorithm clusters
bauxite in the datasets to determine the length–width ratio of bauxite. By adding the SE
attention module to the YOLOv4 network, we can enhance the ability of the network to
learn the characteristics of bauxite, automatically learn the importance of different channel
characteristics, and improve the accuracy of bauxite target detection. It has potential
application value in the fields of mining intelligence and protection of precious resources
and provides a theoretical reference for further practical application.

2. Design of Bauxite Separation Model

In this section, we will show how to build a YOLOv4 network, leading to the K-means
clustering algorithm and the SE attention module to establish an improved YOLOv4 network.

2.1. YOLOv4 Target Detection Algorithm

YOLOv4 [16] introduces the path aggregation network (PANet), spatial pyramid
pooling (SPP), Mish activation function, and other technologies to improve the detection
accuracy of targets. The backbone part adopts the CSPDarknet53 network that integrates
the CSPNet (Cross Stage Partial Network) [17] and Darknet53 and can reduce the amount
of calculation and maintain or even enhance the learning ability of the convolutional neural
network. The CSPNet solves the gradient information repetition problem of network opti-
mization in other large-scale convolutional neural network frameworks and integrates the
gradient changes into the feature map from beginning to end, thus reducing the parameter
amount and FLOPS value of the model, which not only ensures the inference speed and
accuracy but also a reduced model size. The Neck part uses SPP [18] as an additional mod-
ule to solve how the feature maps of different sizes enter the fully connected layer, which
can greatly improve the receptive field of the network and separate the most significant
upper and lower features. Using PANet [19] as the feature fusion module, a topdown and
bottomup bidirectional fusion backbone network is proposed, and a “shortcut” is added
between the bottom layer and the top layer to shorten the gap between layers. The path
can repeatedly extract the features of the effective feature layer. The Head part is the head
structure of YOLOv3, which extracts features from the feature layer for prediction. The
network structure diagram of YOLOv4 is shown in Figure 1.

In Figure 1, the bauxite image is input into the backbone network to complete feature
extraction, and then the fusion of feature maps of different scales is completed through SPP
and PANet. Finally, the feature maps of three scales are output to predict the boundary box,
class, and confidence.
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Figure 1. YOLO v4 network structure.

2.2. Improvement of YOLOv4 Algorithm

In the YOLOv4 network, nine anchor boxes can be preset to determine the length–
width ratio of the detection target, and nine anchor boxes can be generated in each grid for
detection to predict the bounding box of the target. In the detection of bauxite, the ore forms
are different, and the anchor box default by YOLOv4 is not suitable for the detection of
bauxite. Therefore, this paper uses the K-means clustering algorithm to cluster the bauxite
size in the datasets and calculate the corresponding anchor box value.

The SE attention mechanism module [20], which screens out the attention for channels
by learning the correlation among channels, can be easily embedded into the network
model and only adds a small amount of model overhead and complexity. In the bauxite
detection task, with the deepening of the training network, the bauxite characteristics
gradually weaken, which can easily cause missed detection. However, embedding the SE
attention module in the YOLOv4 network can enhance the learning ability of the network,
automatically learn the importance of different channel characteristics, and improve the
accuracy of bauxite sorting. As shown in Figure 2, the SE module is embedded in the
Inception module to form a new SE–Inception module. In this study, the SE attention
module is embedded into the Resunit module to form a new SE–Resunit module, and the
SE module is embedded behind the CSPn module to form a new SE–CSPn module. The
specific structure is shown in Figure 3.
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3. Loss Function of YOLOv4 Network

The loss function is used to measure the difference between the predicted value and
the actual value. In this paper, the loss function is expressed as:

LCIOU = 1− IoU +
ρ2

c2 + αυ (1)

The above loss function consists of three parts: the first part is the LCIOU loss function;
the second part introduces the penalty term, and the third part is the width–height ratio of
the frame where IoU represents the degree of overlap between the prediction frame and the
real frame in target detection; ρ represents the Euclidean distance between the center point
coordinates of the prediction frame and the real frame in target detection; c represents the
diagonal distance of the smallest box covering the prediction box and the real box; α is the
weight function; ν is the consistency of measuring the width–height ratio.

3.1. LIOU Loss Function

From Equation (1), we know that the LIOU loss function is expressed as:

LIOU = 1− IoU (2)

IoU =
A ∩ B
A ∪ B

(3)

where IoU represents the intersection and union ratio of the prediction frame and real frame
in target detection. In Formula (3), A represents the prediction frame, and B represents the
real frame. Obviously, the higher the value of IoU, the higher the degree of coincidence
between the prediction frame and the real frame, the higher the prediction accuracy of the
representative model, but the worse the performance of the representative model.

3.2. LDIOU Loss Function

The LDIOU loss function is composed of penalty term function based on the LIOU loss
function. Its loss function is expressed as:

LDIOU = 1− IoU +
ρ2

c2 (4)

The penalty term of the LDIOU loss function is based on the ratio of the distance
between the center point and the diagonal, which avoids the large outsourcing frame when
the distance between the two frames is far, resulting in the large value of the loss function,
something that is difficult to optimize. Even when one box contains another box, the c
value remains unchanged, but the distance of the center point can be effectively measured.

3.3. Weight Function α and Width–Height Ratio ν

When the center points of the two frames coincide, the values of c and ρ do not change;
therefore, we introduced the weight function α and width–height ratio ν, and the function
expression is as follows:

α =
v

(1− IoU) + v
(5)
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v =
4

π2 (arctan
wgt

hgt − arctan
w
h
)

2

(6)

where wgt and hgt are the width and height of the real frame, and w and h are the width and
height of the prediction frame. If the width and height of the real frame and the prediction
frame are similar, that is, ν is 0, and this item is 0. The function of α*ν is to control the width
and height of the prediction frame to be as close as possible to the width and height of the
real frame.

3.4. Mish Activation Function

The Mish activation function is used to add nonlinear factors, improve the model
expression ability of the network, and solve the problems that cannot be solved by the
linear network model. In this paper, we introduce the Mish activation function, whose
expression is as follows:

Mish = x× tanh(ln(1 + ex)) (7)

The function image is shown in Figure 4.
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The Mish activation function has the following advantages: There is no upper bound-
ary, which avoids the saturation caused by capping, and there is no gradient disappearance
in the training process. Each point of the function is smoother, allowing better information
to go deep into the neural network. When the value is negative, it allows a smaller negative
gradient to flow in, ensuring that the information will not be interrupted, so as to obtain
better accuracy and generalization ability.

4. Bauxite Separation Test Results and Discussion

This section introduces data preparation, establishment of control experiment, selec-
tion of optimal model, and experimental verification in the bauxite separation process.

4.1. Data Preparation

According to the research, we choose a 3D structured light depth camera Astra.
According to Astra parameters, the data acquisition distance in this paper is determined
to be 1.5 m to realize the data acquisition of four bags of sorted bauxite. According to the
pictures collected in this paper, there is only one kind of bauxite in one picture. After all the
pictures were taken, the total amount of data was finally sorted out, as shown in Table 1.
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Table 1. Total data.

Bauxite Category Number of Pictures

No. 55(ks55) 1000
No. 65(ks65) 400
No. 70(ks70) 479

Nos. 72–73(ks723) 310

The above datasets were labelled in LabelMe. After labeling, we integrated the
datasets into different training sets and test sets according to the ratio of 8:2. When making
the category volume of unbalanced datasets, a total of 2189 pictures were divided into
1751 training sets and 438 test sets. When making the category volume of balanced datasets,
considering that the bauxite of Nos. 72–73 is the least, the final rounding was 250 as
the training sets and 60 as the test sets. The other three types of bauxite also took out
310 pictures, including 1000 training sets and 240 test sets in the final category volume of
balanced datasets. As shown in Table 2:

Table 2. Sorted datasets.

Dataset Type Number of Training Sets Number of Test Sets

category volume unbalanced datasets 1751 438
category volume balanced datasets 1000 240

4.2. Experimental Process

In this paper, in order to generate a better bauxite separation model, we used the
improved YOLOv4 network and set up two groups of controlled experiments of the data
categories balanced and unbalanced to find the optimal model. The accuracy P and the
average AP of each category were used to judge the network performance. When the
IoU ≥ 0.5, the bauxite is detected correctly.

In the YOLOv4 network, both batch and subdivisions were set to 64, which means that
batch pictures were loaded into the memory at one time during the training process, and
then the forward propagation process was completed in subsets; the maximum number of
iterations of Max_Batches was set to 8000; the number of detection categories was set to 4.
The experimental equipment includes AMD Ryzen 5 3600X 6-Core Processor, GeForce RTX
2060 graphics card, and 16G memory.

Figure 5 shows the change of loss function of bauxite datasets in the process of the
improved YOLOv4 network training. After 8000 training iterations, the loss function no
longer shows a downward trend. In order to establish the best bauxite sorting model, we
set 1000 ~ 8000 iterations for comparison, and then trained on the balanced and unbalanced
bauxite category data, respectively. The training results are shown in Tables 3 and 4.

Table 3. Training results of improved YOLOv4 network for unbalanced category datasets.

Number of
Iterations

Bauxite Category
mAP

No. 55 No. 65 No. 70 Nos. 72–73

1000 97.59% 47.98% 77.31% 48.04% 67.82%
2000 98.12% 95.73% 93.80% 83.30% 92.72%
3000 98.14% 99.19% 99.18% 96.01% 98.13%
4000 96.87% 99.49% 99.73% 95.70% 97.95%
5000 97.51% 98.76% 99.80% 93.20% 97.32%
6000 97.36% 99.23% 98.91% 96.98% 98.12%
7000 97.34% 98.68% 99.87% 95.13% 97.75%
8000 97.42% 97.81% 99.85% 95.29% 97.59%
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Table 4. Training results of improved YOLOv4 network for balanced category datasets.

Number of
Iterations

Bauxite Category
mAP

No. 55 No. 65 No. 70 Nos. 72–73

1000 98.63% 48.43% 88.23% 60.15% 73.86%
2000 97.94% 98.18% 98.55% 93.65% 97.08%
3000 98.21% 98.05% 98.51% 94.81% 97.40%
4000 98.20% 98.18% 98.55% 96.55% 97.87%
5000 98.21% 98.48% 98.55% 91.47% 96.68%
6000 98.21% 99.81% 98.53% 93.80% 97.59%
7000 98.20% 99.90% 98.55% 99.81% 99.12%
8000 98.21% 98.48% 98.55% 93.09% 97.08%

In order to enhance the visibility of the data, we visualized the above table in Figure 6.
The left figure shows the training results of the category volume unbalanced datasets
in the improved YOLOv4 network, and the right figure shows the training results of the
category volume balanced dataset in the improved YOLOv4 network. Through longitudinal
comparison and observation, it is easy to conclude that given the limited sample data,
when the datasets are made into a balanced category of data volume, the effect of the model
with the same training times is better. When the model iterates 7000 times, the network
training results of the four types of ores are the best, and the average detection accuracy is
about 99%. The inference speed of the network model is between 0.03 s and 0.05 s, and the
training effect is the best. Therefore, we selected the category volume balanced datasets
to train the model for 7000 times under the improved YOLOv4. The confusion matrix
obtained under this network model is shown in Figure 7.
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Figure 7. Confusion matrices obtained under the optimal model for the test sets of four ores. It can be
seen from the figure that the detection sensitivity of the four types of ores is very high; the detection
accuracy is almost 100%, and there is no misjudgment.

The same bauxite datasets are trained and verified on the original YOLOv4 network
and the improved YOLOv4 network. Through analysis and calculation, it can be concluded
that the average detection accuracy of the improved YOLOv4 network is increased by 10%;
the false recognition rate is basically 0; the overall detection accuracy deviation is 1%, and
the variance is almost 0.

4.3. Experimental Verification

After the above analysis, we obtained a bauxite sorting model based on the improved
YOLOv4 network. In order to verify whether the model is reliable and whether the
unknown pictures can accurately locate the bauxite and correctly identify it, we took some
bauxite pictures for verification, and the results are shown in Figure 8. From left to right
are the corresponding test results of No. 55, No. 65, No. 70, and Nos. 72–73, which can
correctly identify the type of bauxite and correctly locate it. Through this test result, it is
verified that the model of bauxite balanced datasets trained 7000 times under the improved
YOLOv4 network has good bauxite sorting ability and can realize the real-time detection
and classification of bauxite.
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5. Conclusions

Bauxite separation technology is of great significance in the fields of mining intelligence
and resource protection. The problem of insufficient detection accuracy of self-built bauxite
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datasets was studied. Based on the YOLOv4 network, the K-means clustering algorithm
was used to cluster the bauxite size in the datasets to find the most suitable anchor box value.
The SE attention module is embedded in the YOLOv4 network, so that the network can learn
the correlation among channels, screen out the attention for channels, automatically learn
the importance of different channel characteristics, and improve the detection accuracy
of bauxite. The experimental results show that the detection accuracy of the improved
YOLOv4 network for bauxite is as high as 99%, and the reasoning speed is between 0.03 s
and 0.05 s, which can realize real-time detection. Compared with the original YOLOv4
network, the average detection accuracy of the improved YOLOv4 network is increased
by 10%; the false recognition rate is basically 0; the overall detection accuracy deviation
is 1%, and the variance is almost 0. Finally, the effectiveness of the improved algorithm
is also verified. The bauxite detection method proposed in this paper effectively solves
the problem of bauxite sorting and lays a solid foundation for the application of bauxite
in various fields. However, the improved YOLOv4 model has not yet carried out the
classification and detection of other ores. We will further study the universality of ore
detection of this model. It provides a theoretical reference for further practical application.
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