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Abstract: The principal objective of this work was to develop a semi-implicit hybrid boundary ele-
ment method (HBEM) to describe the nonlinear fractional biomechanical interactions in functionally
graded anisotropic (FGA) soft tissues. The local radial basis function collocation method (LRBFCM)
and general boundary element method (GBEM) were used to solve the nonlinear fractional dual-
phase-lag bioheat governing equation. The boundary element method (BEM) was then used to solve
the poroelastic governing equation. To solve equations arising from boundary element discretization,
an efficient partitioned semi-implicit coupling algorithm was implemented with the generalized mod-
ified shift-splitting (GMSS) preconditioners. The computational findings are presented graphically to
display the influences of the graded parameter, fractional parameter, and anisotropic property on the
bio-thermal stress. Different bioheat transfer models are presented to show the significant differences
between the nonlinear bio-thermal stress distributions in functionally graded anisotropic biological
tissues. Numerical findings verified the validity, accuracy, and efficiency of the proposed method.

Keywords: local radial basis function collocation method; boundary element method; dual-phase-lag
bioheat transfer; bio-thermomechanics; functionally graded anisotropic soft tissues

1. Introduction

Because of advancements in microwave, laser, focused ultrasound, and radiofrequency
technologies, many modern thermo-therapeutics are now widely used in clinical treatment.
For example, in thermal therapy, an objective lens focuses a laser on a tumor. One of the
most difficult problems in thermal therapy is delivering the right amount of heat energy to
the diseased tissue while avoiding damage to healthy tissue. As a result, there is a press-
ing need to comprehend how temperature/stress fields influence the kinetics of thermal
therapy. Van and Gybels [1] demonstrated that deformation caused by heating and cooling
can cause pain sensation. Accurate predictions of heat and mechanical reactions, as well
as thermal damage in biological tissue, are thus essential for treatment planning and the
development of novel therapeutic heating systems. Because of the inherent properties of
biological tissue, heat transfer analysis in living biological tissue is a complex physiological
procedure. Heat transfer analysis in living biological tissue is a difficult physiological
process due to biological tissue’s inherent properties, such as blood circulation, sweating,
metabolic heat generation, and heat dissipation via hair or fur. Pennes [2] used his bioheat
transfer model to simulate the temperature profile in the human forearm to adequately
characterize this complex event. Other bioheat transfer models were developed to address
the shortcomings of Pennes’ model, which does not consider the blood velocity field or the
geometry of blood vessels [3–7]. Although these models are more detailed and precise than
Pennes’, their complexities make them difficult to apply in practice. On the other hand,
because Pennes’ model is simple and has a small number of material parameters, it has
piqued the interest of many researchers [8]. Because of its non-homogeneous structure
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and composition, soft tissue’s mechanical response in vivo is heterogeneous, anisotropic,
nonlinear, and viscoelastic. It is influenced by a variety of factors, including age, gender,
location, and hydration. Cattaneo [9] and Vernotee [10] proposed a single-phase lag (SPL)
related to heat flow to address a limitation of the linear bioheat transfer model. The ther-
mal wave bioheat transfer (TWBHT) model was obtained by combining the SPL model
with the energy equation. Tzou [11,12] extended the SPL model by incorporating another
phase lag caused by a temperature gradient, resulting in the dual-phase-lag (DPL) model.
Furthermore, standard electrometric constitutive models are insufficient for describing soft
tissue’s complex mechanical behavior. A thorough understanding of the thermal [13–16]
and biothermo–mechanical [17–19] responses of biological tissues will aid in the design
and optimization of heat transfer processes in biological tissues. Several models were
proposed to study the mechanical behavior of biological tissues [20,21]. Pioletti and Rako-
tomanana [22] studied the non-linear viscoelastic laws for soft biological tissues. A generic
physics-informed neural-network-based constitutive model for soft biological tissues was
established by Liu et al. [23]. Furthermore, Miller and Gasser [24] studied the non-linear
and time-dependent properties of soft biological tissues containing collagen.

The primary goal of this study was to introduce the hybrid boundary element method
(HBEM) scheme for describing nonlinear fractional bio-thermomechanical interactions in
functionally graded anisotropic (FGA) soft tissues, which is based on the local radial basis
function collocation method (LRBFCM) and GBEM to solve the bioheat governing equation
and on the boundary element method (BEM) to solve the poroelastic governing equation.
The calculation results were graphed to show the effects of the anisotropic property and
graded and fractional parameters on bio-thermal stress. These findings also supported the
proposed hybrid scheme’s validity and efficiency.

2. Formulation of the Problem

Let us consider two-dimensional {x = (x1, x2) = (x, y) : 0 ≤ x1 = x ≤ 1, 0 ≤ x2 = y ≤ 1}
functionally graded tissue with a boundary Γ. The governing equations that model the nonlinear
fractional bio-thermomechanical interactions in FGA soft tissues are as follows [25,26]:

σij,j + ρFi = ρ
..
ui + φρF

..
vi (1)

where σij, ρ, ρF , Fi, φ, ui, and vi are the mechanical stress tensor, bulk density, fluid density,
bulk body forces, porosity, solid displacement, and fluid–solid displacement, respectively.

.
ζ + qi,i = Ci (2)

where ζ, q, and Ci are the fluid volume variation, instantaneous flux, and source term,
respectively.

Furthermore:
σij = (x + 1)m

[
Cijkl eδij − Aδij p− βij T

]
(3)

qi = −k(x + 1)m
(

p,i + ρF
..
ui +

ρ0 + φρF
φ

..
vi

)
, ζ =

[
Auk,k +

φ2

R
p
]

(4)

in which εij = 1
2
(
ui,j + uj,i

)
, e = εii, and A = φ

(
1 + Q

R

)
. T, λ, Cijkl , A, p, βij, k, T0, Å,

and m are the temperature, thermal conductivity, constant elastic moduli, Biot’s effective
stress coefficient, fluid pressure, stress–temperature coefficients, permeability, reference
temperature, unified parameter, and functionally graded parameter, respectively. Q and R
are solid–fluid coupling parameters, ρ0 = ηφρF , and η is the shape factor.

The fractional order bioheat transfer equation without dual-phase lag can be expressed as

Da
τT(x, τ) = ξ∇

[
Ǩ ∇T(x, τ)

]
+ Qm(x, τ), ξ =

1
cρ

(5)
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where a, c, ρ, τ, Ǩ, and Qm are the fractional parameter, specific heat, density, time, ther-
mal conductivity, and metabolic heat production, respectively. The schematic flowchart
representation of the considered problem is described in Figure 1.
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3. Hybrid Technique Implementation
3.1. LRBFCM—GBEM Implementation for the Temperature Field
3.1.1. LRBFCM Implementation for the Time-Fractional-Order Bioheat Equation without
Dual-Phase Lag

According to the finite difference scheme of Fahmy [16], the temperature time deriva-
tive can be expressed as

.
T(x, τ) =

T f+1(x)− T f (x)
∆τ

+ O(∆τ), τ f = f ∆τ, f = 0, 1, 2, . . . , F,
.
T(x, τ) ∈

[
τ f , τ f+1

]
where Da

τ is the Caputo derivative of order a, which can be written as [9]

Da
τT(x, τ) =

1
Γ(1− a)

τ∫
0

∂T(r, s)
∂s

ds
(τ − s)a , 0 < a < 1 (6)

Based on the Caputo derivative (6), the following formula can be presented:

Da
τT f+1 + Da

τT f ≈
k

∑
j=0

Wa,j

(
T f+1−j(x)− T f−j(x)

)
, ( f = 1, 2, . . . , F) (7)

in which

Wa,0 =
(∆τ)−a

Γ(2− a)
(8)

Wa,j = Wa,0

(
(j + 1)1−a − (j− 1)1−a

)
, j = 1, 2, . . . , F (9)
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According to Equation (7), we can write the bioheat transfer as Equation (5):

Wa,0T f+1(x)− Ǩ(x)T f+1
,I I (x)− Ǩ,I(x)T

f+1
,I (x)

= Wa,0T f (x)− Ǩ(x)T f
,I I(x)− Ǩ,I(x)T

f
,J(x)−

f
∑

j=1
Wa,j

(
T f+1−j(x)− T f−j(x)

)
+Q f+1

m (x, τ) + Q f
m(x, τ), f = 0, 1, 2, . . . , F

(10)

Krahulec et al. [27] used the LRBFCM to solve (10) as follows:(
Wa,0E−ΛΦ̌I IΦ̌

−1 −ΛIΦ̌IΦ̌
−1
)

Ť f+1

=
(

Wa,0E + ΛΦ̌I IΦ̌
−1

+ ΛIΦ̌IΦ̌
−1
)

Ť f −
f

∑
j=1

Wa,j

(
T f+1−j(x)− T f−j(x)

)
+ Q f+1

m (x, τ) + Q f
m(x, τ), f

= 0, 1, 2, . . . , F

3.1.2. GBEM Implementation for the Dual-Phase-Lag Bioheat Equation without a
Fractional-Order Derivative

The dual-phase-lag bioheat equation in the absence of a fractional derivative may be
written as [28]

cρ

[
∂T
∂τ

+ τq
∂2T
∂τ2

]
= Ǩ∇2T + ǨτT

∂

∂τ

(
∇2T

)
+ WbCb

(
T̆b − T

)
+ Qm −WbCbτq

∂T
∂τ

(11)

where τq, τT , Wb, Cb, and T̆b are the heat-flux phase lag, temperature-gradient phase lag,
perfusion rate, specific heat, and arterial temperature, respectively.

In the proposed model, we considered the following conditions:

T(x, 0) = T0,
∂T(x, τ)

∂τ

∣∣∣∣
τ=0

= 0 (12)

T(x, τ) = Tb(x, τ) for x ∈ Γ1 (13)

qb(x, τ) + τq
∂qb(x, τ)

∂τ
= −Ǩ

[
∂T(x, τ)

∂n
+ τT

∂

∂τ

(
∂T(x, τ)

∂n

)]
for x ∈ Γ2 (14)

where T0(x) = T1(x) = T0 and τ f−1 → τ f ( f ≥ 2) .
Thus, Equation (11) may be approximated as follows [28]:

cρ

(
T f (x)−T f−1(x)

∆τ + τq
T f (x)−2T f−1(x)+T f−2(x)

(∆τ)2

)
= Ǩ∇2T f (x) + ǨτT

∆τ

[
∇2T f (x)−∇2T f−1(x)

]
+ WbCb

[
T̆b − T f (x)

]
+ Qm

−WbCbτq
T f (x)−T f−1(x)

∆τ

(15)

Equation (15) may be expressed as

∇2T f (x)− BT f (x) + C∇2T f−1(x) + DT f−1(x) + ET f−2(x) + F = 0 (16)

in which

B =
(cρ + WbCb∆τ)

(
∆τ + τq

)
Ǩ∆τ(∆τ + τT)

, C =
τT

∆τ + τT
, D =

cρ
(
∆τ + 2τq

)
+ WbCbτq∆τ

Ǩ∆τ(∆τ + τT)
,

E = −
cρτq

Ǩ∆τ(∆τ + τT)
, F =

∆τ
(
WbCbT̆b + Qm

)
Ǩ(∆τ + τT)
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Equations (13) and (14) may be expressed as

T f (x) = T f
b (x) for x ∈ Γ1 (17)

Z f (x) = w f
b (x) = −Ǩ

∂T f (x)
∂n

for x ∈ Γ2 (18)

where

w f
b (x) =

∆τ

∆τ + τT

(
q f

b (x) + τq
∂qb(x, τ)

∂τ

∣∣∣∣
t=t f

)
− Ǩ

τT
∆τ + τT

∂T f−1(x)
∂n

By using the same technique used by Fahmy [16], the following boundary integral
equation can be obtained:

B(ξ)U(1)(ξ) +
1
Ǩ

∫
Γ

T∗(ξ, x)w(1)(x)dΓ =
1
Ǩ

∫
Γ

q∗(ξ, x)U(1)(x)dΓ +
∫

Ω
R
[
T f

k−1(x)
]
T∗(ξ, x)dΩ (19)

The fundamental solutions are

T∗(ξ, x) =
1

4πr
exp

(
−r
√

B
)

(20)

q∗(ξ, x) =
Ǩd

4πr2 exp
(
−r
√

B
)(1

r
+
√

B
)

, d =
3

∑
e=1

(xe − ξe) cos αe (21)

After the discretization process, Equation (19) is approximated as follows [16]:

N

∑
j=1

GijW [1](xj
)
=

N

∑
j=1

HijU[1](xj
)
+

L

∑
l=1

Pil R
[
T f

k−1(xl)
]

(22)

in which
Gij =

1
Ǩ

∫
Γj

T∗(ξi, x)dΓj

Hij =

{∫
Γj

q∗(ξi, x)dΓj, i 6= j

−0.5, i = j

Pil =
∫

Ωj

T∗(ξi, x)dΩj

From (22), we obtain the boundary unknowns W(1) and U(1). Then, we can calculate
U(1)(ξi) using

U(1)(ξi) =
N

∑
j=1

HijU(1)(xj
)
−

N

∑
j=1

GijW(1)(xj
)
+

N

∑
j=1

Pil R
[
T f

k−1(xl)
]

(23)

3.2. BEM Implementation for a Poroelastic Displacement Field

Based on the weighted residual methodology, Equations (1) and (2) can be written as∫
R

(
σij,j + Ui

)
u∗i dR = 0 (24)

∫
R

(
qi,i +

.
ζ i −Ci

)
p∗i dR = 0 (25)

where
σij,j = (x + 1)m

[
Cijkl uk,l j − Aδij p,j − βij

(
T,j + τ1

.
T,j

)]
++

m
x + 1

σij

qi,i = −k(x + 1)m
(

p,ii + ρF
..
ui,i +

ρ0 + φρF
φ

..
vi,i

)
+

m
x + 1

qi
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in which Ui = ρFi − ρ
..
ui − φρF

..
vi, and u∗i and p∗i are weighting functions.

For the first terms of (24) and (25), integration by parts yields

−
∫

R
σij u∗i,j dR +

∫
R

Ui u∗i dR = −
∫

S2

λi u∗i dS (26)

−
∫

R
q p∗i,j dR +

∫
R

.
ζ i p∗i dR−

∫
R
Ci p∗i dR = −

∫
S4

Li p∗i dS (27)

According to Fahmy [29], we can write∫
R

σ∗ij,j ui dR = −
∫

S
u∗i λi dS−

∫
S

p∗i Li dS +
∫

S
λ∗i ui dS +

∫
S

L∗i pi dS (28)

which may be written as

Cnqn = −
∫

S
p∗ qdS +

∫
S
q∗ pdS +

∫
S
a∗ p dS +

∫
S
b∗

∂p
∂n

dS (29)

in which

Cn =

C11 C12
C21 C22

, q∗ =

u∗11 u∗12 ω∗13
u∗21 u∗22 ω∗23
u∗∗31 u∗∗32 ω∗∗33

, p∗ =

λ∗11 λ∗12 µ∗13
λ∗21 λ∗22 µ∗23
λ∗∗31 λ∗∗32 µ∗∗33



q =

u1
u2
ω3

, p =

λ1
λ2
µ3

, a∗ =

a∗1a∗2
0

, b∗ =

b∗1b∗2
0


Now, we introduce the following definitions:

q = ψ qj, p = ψ pj, p = ψ0 pj,
∂p
∂n

= ψ0

(
∂p
∂n

)j
(30)

Substituting (30) into (29) yields

Cnqn =
Ne

∑
j=1

[
−
∫

Γj

p∗ψ dΓ

]
qj +

Ne

∑
j=1

[∫
Γj

q∗ψ dΓ

]
pj +

Ne

∑
j=1

[∫
Γj

a∗ψ0 dΓ

]
pj +

Ne

∑
j=1

[∫
Γj

b∗ψ0 dΓ

](
∂p
∂n

)j
(31)

which may be expressed as

Ciqi = −
Ne

∑
j=1

Ĥijqj +
Ne

∑
j=1

Ĝijpj +
Ne

∑
j=1

âij pj +
Ne

∑
j=1

b̂ij
(

∂p
∂n

)j
(32)

in which

Hij =

{
Ĥij i f i 6= j
Ĥij + Ci i f i = j

(33)

Now, Equation (32) can be written as

Ne

∑
j=1

Hijqj =
Ne

∑
j=1

Ĝijpj +
Ne

∑
j=1

âij pj +
Ne

∑
j=1

b̂ij
(

∂p
∂n

)j
(34)

which may be written as
HQ = GP+ ai+ bj (35)

Substituting the boundary conditions into (35), the following system can be established:

A X = B (36)
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in which X and B are known matrices, and A is an unknown matrix.
Breuer et al. [30] implemented a robust and efficient partitioned semi-implicit predictor–

corrector coupling algorithm with generalized modified shift-splitting (GMSS) to solve the
resulting linear Equation (36) that arises from boundary element discretization [10,11],
where poro-thermo-elastic coupling is considered rather than fluid–structure interac-
tion coupling.

4. Numerical Results and Discussion

The principal purpose of this study was to propose an efficient hybrid BEM (HBEM)
model to describe the two-dimensional nonlinear fractional biomechanical interactions in
FGA biological tissues. The proposed HBEM technique, which is based on the coupling algo-
rithm [13], should be applied to a wide variety of nonlinear fractional bio-thermomechanical
problems. The three efficient iterative methods that were applied to solve the linear sys-
tems resulting from the proposed hybrid technique were the communication-avoiding
Arnoldi (CA-Arnoldi) procedure [31], which was also employed by Fahmy [32,33]; reg-
ularization [34], which was also implemented by Fahmy [35], and generalized modified
shift-splitting (GMSS) [36], whose performance was also demonstrated by Fahmy [37].
In the current study, the properties of isotropic, transversely isotropic, and anisotropic
soft tissues as given in references [38,39] were considered with the limitations 0 ≤ x ≤ 7.
Furthermore, in the current problem, 84 boundary elements and 404 internal points were
used in the BEM discretization, as shown in Figure 2.
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Figure 2. Boundary element model of the considered problem.

Figure 3 shows the distribution of bio-thermal stress along σ11 the x-axis (y = 0.5) in the
functionally graded isotropic and anisotropic biological tissues for various fractional-order
parameter a values (a = 0.2, 0.6, and1.0). It was noticed from this figure that the bio-thermal
stress σ11 increased to a maximum value in the range 0 ≤ x ≤ 0.25, then decreased,
and then increased. This figure also shows that the bio-thermal stress σ11 increased with a
fractional parameter increase in anisotropic FGA soft tissues and decreased with a fractional
parameter increase in isotropic FGA soft tissues.
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Figure 4 shows the distribution of the bio-thermal stress σ11 along the x-axis (y = 0.5)
in the functionally graded isotropic and anisotropic biological tissues for various graded
parameter m values (m = 0.2, 0.6, and1.0). It can be seen from this figure that the bio-
thermal stress σ11 increased to a maximum value in the range 0 ≤ x ≤ 0.05, then decreased
to a minimum value in the range 0.05 ≤ x ≤ 0.9, and moved as a wave propagation for
the isotropic and anisotropic cases. This figure also shows that the bio-thermal stress σ11
increased with a functionally graded parameter m increase in isotropic and anisotropic
functionally graded soft tissues.
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Figure 5 displays the bio-thermal stress σ11 variation along the x-axis (y = 0.5) for
the classical Fourier

(
Fourier,

(
τq = τT = 0

))
, single-phase-lag

(
SPL,

(
τq = 0andτT = 25

))
,

and dual-phase-lag
(
DPL,

(
τq = τT = 25

))
models. It was noticed from this figure that

the bio-thermal stress σ11 began at positive values in the anisotropic case, but it began at
negative values in the isotropic case. Furthermore, it increased to a maximum value in the
range 0 ≤ x ≤ 0.85 in the isotropic case, then decreased in the range 0.85 ≤ x ≤ 7. This
figure also shows that the maximum value of the bio-thermal stress σ11 occurred in the
classical Fourier model in the isotropic and anisotropic functionally graded soft tissues,
and the minimum value of the bio-thermal stress σ11 occurred in the dual-phase-lag model
in the isotropic and anisotropic functionally graded soft tissues.
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Figure 6 displays the bio-thermal stress σ11 variation along the x-axis (y = 0.5) for
the proposed hybrid technique (Present), finite difference method (FDM) [35], and finite
element method (FEM) [36]. It can be seen from this figure that the present hybrid technique
results were in excellent agreement with the FDM and FEM results.
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Table 1 shows the processing times and numbers of iterations for the CA-Arnoldi,
regularized, and GMSS iterative methods at each discretization level, where the number of
equations is written inside the parentheses. It can be shown from this table that the GMSS
was more efficient than the CA-Arnoldi and regularized iterative methods.



Appl. Sci. 2022, 12, 7174 10 of 12

Table 1. Processing times and numbers of iterations for the CA-Arnoldi, regularized, and GMSS methods.

Discretization
Level

Preconditioning
Level

CA-Arnoldi [31–33] Regularized [34,35] GMSS [36,37]

Process Time Number of
Iterations Process Time Number of

Iterations Process Time Number of
Iterations

1 (32) 0 0.07 6 0.07 6 0.07 6

2 (56) 0 0.2 10 0.2 10 0.2 10
1 0.16 8 0.16 8 0.16 8

3 (104)
0 0.5 13 0.64 14 0.4 12
1 0.46 10 0.6 11 0.32 7
2 0.4 7 0.56 9 0.28 5

4 (200)

0 2.48 14 2.84 18 1.64 14
1 2.04 12 2.62 16 1.48 9
2 1.68 8 1.96 11 1.24 7
3 1.46 7 51.82 4 0.98 3

5 (392)

0 12.2 22 14.26 28 6.85 16
1 10.06 20 12.36 26 5.79 14
2 9.38 18 10.4 22 4.98 12
3 8.28 14 9.48 16 4.04 10
4 7.62 10 8.1 14 3.64 4

6 (776)

0 40.8 20 46.4 26 36.5 15
1 38.5 18 42.2 24 32.4 13
2 36.6 16 40.3 22 30.8 11
3 32.5 14 36.8 16 26.2 9
4 30.4 12 34.3 14 20.3 5
5 28.2 8 32.9 12 18.2 3

Table 2 shows a comparison of the computer resource requirements for modeling the
nonlinear fractional bio-thermomechanical interactions in FGA soft tissues for the finite
difference method (FDM), finite element method (FEM), and HBEM (Present). This table
demonstrates the efficiency of our proposed hybrid technique.

Table 2. Comparison of computer resource requirements for the considered computations.

FDM [40] FEM [41] Present

Number of nodes 62,000 60,000 64
Number of elements 14,800 12,400 32

CPU time (min) 250 240 4
Memory (MByte) 220 230 1

Disc space (MByte) 310 330 0
Accuracy of results (%) 2.4 2.2 1.2

The findings of this paper contribute to the development of mathematical models
that can be applied in bio-thermal engineering applications, such as blood perfusion,
temperature measurement during cryosurgery, analysis of microvascular heat transfer,
thermal injury, cryotherapy, hyperthermia, and the influence of large blood vessels.

5. Conclusions

Some of the inferences that can be drawn from the current study are as follows:

1. A new HBEM model was used to describe the nonlinear fractional biomechanical
interactions in FGA biological tissues.

2. The bioheat governing equation was solved by implementing the LRBFCM and GBEM
for obtaining the temperature, and then the poroelastic governing equation was solved
using the BEM to calculate the displacement at each time step.

3. An efficient partitioned semi-implicit coupling algorithm was implemented with the
GMSS to solve equations arising from the boundary element discretization.

4. The numerical findings were depicted graphically to display the influences of the graded
parameter, fractional parameter, and anisotropic property on the bio-thermal stress.
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5. The numerical findings also show the differences between the Fourier, single-phase-
lag, and dual-phase-lag bioheat models, and verified the validity, accuracy, and
effectiveness of the developed HBEM.

6. The main advantages of the current HBEM model are its generality and simplicity.
7. The numerical findings supported the claim that the proposed method offers more

advantages than other domain discretization techniques.

The findings of this paper contribute to the development of mathematical models
that can be applied in bio-thermal engineering applications, such as blood perfusion,
temperature measurement during cryosurgery, analysis of microvascular heat transfer,
thermal injury, cryotherapy, hyperthermia, and the influence of large blood vessels.
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