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Abstract: With the rapid growth of internet-connected devices and their resource-constrained ca-
pabilities, the current authentication mechanisms are unable to meet the complex IoT application
requirements, such as in the Industrial Internet of Things (IIoT), due to the increased computation,
communication, and storage overhead arising from these mechanisms. In the IIoT, machine-to-
machine (M2M) communication is an underlying technology where devices (e.g., sensors, actuators,
and controllers) can be enabled to exchange information autonomously; thus, the massive data
generated by these devices can increase latency, network congestion, and the complexity of security
management. Message queue telemetry transport (MQTT) is one of the promising M2M protocols
used in the IoT that could encounter such issues because it relies on a central broker in the cloud and
implements a heavyweight authentication mechanism based on TLS. Therefore, this paper proposes
an MQTT architecture with multi-tier brokers based on fog computing, where each broker is deployed
with an authentication manager. In addition, the paper presents a lightweight mutual authentication
scheme based on hash function and XOR operation. Comparing the results given in the benchmark,
the overall performance of our scheme shows that storage and communication overheads are reduced
to 89% and 23%, respectively. Furthermore, our system can resist against several cyberattacks and
provide scalability.

Keywords: lightweight authentication; message queue telemetry transport (MQTT); Internet of
Things (IoT); fog computing

1. Introduction

The evolution and expansion of networking technologies have enabled the estab-
lishment of large-scale connectivity among devices and applications, which has led to
the emergence of the Internet of Things (IoT) concept. According to [1,2], the number of
connected IoT devices in 2016 was 4.6 billion, then 10 billion in 2019, and is expected to be
more than 14 and 27 billion in 2022 and 2025, respectively. This rapid growth of internet-
connected devices can cause several challenges, such as high latency, network congestion,
and bandwidth consumption, due to the fact that the cloud architecture does not meet the
requirements of the massive growth of data that are generated by IoT devices [3].

The challenges will be more critical in applications that require fast responses, as in
the Industrial Internet of Things (IIoT), in which machine-to-machine (M2M) communica-
tion is an underlying technology where devices (e.g., sensors, actuators, controllers, and
gateways) are enabled to exchange data with each other in an autonomous way without
human intervention. In industrial applications, low latency and real-time processing are
fundamental features that are not supported sufficiently in cloud computing [4]. As a
consequence, the fog computing paradigm emerged as a complementary technology with
cloud computing to solve such challenges. Fog computing can provide characteristics such
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as low latency, location awareness, geo-distribution, increased data security, and real-time
processing [5]. In addition, it aims to bring computing, storage, and network capabilities
closer to the end users.

Message queue telemetry transport (MQTT) is a messaging protocol and one of the
promising M2M protocols in the IoT based on the publish–subscribe model, which allows
multiple clients (publishers/subscribers) to communicate with each other through a broker,
can encounter the aforementioned challenges. This is because the communication between
clients relies on a central broker in the cloud. To mitigate and overcome these challenges,
we need to leverage fog computing capabilities to develop MQTT architecture by deploying
multiple brokers in the fog layer. In this case, the load of data transmission, processing,
and storage will be coordinated between brokers in the fog and the cloud, and thus, the
overhead on the cloud will be reduced.

However, this integration between the fog and the cloud for MQTT architecture will
create new security challenges. Since this paper focuses on authentication, the major
concern in designing the authentication system for MQTT based on fog computing is
providing a reliable authentication mechanism while enhancing performance and scala-
bility. The reasons are, firstly, that the current authentication mechanisms do not satisfy
resource-constrained IoT devices due to the complex computational costs involved in these
mechanisms, which consume the processing, memory, and storage capabilities of IoT de-
vices. Secondly, since existing solutions utilize the central cloud entity as an authentication
server, scalability issues will arise due to the growing number of devices, which may cause
bottlenecks, network congestion, and high delays. Thirdly, the large computational load
and high communication overhead on a remote central authentication entity might cause
high transmission, queuing, or processing delays. The main objectives of this paper are
as follows:

1. Propose a scalable MQTT architecture with multi-tier brokers that are based on
fog computing.

2. Present a lightweight mutual authentication scheme that is based on hash function
and XOR operation.

3. Build an authentication manager associated with each broker to conduct the authentica-
tion process for that broker and its connected group of clients/brokers independently.

The lightweight mutual authentication scheme and scalable authentication architecture
for the publish–subscribe model (MQTT) that is based on multiple brokers’ communication
is still an open challenge, and this is the motivation for our study. Unfortunately, most of the
current studies either focus on presenting authentication mechanisms for traditional MQTT
that are based on a single broker without taking into account multiple brokers’ communi-
cation or propose distributed MQTT architectures with multiple brokers without taking
into account the security solutions, such as authentication, while the studies that provided
authentication schemes for distributed MQTT architectures that are based on multiple
brokers lack lightweight mutual authentication and a scalable authentication architecture.

The main contributions of this paper can be summarized as follows:

1. The proposed architecture contributes to handling the massive amount of M2M
communication in IIoT by clustering the clients into groups that connect to a sin-
gle local broker. Further, the architecture will reduce latency, network congestion,
and bottlenecks.

2. The proposed architecture is designed in a hierarchical structure to enable deliver-
ing the requested data to the MQTT client from other brokers that the client is not
connected to.

3. Implementing a lightweight mutual authentication scheme using hash function and
XOR operation is more feasible for resource-constrained IoT devices to mitigate
computation costs and communication overhead.

4. Deploying an authentication manager in each broker will allow the management of
security independently for the broker and its group of connected clients/brokers.
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This will reduce the possibility of security threats and decrease the complexity of
security management.

The rest of the paper is structured as follows: Section 2 provides a brief background of
MQTT and presents the related works. Section 3 introduces the proposed architecture of
the multi-tier MQTT broker based on fog computing (Mu-TiMB) as well as the proposed
lightweight authentication scheme. Section 4 presents an informal security analysis and
the performance results. The evaluation is discussed in Section 5. Finally, the conclusion
and directions for future work are provided in Section 6.

2. Background and Related Works

This section introduces a brief background of MQTT, including the type of messages,
the quality-of-service levels (QoS), and the MQTT topic. In addition, the section on the
related works presents current studies on MQTT authentication and distributed MQTT
architecture with multiple brokers.

2.1. Message Queue Telemetry Transport (MQTT)

MQTT is a messaging protocol based on the publish–subscribe model, which is similar
to the client–server model, but the server running MQTT is called a broker. The protocol
is designed for resource-constrained devices and low-bandwidth and high-latency net-
works, and it attempts to provide reliability and ensure data delivery. In addition, it is
ideal for mobile IoT applications and machine-to-machine (M2M) communication. MQTT
provides bidirectional communication between clients (publisher/subscriber) and a broker.
The publisher is decoupled from the subscriber, and there is no direct communication
between the publisher and the subscriber, except through the broker, which handles, fil-
ters, and distributes the messages between the clients. As shown in Table 1, MQTT has
14 types of messages that are sent to and received from the broker. Security in MQTT is
a username/password-based authentication in plain text that is protected by the crypto-
graphic protocol Secure Sockets Layer/Transport Layer Security (SSL/TLS). This protocol
is not considered to be lightweight for resource-constrained devices and increases the
computational, communication, and storage overhead [6].

MQTT defines three quality-of-service (QoS) levels: QoS 0, QoS 1, and QoS 2. In QoS
0 (at most once), the publisher sends the message one time to the broker, which in turn
sends it one time to the subscriber. No acknowledgment will be sent by the receiver,
and the message will not be resent by the sender. QoS 1 (at least once) is the default
level used in MQTT, and it guarantees that the PUBLISH message from the publisher to
broker, and then from the broker to subscriber, is delivered at least one time. In other
words, if an acknowledgment of the message (PUBACK) is not obtained by the receiver,
the sender (either the publisher or broker) will resend the message. Finally, QoS 2 (exactly
once) is utilized when message loss and duplication are not acceptable. QoS 2 performs
a two-step acknowledgment (PUBLISH–PUBREC) and (PUBREL–PUBCOMP) process to
ensure that the message is delivered one time. This level is more reliable but increases the
communication overhead.

The clients’ communication in MQTT using QoS 1 is depicted in Figure 1, where the sub-
scriber is the client who requests specific topic(s) by sending the SUBSCRIBE message to the broker.
The PUBLISH message is used by the publisher, who sends the topic to the broker, which in turn
uses the PUBLISH message again to send the topic to the subscriber. The MQTT topic is a form of
addressing and represents the type of data that are sent by the publisher and received by the sub-
scriber. The topic name usually uses the forward slash (/), similar to folders in a file system, to sep-
arate each level within the topic tree. It is possible to subscribe to multiple topics using wildcards
represented by # or +. The first symbol means a multi-level wildcard, and the latter means a single-
level wildcard. For example, the topic “home/groundfloor/livingroom/#” allows the client to sub-
scribe to all subtrees belonging to the topic such as “home/groundfloor/livingroom/temperature”,
“home/groundfloor/livingroom/humidity” and “home/groundfloor/livingroom/gas”, whereas
the topic “home/groundfloor/+/temperature” allows the client to subscribe to all topics related
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to temperature from every single device, such as “home/groundfloor/livingroom/temperature”,
“home/groundfloor/kitchen/temperature” and “home/groundfloor/bedroom/temperature”.

Table 1. MQTT message types.

Message Type Value Flow Description

CONNECT 1 Client to broker Request to connect

CONNACK 2 Broker to client Connect acknowledgement

PUBLISH 3 Publisher to broker
Broker to subscriber Publish message

PUBACK 4 Broker to publisher
Subscriber to broker

Publish acknowledgement
(used in QoS 1)

PUBREC 5 Broker to publisher
Subscriber to broker

Publish received
(used in QoS 2)

PUBREL 6 Publisher to broker
Broker to subscriber

Publish release
(used in QoS 2)

PUBCOMP 7 Broker to publisher
Subscriber to broker

Publish complete
(used in QoS 2)

SUBSCRIBE 8 Subscriber to broker Subscribe request

SUBACK 9 Broker to subscriber Subscribe acknowledgement

UNSUBSCRIBE 10 Subscriber to broker Unsubscribe request

UNSUBACK 11 Broker to subscriber Unsubscribe
acknowledgement

PINGREQ 12 Client to broker Ping (keep alive) request

PINGRES 13 Broker to client Ping (keep alive) response

DISCONNECT 14 Client to broker Client disconnectingAppl. Sci. 2022, 12, 7173 5 of 28 
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2.2. Related Works

This section reviews the current studies related to MQTT, which are categorized into
three parts based on those involving only the authentication property, those involving only a
distributed MQTT architecture with multiple brokers, and those applying an authentication
scheme for a distributed MQTT architecture with multiple brokers.

Among the studies that only focused on authentication mechanisms for MQTT, the
authors of [7] proposed an approach called MQTT-Auth, which used two tokens, one to
authenticate published topics and the other to grant authorizations to enable subscribers to
have different access privileges. MQTT-Auth is based on the augmented PAKE (AugPAKE)
algorithm, which is a client–server session key establishment protocol. AugPAKE estab-
lishes two session keys, one between the publisher and the broker and the other between
the broker and the subscriber. The presented solution costs a high computation load and
message exchanges [8]. The paper in [9] presented a token-based authentication mechanism
for resource-constrained devices in the MQTT protocol. The mechanism is based on the
JSON web token (JWT) authentication server, which is responsible for issuing tokens to
publishers and subscribers after validating their credentials. After receiving the connection,
then obtaining the token from the publisher and subscriber, the broker checks the validity
of the token with the authentication server. The number of message exchanges in this
system is high because each token provided to clients needs to be validated by a broker
through JWT.

In [10], a lightweight authentication mechanism was introduced using tokens and
secret keys for secure connections. The secret key is periodically updated using the chaotic
algorithm to provide high diversity among consecutive security keys. To maintain diversity
among the consecutive keys, the appropriate chaotic parameters are selected based on the
distance entropy. The paper did not calculate the performance of the chaotic algorithm
for the broker. However, it can be said that the frequent updating of the key by the broker
could cause communication and processing overhead. An extension for MQTT called
authenticated publish and subscribe (AUPS) was proposed in [11]. AUPS ensures the
authentication and authorization of data by integrating a policy enforcement mechanism
that is based on attribute-based encryption (ABE), where the data are encrypted by the
publisher based on a collection of conditions in relation to the access policy, and if the
subscriber fulfills the access policy, the ciphertext can be decrypted. However, ABE is
not recommended for resource-constrained devices because the cryptographic overhead
increases as the number of attributes increases [8].

The paper in [12] provides an authentication and authorization mechanism for the
MQTT protocol using an HMAC-based one-time password (HOTP) and the OAuth 2.0
framework. The authentication is conducted in two stages. The first stage is validating the
access token, which is used as a username through the WSO2is identity server. Secondly, the
password, which is updated using HOTP, will be authenticated every time the connection
is established between clients and brokers through MongoDB. The issue in this scheme
is the increased message exchanges because of the number of stages that require more
than one authentication entity. The paper in [13] proposes a multi-tier authentication
mechanism called S-MQTT for delivering secure communication between end devices.
The mechanism is based on key policy/cipher policy attribute-based encryption (KP/CP
ABE) using lightweight elliptic curve cryptography (ECC). However, the issue with ABE
is that the registration of nodes in the broker requires sending a set of attributes, which
may cause high computation overhead. In [14], the authors proposed the Secure Reliable
Message Communication (SEC-RMC) protocol for MQTT using a lightweight encryption
algorithm to secure the data transmission at the transport layer. The MQTT broker is
responsible for the client’s registration and key management. The transmitted messages
are encrypted and decrypted using the Advanced Encryption Standard (AES) algorithm.
The results showed that there is an improvement in the packet deliverance ratio (PDR)
and energy utilization compared to TLS. However, the paper did not present a security
analysis or performance evaluation (such as computation costs, communication overhead,
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and storage requirements) of the proposed system. In addition, the proposed protocol did
not consider broker bridging, where brokers can communicate with each other to deliver
messages between MQTT clients.

The paper in [15] presented a lightweight security solution using elliptic curve cryp-
tography (ECC) for the publish–subscribe protocol based on fog computing. The fog broker
contains three modules: (1) The key management module is responsible for providing
public parameters and generating secret keys. (2) The subscription module is used for
authentication and authorization. (3) The publication module is responsible for encrypting
sent data and transmitting them to subscribers. The scheme provides a shorter key length,
reduces overhead, and improves scalability compared to RSA. However, the paper did
not present a broker bridging mechanism, and the scheme was not implemented in an
MQTT architecture with multiple brokers. In addition, one of the disadvantages of the
scheme is that key management and key revocation issues were not addressed [16]. Thus,
implementing the scheme in a large-scale MQTT network with brokers’ communication
is a complicated process. The study in [17] proposed a lightweight authentication and
authorization framework for inter-device communication in a distributed environment
using ECC with Transport Layer Security (TLS). The system utilized the MQTT protocol
for broadcast-based data transmission. The cloud architecture has a combination of servers,
such as the cloud authentication server (CAS), policy enforcement server (PES), network
function virtualization, and broker server. The result showed that there is a high computa-
tion cost for encryption and decryption; moreover, the increased number of devices will
increase the time of the authentication process [18].

There are also studies that proposed a distributed architecture for MQTT without
focusing on security solutions. The authors of [19] modified the traditional MQTT protocol
by presenting a software-defined multi-tier edge computing model. The system contains
three layers. The first layer and the third layer are the sensing network (sensors and
actuators) and data center (cloud), respectively. The second layer is the fog computing
layer, which is divided into four tiers: brokers, critical nodes, edge nodes, and intermediate
nodes. The system is designed with two types of brokers: remote brokers, which are
located in the fog node, and main brokers, which are located in the cloud. The results
showed that adopting the fog layer significantly improved the processing and transmission
latency. In [20], the author proposed MQTT with a multicast mechanism, DM-MQTT (direct
multicast-MQTT), to minimize data transfer delays and network congestion for the massive
IoT communications in distributed edge networks. The mechanism relies on the following
components: the software-defined networking (SDN) controller and master broker (in the
cloud level), SDN switches, a slave broker and analysis server (in the edge level), and
IoT devices. The slave broker collects the data of IoT devices and edge information and
sends them to the master broker. The master broker collects all edge information from all
slave brokers and sends them to the SDN controller. The SDN controller analyzes the edge
information, creates a group table, and uses the table to set paths between different edge
networks. This architecture does not apply any security solutions, such as authentication
and authorization, which is one of the drawbacks.

The authors of [21] present the interworking layer of distributed MQTT brokers
(ILDM), which enables multiple MQTT brokers to cooperate with each other. The proposed
system relies on MQTT brokers, which are placed at the edges, and ILDM nodes, which
are located between the brokers and their clients. The ILDM node can connect with other
ILDM nodes; thus, multiple brokers can communicate with each other via ILDM nodes.
The system is prone to different kinds of attacks, such as impersonation, MITM, and
replay attacks, since no security solutions are presented. The author of [22] proposed
the edge–cloud pub/sub broker model, which allows multiple brokers to dynamically
coordinate among each other for data delivery to achieve high-scalability and low-latency
properties in a large-scale IoT system. The model depends on coordination servers to
manage subscription and publication requests among the brokers. The proposed model
did not involve any security solutions.
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Regarding studies that proposed security solutions, especially authentication for
distributed MQTT architecture with multiple brokers, the authors in [23] presented a
lightweight and secure authentication scheme for MQTT based on fog computing, which
comprises multiple fog gateways as brokers. The scheme used the Elliptic Curve Diffie–
Hellman Ephemeral (ECDHE) key exchange algorithm along with the pre-shared key
(PSK). However, the paper did not present a broker bridging mechanism, which enables
the broker to publish and subscribe the topic to/from other brokers, and the authentication
scheme did not take into account brokers’ communication. In addition, the results showed
that the average transmission and processing times are extremely high, reaching 4.25 s
and 2.5 s, respectively. Furthermore, there is a significant increase in the average packet
size and the number of packets. The authors of [24] presented a scalable and secure
MQTT communication framework for the Industrial IoT based on multi-stage brokers.
The single trusted authentication and authorization server (AS) is responsible for clients’
authentication and access token generation to define the right of clients to subscribe to
or publish a topic. The cryptographic access token is signed through the asymmetric key
RSA with a key size of 2048 bits, and the authentication is performed during the TLS
handshake protocol. The limitations of this framework are that the central AS could not
accommodate the rapid growth of IoT devices, which hinders the scalability and causes
a single point of failure or bottleneck, and the high computation cost of RSA and TLS,
resulting in heavyweight authentication, which is not suitable for resource-constrained
IoT devices. Furthermore, mutual authentication is not provided between the clients
and brokers.

To the best of our knowledge, the lightweight mutual authentication scheme and
scalable authentication architecture for fog-based MQTT architecture that comprise multiple
brokers communicating with each other have not been addressed. Compared to the current
works, our proposed architecture implements lightweight mutual authentication between
client–broker communication and broker–broker communication using hash function and
XOR operation. This reduces the storage overhead, computation costs, and communication
overhead of resource-constrained IoT devices. In our proposed architecture, deploying an
authentication manager in each broker and clustering the clients and brokers into groups
that connect to a single specific broker allows the independency of the authentication
management for each group of clients/brokers. This will reduce the possibility of security
threats and facilitate security management. Our system enables brokers and their deployed
authentication managers to scale-up and scale-out in case clients’ requests exceed the
processing capacity of the broker. This will avoid network congestion and bottlenecks.
Our proposed architecture is designed in a hierarchical structure to enable the MQTT
clients obtaining the data from any broker if it is required, although each group of clients is
connected to a single local broker in the fog layer.

3. The Proposed Fog-Based MQTT Architecture with an Authentication Scheme

In this section, we present the Mu-TiMB architecture leveraging fog computing to
construct a hierarchical MQTT architecture for M2M communication in the IIoT. In addition,
we introduce a multi-tier authentication architecture to perform a lightweight mutual au-
thentication scheme using the authentication manager (AM) that is deployed in each broker.
In other words, for each group with a direct client–broker or broker–broker connection,
there will be an AM to manage authentication procedures independently.

3.1. Multi-Tier MQTT Broker Based on Fog Computing (Mu-TiMB)

An IIoT system based on the traditional MQTT paradigm may lead to a complex,
undependable, and non-scalable framework [25] since the current infrastructure is not
designed to cope with the rapid growth of data generated in IoT, and this will increase
the consumption of resources and reduce the quality of services for the clients. Moreover,
industrial applications in the cloud do not meet the requirements of low latency, network
traffic reduction, and reliability [26], which are fundamental properties for the industrial
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field where the process must be continuously monitored. Therefore, we need to solve such
issues by adopting fog computing in smart industries [27].

The idea of Mu-TiMB is based on dividing the clients into groups to interact with the
nearest fog broker, called the local broker. As shown in Figure 2, the architecture comprises
three layers: the IoT devices layer, where MQTT clients can PUBLISH and SUBSCRIBE
messages to/from the local broker; the fog layer, which is composed of two broker tiers,
called local brokers and aggregation brokers; and the third layer is the cloud broker, which
performs traditional MQTT broker functions with the aggregation brokers. The notation
used in Figure 2 is described in Table 2.
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Table 2. Notation used in Mu-TiMB architecture.

Symbols Meaning

Pi Publisher
Si Subscriber

LBi Local Broker
ABi Aggregation Broker
CBi Cloud Broker
Ti Topic

The messages sent by clients to subscribe to or publish topics are conducted via the
local broker. In other words, there is no direct connection between clients and aggrega-
tion brokers or between clients and the cloud broker; the topic will be published and
subscribed to by the clients only through the local broker which, in turn, either handles
and provides the requested topic or obtains the topic from the corresponding upper-layer
brokers. As a result, delivering the topic from the publisher to the subscriber will create
three communication scenarios: (1) the clients connect to the same local broker; (2) the
clients connect to different local brokers, but the same aggregation broker; and (3) the
clients connect to different local brokers and different aggregation brokers but share the
same cloud broker. Since the clients are clustered and connected directly to different local
brokers, the requested topic cannot be found in the local broker but can be found in the
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aggregation broker or the cloud broker. The details of the three scenarios are described in
Section 3.1.2.

The first scenario is where the publisher and subscriber are connected to the same local
broker. In this scenario, the local broker performs the traditional functions of the MQTT
broker, which receives the PUBLISH message on a topic from the publisher and delivers
the requested topic to the subscriber. In addition to this function, the local broker acts as an
MQTT client to publish the topic to the corresponding upper aggregation broker, which
in turn, sends it to the cloud broker. This step allows for saving a copy of the published
message, including the topic and its data, in all the corresponding upper-layer brokers in
case the topic is subscribed to by clients from other brokers. This process is performed each
time the published data are received by the local broker.

The second scenario is that the publisher and the subscriber are connected to two
different local brokers but have the same aggregation broker. In other words, the subscribed
topic is provided by the aggregation broker and not by the local broker that the subscriber is
connected to because the requested topic was published to a different local broker, but both
local brokers share the same aggregation broker, which stores all topics of the corresponding
connected local brokers. In this case, the local broker, where the subscriber is connected,
will act as an MQTT client and subscribe to the topic from the corresponding aggregation
broker. Since the aggregation broker saves all topics received from the local broker where
the publisher is connected, it will forward the topic to the local broker where the subscriber
is connected. Then, the local broker sends the requested topic to the subscriber.

The last scenario is where the publisher and the subscriber are connected to two
different local brokers and two different aggregation brokers but share the same cloud
broker. This scenario is somewhat similar to the second scenario. However, the required
topic in this scenario is obtained from the cloud broker; thus, the local broker where
the subscriber is connected needs to send the SUBSCRIBE request to the corresponding
aggregation broker, which in turn sends the SUBSCRIBE request to the cloud broker. As
mentioned before, the local broker where the publisher is connected usually sends the topic
to the corresponding upper-layer broker until reaching the cloud broker. Therefore, the
cloud broker will forward the topic to the corresponding lower-layer brokers until it is
delivered to the subscriber.

3.1.1. Broker Bridging

To implement the proposed architecture, which requires brokers to communicate
with each other for publishing and subscribing to topics, a bridging mechanism needs
to be presented by MQTT brokers. When a broker is configured as a bridge, in addition
to performing the traditional broker functions, it acts as a client by subscribing to some
pre-configured topics from another broker (or multiple brokers) and relaying the PUBLISH
message targeted to those topics to the selected brokers. As a consequence, the given topics
can be shared among more than one broker. This allows clients to subscribe to topics via a
broker different from the one that the publisher sends the message to.

Since the client can subscribe to or publish messages into topics handled by brokers
different from the broker where the subscriber or publisher is connected, as in the second
and third communication scenarios, the client needs to determine the broker that is respon-
sible for handling the topic. This can be achieved by several approaches [24], including
defining a new MQTT header field that carries the required information or extending some
of the current MQTT header fields. In this study, we are focusing on extending the current
MQTT header fields as proposed in [24] by exploiting the topic name string to encode
both the identifier of brokers and the topic. The advantage of this approach is that MQTT
specification and implementations do not need to be modified. In other words, the topic
name will use the symbol “/” to separate the topic and the identifier of brokers that are
responsible for receiving and sending the topic.

The topic name (TN) is divided into four parts: the topic (T), the identifier of the
local broker (LB), the identifier of the aggregation broker (AB), and the identifier of the
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cloud broker (CB). Therefore, the general structure of the MQTT topic name is introduced
as follows: TN = CB/AB/LB/T. In the publishing process, LB, AB, and CB indicate to
the brokers where the topic will be published and stored. On the other hand, in the
subscription process, LB, AB, and CB indicate to brokers where the topic can be subscribed.
This structure of TN is used by all clients to send SUBSCRIBE or PUBLISH messages to
their corresponding local brokers. Additionally, it is used by brokers when acting as a client
to publish and subscribe topics to/from other brokers.

3.1.2. Communication Scenarios

This section explains the processes of the three communication scenarios. We refer to
the notations in Figure 2 and Table 2 to present an example for each scenario.

The first scenario is where the subscriber (S1) and publisher (P1) are connected to the
same local broker (LB1). In other words, the requested topic name (TN1) is sent to S1 by
LB1 where P1 is connected. In addition to the traditional MQTT broker function, LB1 acts
as an MQTT client to publish the requested topic to the corresponding aggregation broker
(AB1), which in turn publishes the topic to the cloud broker (CB). The scenario is explained
in an example below and is shown in Figure 3:

• After successfully connecting to LB1 by P1 and S1, P1 publishes a topic name (TN1)
“CB/AB1/LB1/temperature” to LB1.

• To publish the topic TN1 to the corresponding upper-layer brokers, LB1 acts as an
MQTT client, connects to AB1, and publishes TN1 to AB1.

• Then, AB1 acts as an MQTT client, connects to CB, and publishes TN1 to CB.
• S1 sends the SUBSCRIBE message asking to subscribe to TN1 “CB/AB1/LB1/temperature”

from LB1.
• In this case, LB1, which received the subscribe request, matches with LB1, which

is involved in TN1 because TN1 was published by P1 to the same LB1 where S1 is
connected. Thus, LB1 publishes TN1 to S1.
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In the second scenario, the connected subscriber (S2) and publisher (P1) are located
in two different local brokers (LB2 and LB1, respectively) but share the same aggregation
broker (AB1). The topic TN1 is obtained from AB1 since TN1 is sent to the corresponding
upper-layer brokers (as explained in the first scenario) from LB1 where P1 is connected.
Therefore, LB2, where S2 is connected, acts as a client and subscribes to TN1 from AB1. LB2
then receives TN1 and publishes it to S2. Figure 4 introduces the second scenario, which is
described as follows:

• After a successful connection from P1 to LB1 and from S2 to LB2, P1 publishes the
topic name (TN1) “CB/AB1/LB1/temperature” to LB1.

• To publish the topic TN1 to the corresponding upper-layer brokers, LB1 acts as an
MQTT client, connects to AB1, and publishes TN1 to AB1.
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• Then, AB1 acts as an MQTT client, connects to CB, and publishes TN1 to CB.
• S2 sends the SUBSCRIBE message to LB2 asking to subscribe to the topic TN1

“CB/AB1/LB1/temperature”. Since TN1 is published to LB1 by P1, the requested
topic TN1 is not found in LB2 because the identifier of LB1 involved in TN1 is not
identical to the identifier of the LB2 that received the SUBSCRIBE request.

• To subscribe to TN1 from AB1, LB2 acts as an MQTT client, connects to AB1, and send
the SUBSCRIBE request to AB1.

• In this case, the identifier of AB1 who received the request is identical to the AB1 that
is involved in TN1. Thus, AB1 publishes TN1 to LB2 where S2 is connected.

• LB2 publishes TN1 to S2.
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The third scenario is quite similar to the second scenario. However, the cloud broker
is in charge of providing the requested topic to the subscriber instead of the aggregation
broker because the subscriber and publisher are connected to different local brokers and
different aggregation brokers but share the same cloud broker. As explained previously,
all topics published by the publisher are sent to the cloud broker via the local broker, then
the aggregation broker. In this scenario, we assume that P1 is the publisher and S5 is the
subscriber. Thus, the local broker (LB4) to which the subscriber (S5) is connected and from
which it requested the topic needs to act as a client and send the SUBSCRIBE message to
the corresponding aggregation broker (AB2), which in turn, subscribes to the topic from
the cloud broker (CB). After that, the topic is published to the corresponding lower-layer
brokers (AB2, then LB4) until it is delivered to S5. Figure 5 depicts the third scenario, which
is described as follows:

• After the successful connection from P1 to LB1 and from S5 to LB4, P1 publishes the
topic name (TN1) “CB/AB1/LB1/temperature” to LB1.

• To publish the topic TN1 to the corresponding upper-layer brokers, LB1 acts as an
MQTT client, connects to AB1, and publishes TN1 to AB1.

• Then, AB1 acts as an MQTT client, connects to CB, and publishes TN1 to CB.
• When S5 sends the SUBSCRIBE message to LB4 asking to subscribe to the topic (TN1)

“CB/AB1/LB1/temperature”, the requested topic is not found in LB4 because it is
published to LB1 by P1. In this case, the identifier of LB1 involved in TN1 is not
matched with the identifier of LB4, which received the SUBSCRIBE request.
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• Therefore, LB4 acts as an MQTT client, connects to AB2, and sends the SUBSCRIBE
request asking to subscribe to TN1 from AB2. In this case, the broker AB2, which
received the request, is not identical to AB1, which is involved in TN1.

• As a result, AB2 acts as an MQTT client, connects to CB, and subscribes to the topic
TN1 from CB.

• CB publishes the topic TN1 to AB2.
• Then, TN1 is published from AB2 to LB4.
• Finally, LB4 delivers TN1 to S5.
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3.2. Authentication System

This paper proposes an authentication system based on multiple authentication man-
agers (AMs), where each AM is deployed in each broker to manage the authentication
process independently between clients (which include traditional MQTT clients as well as
brokers that act as clients) and their corresponding brokers. In addition, this paper presents
a lightweight mutual authentication scheme based on hash function and XOR operation
that are performed by an AM. Because IoT devices have resource-constrained capabilities,
we tried to propose a lightweight authentication scheme, and we found that hash function
and XOR operation is one of the most suitable solutions compared with the symmetric
and asymmetric cryptographic algorithms. There are many studies [28–31] that presented
lightweight authentication schemes based on hash function and XOR operation, and these
schemes have proven their feasibility and efficiency.

The authentication scheme introduced in [28], which is based on hash function and
XOR operation, is extended to be compatible with the Mu-TiMB architecture. The scheme
considers the hierarchal fog-based MQTT architecture developed with multiple brokers and
is implemented by the AM deployed in each broker. The AM is responsible for generating
the authentication parameters and verifying the authenticity of clients and brokers. In
addition, the obtained parameters are used to conduct mutual authentication between
client–broker and broker–broker connections.

The scheme has several advantages. First, the encryption mechanism used for au-
thentication based on hash function and XOR operation has lower storage requirements,
communication costs, and computation overhead compared with symmetric and asym-
metric encryption. Second, it resists serious authentication attacks such as impersonation,
replay, and eavesdropping attacks, and it performs mutual authentication with less over-
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head. Third, since the scheme is considered a lightweight cryptographic based on software
ciphers [32], it is feasible for it to be implemented in a large-scale and heterogeneous
network such as the IoT compared to hardware-based ciphers, and it is more flexible and
less costly to deploy in multiple brokers rather than using hardware-based authentication.

3.2.1. Authentication Architecture

This section presents the authentication architecture of Mu-TiMB as well as the
overview of the interaction between clients, brokers, and AMs.

As shown in Figure 6, each AM is deployed in each broker, and the AM is in
charge of performing an authentication scheme for the associated broker and the group of
clients/brokers connected to that broker. For example, the authentication manager of LB2
(AMlb2) manages the authentication for LB2 and its connected clients S2 and P3, while the
authentication manager of AB1 (AMab1) is responsible for authenticating AB1 and its con-
nected local brokers LB1 and LB2, which act as clients. Another example, the authentication
manager of CB (AMcb) manages the authentication for CB and its connected aggregation
brokers AB1 and AB2. In Mu-TiMB, the authentication process starts once the client/broker
sends the normal MQTT CONNECT message to the corresponding broker and completes it
successfully after receiving the normal MQTT connection acknowledgment, CONNACK.
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In Mu-TiMB, the AM independently implements the authentication scheme for the
associated broker, and their connected group of clients (publishers, subscribers, and brokers
that act as clients), as depicted in Figure 7. This creates a multi-tier authentication process,
where LB and AB can be authenticated by two different AMs; thus, there are two different
authentication parameters, one where they act as a broker and one where they act as a client.
For example, LB will be authenticated by AMlb when it receives a connect message from
clients and acts as a traditional broker. On the other hand, the same LB will be authenticated
by AMab when it sends a connect message to AB and acts as a client.
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3.2.2. Lightweight Authentication Scheme

The authentication scheme comprises two main phases: registration and authentica-
tion. The complete steps of the authentication scheme are illustrated in Figure 8, and all
notations used in the scheme are listed in Table 3. In the registration phase in which the
channel is assumed to be secure, the identity of C (IDC) and the identity of B (IDB) are
sent to the AM with which B is associated. Then, the AM generates the authentication
parameters for both C and B. These parameters contribute to initializing the mutual authen-
tication process between C and B. In the authentication phase, since the connection in the
traditional MQTT must be directly established from the client to the broker by sending the
client ID, the authentication in our proposed architecture starts by sending the CONNECT
message. Thus, C is required to send some authentication parameters to B, including
its IDC, which is wrapped with IDB in the XOR operation. B, in turn, extracts IDC and
passes the parameters to the AM to authenticate C. The AM then generates and sends other
authentication parameters to C and B, which should acknowledge the authenticity of these
parameters. After this, a mutual authentication is conducted between C and B. At the end,
a session key is generated by C to secure the communication between C and B.

Table 3. Notation used in the authentication scheme.

Symbol Description

C Client (publisher, subscriber, or broker acting as a client)

B Broker

AM Authentication manager

IDC Identity of client

IDB Identity of broker
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Table 3. Cont.

Symbol Description

AIDC Alias ID of client

AIDB Alias ID of broker

SN Secret number

Na Nonce

R1, R2, R3, R4 Random number

MK1 Master key 1

MK2 Master key 2

MIDC Master identity of client

MIDB Master identity of broker

SKAM_C Secret key between AM and C

SKAM_B Secret key between AM and B

K-SC_B Session key between C and B

H(.) One-way hash function

⊕ XOR operator

|| Concatenation

Ci, Verifier Ciphers
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• Registration Phase

In the registration phase, C and the corresponding B share their IDs with the AM.
After receiving both IDs, the AM generates and sends authentication parameters for C and
B independently. It is assumed that all messages in the registration phase are exchanged
through a secure channel.

Upon receiving IDC and IDB, the AM creates the following parameters for both C and
B: alias identities (AIDC and AIDB) using SN, master identities (MIDC and MIDB) using
MK1, and secret keys (SKAM_C and SKAM_B) using MK2. At the end, the AM computes the
message digest of the master identity of client H (MIDC), then sends AIDC, SKAM_C, and H
(MIDC) to C and SKAM_B to B.

AIDC = H (IDC ⊕ SN) (1)

MIDC = AIDC ⊕MK1 (2)

SKAM_C = MIDC ⊕MK2 (3)

Hash1 = H (MIDC) (4)

AIDB = H (IDB ⊕ SN) (5)

MIDB = AIDB ⊕MK1 (6)

SKAM_B = MIDB ⊕MK2 (7)

• Authentication Phase

To begin the authentication process, C generates a random number (R1), then computes
and sends the ciphers C1, C2, and C3 as well as AIDC and Hash2 to B to establish the
connection. The ciphers and Hash2 are calculated according to the following equations:

C1 = SKAM_C ⊕ R1 (8)

C2 = H (MIDC) ⊕ IDC ⊕ R1 (9)

C3 = IDC ⊕ IDB (10)

Hash2 = H (AIDC || R1 || C1 || IDC || IDB) (11)

Upon receiving C1, C2, C3, AIDC, and Hash2, B extracts IDC from the cipher C3 using
the following equation:

IDC = C3 ⊕ IDB (12)

Then, B passes C1, C2, C3, AIDC, and Hash2 to the AM, which in turn, computes
Hash2′ using the following equations and compares it with the received Hash2. If both hash
digests are identical, C is authenticated; otherwise, the authentication process is terminated.

MIDC = AIDC ⊕MK1 (13)

SKAM_C = MIDC ⊕MK2 (14)

R1 = C1 ⊕ SKAM_C (15)

IDC = H (MIDC) ⊕ C2 ⊕ R1 (16)

IDB = C3 ⊕ IDC (17)

Hash2′ = H (AIDC || R1 || C1 || IDC || IDB) (18)
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After the successful matching of Hash2 and Hash2′, C needs to prove the authenticity
of the AM. Therefore, the AM generates nonce (Na), then computes and sends the cipher
Verifier and Hash3 to C according to the following equations:

R2 = H (R1 || H (MIDC)) (19)

Verifier = R2 ⊕ Na (20)

Hash3 = H (R2 || Verifier) (21)

C, in turn, calculates Hash3′, compares it with the received Hash3, and extracts Na
using the equations presented below. If both hashes (Hash3 and Hash3′) are matched, the
AM is verified by C.

R2 = H (R1 || H (MIDC)) (22)

Hash3′ = H (R2 || Verifier) (23)

Na = Verifier ⊕ R2 (24)

To start the mutual authentication between C and B, the AM computes Hash4 using
the secret key of B that was previously created in the registration phase (SKAM_B) and the
following ciphers. Then, it sends C5, C7, and Hash4 to B.

C4 = H (SKAM_C || R2) (25)

C5 = C4 ⊕ IDB (26)

C6 = H (IDB || SKAM_B) (27)

C7 = C6 ⊕ Na (28)

Hash4 = H (C5 || C7 || IDB || SKAM_B) (29)

At the same time, C computes Hash5 using IDC, IDB, and Na and sends it to B.

Hash5 = H (IDC || IDB || Na) (30)

Upon receiving C5, C7, and Hash4, B computes Hash4’ and compares it with the
received Hash4. If both hashes are identical, the AM is authenticated by B. After that, B
computes Hash5’ according to the following equations and compares it with the Hash5
received from C.

C6 = H (IDB || SKAM_B) (31)

Na = C6 ⊕ C7 (32)

Hash5’ = H (IDC || IDB || Na) (33)

If both hashes (Hash5 and Hash5’) are matched, B authenticates C. In the next step, B
generates a random number (R3) to compute the cipher C8 and Hash6, as shown in the
following equations, and sends them to C.

C4 = C5 ⊕ IDB (34)

C8 = H (C4 || IDB) (35)

C9 = C8 ⊕ R3 (36)

Hash6 = H (C8 || C9 || R3) (37)

In turn, C computes Hash6’ using the following equations and compares it with the
received Hash6.

C8 = H (H (SKAM_C || R2) || IDB) (38)

R3 = C8 ⊕ C9 (39)
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Hash6’ = H (C8 || C9 || R3) (40)

If Hash6’ matches Hash6, C authenticates B, and thus, mutual authentication is
achieved successfully.

• Session key generation

After the authentication phase is terminated successfully, C creates the session key
(K-SC_B) using R3 and the random number (R4), which is generated by C. In addition, C
creates and sends cipher C10 and Hash7 to B, as shown in the following equations:

K-SC_B = H (R3 || R4) (41)

C10 = C8 ⊕ R4 (42)

Hash7 = H (K-SC_B || C10) (43)

Upon receiving C10 and Hash7 from C, B computes the session key (K-SC_B) using R3
and R4, which is extracted from C10. In the next step, B computes and compares Hash7′

with Hash7, which is received from C.

R4 = C8 ⊕ C10 (44)

K-SC_B = H (R3 || R4) (45)

Hash7’ = H (K-SC_B || C10) (46)

If Hash7 matched with Hash7’, B verifies that the session key (K-SC_B) has been
generated and sent from C. The session key aims to secure the communication between C
and B.

4. Analysis and Results
4.1. Informal Security Analysis

In this section, we present an informal security analysis to prove that the proposed
authentication scheme is able to withstand various malicious attacks and provide several
security features.

4.1.1. Resistance to Impersonation Attacks

Impersonation attacks are a type of forgery where an adversary pretends to be or
tries to impersonate a legitimate entity by computing legitimate messages leading to the
exposure of an entity’s identity. In the proposed scheme and during the registration phase,
the identities of C and B are shared to the AM in a secure channel; moreover, the AM
generates alias identities (AID) for C and B by applying XOR operation and hash function
on the real identity and the secret number (SN), which is only known to the AM. Since
the hash function is an irreversible operation, the adversary is unable to extract the real
identity or the secret number (SN) from the alias identity. Let us assume that the adversary
obtained the alias identity of C (AIDC) and communicates with B. In this case, the adversary
cannot generate the ciphers C1, C2, C3, and Hash2 correctly because it does not know the
values used to generate these ciphers, such as SKAM_C and H (MIDC). Figure 9 explains
this scenario of the attack.
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4.1.2. Resistance to Replay Attacks

In the proposed scheme, a replay attack is prevented due to the random numbers
involved in or entered into the formation of every transmitted message during the au-
thentication and session key phases, where random numbers cannot be extracted by the
adversary. For example, let us assume that the adversary captures and replays the message
containing the ciphers C1, C2, C3, AIDC, and Hash2 to B. Upon responding to this message
by the AM, the adversary will receive the Verifier, which is generated from the random
numbers R2 and Na. In this case, the adversary is unable to extract Na because it cannot
obtain R2. Furthermore, R2 cannot be computed because it is generated from H (MIDC),
which is unknown to the adversary. Therefore, the adversary is unable to compute Hash3
and Verifier and cannot proceed to start the mutual authentication with B. This scenario of
the attack is depicted in Figure 10.
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4.1.3. Resistance to Eavesdropping Attacks

This attack allows the adversary to intercept the communication between two entities
and possibly manipulate the messages exchanged between these entities who believe that
they are directly communicating with each other, as in a man-in-the-middle attack, which
is considered a type of eavesdropping attack. In the presented authentication scheme,
an eavesdropping attack can be resisted, as there is no sensitive or valuable information
transmitted during the authentication phase, which is conducted on an unsecure channel.
This is because the messages are not exchanged in plain text and the parameters involved in
these messages cannot be extracted. For instance, as shown in Figure 11, let us assume that
the adversary obtains the C1, C2, and C3. The parameters such as the secret key SKAM_C or
H (MIDC), which are used to generate these ciphers, cannot be extracted, as they are merged
in an XOR operation with other parameters, resulting in ciphertext. Thus, the adversary
cannot interpret the message and its sensitive contents. On the other hand, in cases where
the adversary modifies the contents of transmitted messages, such as a digest hash, which
is involved in each authentication message, the receiving entity of the message will detect
the attack. For example, if the adversary changes the Na that was used to generate Hash5,
the digest hash result, Hash5’, computed by B will not match the received Hash5, and thus,
the authentication process will be terminated.
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4.1.4. Secure Session Key

The session key is a feature to ensure secure communication between two entities,
where the key is used for only one session. It is then discarded, and a new key is randomly
generated for the next session. In the proposed scheme, the session key K-SC_B is established
by the C using the digest hash of the concatenation of the random number (R3) previously
generated by B with a random number (R4) newly generated by C. The adversary is unable
to extract R3 and R4 without obtaining the cipher C8, which is not transmitted or shared at
all over the communication channel. Therefore, the session key cannot be computed by
the adversary.
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4.1.5. Mutual Authentication

In mutual authentication, any two entities must authenticate each other’s identities
prior to communicating and exchanging messages to avoid adversary breaches. In the
proposed scheme, the mutual authentication between B and C is achieved based on correctly
computing the received Hash5 and Hash6, respectively. Before the mutual authentication
begins, the AM plays a significant role in creating the authentication parameters and
verifying the authenticity of C and B to ensure that the messages are not manipulated and
to prevent any adversary from becoming a part of the network.

4.2. Performance Results

This section analyzes the performance and overhead of the proposed authentication
scheme in terms of computation cost, storage overhead, and communication overhead. The
scheme was implemented using the network simulator environment OMNeT++ 5.6.2 that
runs on the Windows 10 operating system with an Intel(R) Core (TM) i7-6500U CPU @
2.50 GHz and 8 GB of RAM. The proposed authentication scheme is based on hash function
and XOR operation. The type of hash used in the scheme is SHA-1, which produces a
160-bit hash value known as a message digest.

4.2.1. Computation Cost

The proposed authentication scheme is computationally lightweight and designed for
the Industrial IoT environment. The scheme provides high security, utilizing only simple
hash and XOR computations, and thus consumes less storage compared with other schemes
that are based on symmetric and asymmetric encryption. The scheme uses two operations,
namely, the XOR operation and the one-way hash function. To identify the computation
cost, we indicate the times that a hash function is conducted using the symbol Th, and XOR
operations are indicated by the symbol Txor.

Considering the authentication scheme shown in Figure 8, the client (publisher or
subscriber) performs 11 hash functions and 6 XOR operations, which result in a total
computation cost of 11 Th + 6 Txor. Usually, the computation cost of an XOR operation
is negligible and can be discarded, so it is assumed that Txor ≈ 0. On the other hand,
the broker performs seven Th and five Txor, which results in a total computation cost of
7 Th + 5 Txor. Therefore, the total computation costs that should be taken into account for
both the client and broker after ignoring the cost of Txor are Th ≈ 11 and Th ≈ 7, respectively.
However, in our proposed Mu-TiMB architecture, since fog brokers (FB) (including the
local broker (LB) and the aggregation broker (AB)) can act as traditional MQTT brokers
and as clients, both LB and AB bear the total computation cost of the client and broker
combined, which yields 11 Th + 7 Th ≈ 18 Th. The computation cost is illustrated in Table 4.

Table 4. Computation cost for the client, LB, AB, and CB.

Entity Computation Cost

Client 11 Th
LB 18 Th
AB 18 Th
CB 7 Th

4.2.2. Storage Overhead

The storage overload specifies the total cost of bits required to be stored in each entity.
Table 5 shows the storage overhead for the client, LB, AB, and CB. In the proposed scheme,
each client (publisher or subscriber) is required to store its actual identity (IDC), IDB, AIDC,
H(MIDC), and SKAM_C. Since we apply SHA-1 as a type of hash function that produces a
hash digest of 160 bits, the size of bits for |AIDC| = |H(MIDC)| = |SKAM_C| = 160 bits.
On the other hand, we assume the bits in |IDC| = |IDB| = 16 bits. Therefore, the total
storage cost for the client is (3 × 160) + (2 × 16) = 512 bits.
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Table 5. Storage overhead for the client, LB, AB, and CB.

Entity Storage Overhead

Client 512 bits
LB 784 bits
AB 784 bits
CB 272 bits

On the other hand, the broker is required to store its actual identity (IDB) = 16 bits
and SKAM_B =160 bits. Since the AM is deployed with B on the same server, the stor-
age cost of the secret AM parameters SN, MK1, and MK2 are incurred by B. Assuming
|SN| = |MK1| = |MK2| = 32 bits, the total storage cost for B is 16 + (3× 32) + 160 = 272 bits.
However, the storage requirements for FB (LB and AB) will bear the cost of both C and B
combined. Thus, the total size of bits for FB is 512 + 272 = 784 bits.

4.2.3. Communication Overhead

The communication overhead is measured by the number of packets (total size in
bits) transferred between two entities. The size of bits transferred in our authentication
scheme is shown in Table 6. In the communication between C (which indicates to the
publishers, subscribers, and brokers that act as clients) and B (which includes the AM), C
transmits the parameters C1, C2, C3, AIDC, and Hash2. Assume C3, which is a result of
an XOR operation between IDC and IDB, is 16 bits. The total size of these parameters is
4 × 160 + 16 = 656 bits. However, in the communication between C and AM, C sends the
parameters C10, Hash5, and Hash7 with a size of 3 × 160 = 480 bits. Therefore, the total bit
size of the client cost is 656 + 480 = 1136 bits.

Table 6. Communication overhead.

Entity Storage Overhead

Client→ LB + AM 1136 bits
LB +AM→ Client 640 bits

LB→ AB + AM 1136 bits
AB + AM→ LB 640 bits
AB→ CB + AM 1136 bits
CB + AM→ LB 640 bits

On the other hand, the communication cost of B, including the AM, is less overhead
than C. B must send 320 bits to C, which is the total size of C9 (160 bits) and Hash6 (160 bits).
On the other hand, its AM sends Verifier and Hash3 to C, which cost 160 bits each. Therefore,
the total size of bits is 4 × 160 = 640 bits. In our scheme, no communication overhead
occurs between B and AM because both entities are deployed in the same server. Since
FB (LB and AB) can act as a traditional broker and as a client, it bears the communication
overhead of C and B combined; thus, the total bit size cost is 1136 + 640 = 1776 bits.

5. Discussion

Our scheme is compared in terms of storage overhead and communication overhead
with the authentication scheme of Diro A. et al. [15], which is treated as a benchmark
scheme, and compared in term of communication overhead with the scheme introduced
in [23] by Amanlou S. et al.

The authors of [15] presented a lightweight security solution including authentication
using elliptic curve cryptography (ECC), hashing, and XOR operation for the publish–
subscribe protocol based on fog computing. However, broker bridging, which allows a
broker to act as a client and communicate with other brokers, was not addressed in Diro’s
scheme. We achieved a secure authentication level, including mutual authentication and
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resistance to attacks such as eavesdropping, impersonation, and replay attacks, and our
scheme outperforms in terms of storage requirements and communication costs.

In Diro’s scheme, the results showed that the total storage requirements cost 7168 bits:
3328 bits for clients and 3840 bits for the fog broker (FB). The FB in Diro’s scheme is
equivalent to the cloud broker (CB) in our scheme because both brokers act only as a broker.
The storage overhead in our scheme incurs 512 bits for clients and 272 bits for CB for a total
of 784 bits. In other words, our scheme reduces the storage overhead to 89%. However,
the functions of the FB in Diro’s scheme differ from the FB in our scheme, which includes
local and aggregation brokers, which act as clients and brokers. Although the FB in our
scheme (local and aggregation brokers) incurs the storage overhead of the broker and client
combined, they are almost five times lower than the FB in Diro’s scheme. The storage
requirements for the local broker and the aggregation broker cost 512 + 272 = 784 bits
each. Figure 12 shows the storage overhead of clients and brokers for Diro’s scheme and
our scheme.
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Figure 12. Storage overhead for clients and brokers in Diro’s scheme and our scheme.

On the other hand, the communication overhead of a client in our scheme costs
1136 bits, which is slightly greater than the client in Diro’s scheme, which costs 1024 bits.
Moreover, our scheme reduces the communication overhead for CB to the half with 640 bits.
Taking into the consideration that the FB in Diro’s scheme is equivalent to the CB in our
scheme, since both brokers perform only the traditional broker functions and do not act as
a client, the communication overhead of our scheme costs 1776 bits, while in Diro’s scheme
it costs 2304 bits. This means our scheme decreases communication overhead almost to
23%. However, there is a noticeable contrast between the FB in our scheme and Diro’s
scheme. The communication overhead for the FB in our scheme costs 1776 bits, whereas it
costs 1280 bits in Diro’s scheme. The increased number of bits in our scheme is attributable
to the FB playing the role of the client and broker together, requiring each FB to have
authentication parameters when it acts as a broker and different authentication parameters
when it acts as a client, because each FB communicates with two different authentication
managers. Figure 13 illustrates the difference in the communication overhead.

The paper of Amanlou [23] proposed a lightweight and secure authentication scheme
between brokers and IoT devices for a publish–subscribe protocol (MQTT) in a distributed
fog computing architecture using the Elliptic Curve Diffie–Hellman Ephemeral (ECDHE)
key exchange algorithm along with the pre-shared key (PSK). Based on the proposed design
of the distributed MQTT architecture, a broker can connect multiple brokers. However, the
paper did not handle the authentication mechanism between brokers. In addition, broker
communication requires mutual authentication, which is a complex and non-feasible
operation with the proposed architecture due to each broker being authenticated more than
once at the same time (based on the number of brokers it is connected to). This increases
communication overhead, network congestion, and security threats.
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Figure 13. Communication overhead for clients and brokers in Diro’s scheme, our scheme, and
Amanlou’s scheme.

Although Amanlou’s scheme uses the pre-shared key authentication instead of the
heavyweight certificate-based authentication, the communication overhead is extremely
high. Compared with our scheme, there is a vast disparity in the communication over-
head. As shown in Figure 13, the communication overhead in Amanlou’s scheme require
83,760 bits and 25,920 bits for the client and fog gateway (broker), respectively. This is
much greater than our scheme which cost 1136 bits for client, 1776 bits for FB, and 640 bits
for CB.

The level of overhead in our scheme is highly acceptable for the FB because it can offer
processing and storage resources with much higher capabilities than resource-constrained
devices. Furthermore, the condition of the increased communication overhead of our
scheme can be justified since it presents several advantages. Beside the lightweight mu-
tual authentication, our proposed architecture provides scalability by scaling the brokers
and their associated AMs horizontally and vertically so that the proposed architecture
can accommodate the rapid growth of IoT devices and to handle the massive amount of
communication, processing and storage requirements. In addition, deploying the authenti-
cation manager in each broker facilitates security management and reduces the flow of a
large number of authentication requests because each group of Cs is handled independently.
This leads to decreased network congestion and bottlenecks, and in cases where a broker
and its AM are compromised, the whole system is not compromised.

6. Conclusions and Future Work

This paper proposed a lightweight mutual authentication scheme for distributed
MQTT architecture based on fog computing to establish scalable and secure M2M commu-
nications for the IIoT. Our proposed architecture is designed in a hierarchical structure with
a multi-tier MQTT broker (Mu-TiMB). The authentication scheme is implemented by an
authentication manager (AM) that is deployed in each broker to enable the independency
of security management for each broker and its group of connected clients/brokers.

Compared to the existing works, our proposed architecture mitigates security perfor-
mance overhead by implementing a lightweight mutual authentication scheme between
client–broker communication and broker–broker communication using hash function and
XOR operation. The authentication scheme is characterized by low storage and communica-
tion overhead, which have been reduced to 89% and 23%, respectively, compared with the
results given in the benchmark. Our system enables the management of the authentication
for each broker and its group of connected clients/brokers independently. This decreases
the possibility of security threats and facilitates security management. Our proposed archi-
tecture can avoid latency, network congestion, and bottlenecks due to clustering the clients
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into groups that connect to a single local broker as well as due to the flexibility of scaling
the broker and its associated AM horizontally and vertically. In our proposed architecture,
the hierarchical structure allows the MQTT client to obtain data from any broker, despite it
being connected to a single local broker in the fog layer. One of the authentication scheme
disadvantages is the lack of anonymity and untraceability.

This paper can pave the way for the researchers to develop the proposed architecture
with the other security properties, such as authorization, availability, and data confidential-
ity, so that there will be a comprehensive independent security manager for each broker
that provides the required security properties for the group of connected clients/brokers.
There are two limitations in this paper that could be addressed in future by conducting
additional tests for the performance of the authentication scheme, including computation
time and transmission time, and by presenting a formal security analysis using security
verification tools such as AVISPA and Ban logic.

In the future, we plan to implement an authorization system by deploying an autho-
rization manager for each broker to enforce access control on topics. Moreover, we intend to
achieve the availability and avoid the single point of failure for a broker and its associated
AM by adding load-balancing solutions. In case any failures occur, another broker and AM
can take over the load. In addition, we plan to achieve the confidentiality and integrity of
publishing and subscribing to topics using lightweight encryption techniques.
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