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Abstract: Owing to the heterogeneity of software and hardware in different types of mobile terminals,
the received signal strength indication (RSSI) from the same Wi-Fi access point (AP) varies in indoor
environments, which can affect the positioning accuracy of fingerprint methods. To solve this problem
and consider the nonlinear characteristics of Wi-Fi signal strength propagation and attenuation, we
propose a whale optimisation algorithm-back-propagation neural network (WOA-BPNN) model
for indoor Wi-Fi RSSI calibration. Firstly, as the selection of the initial parameters of the BPNN
model has a considerable impact on the positioning accuracy of the calibration algorithm, we use
the WOA to avoid blindly selecting the parameters of the BPNN model. Then, we propose an
improved nonlinear convergence factor to balance the searchability of the WOA, which can also help
to optimise the calibration algorithm. Moreover, we change the structure of the BPNN model to
compare its influence on the calibration effect of the WOA-BPNN calibration algorithm. Secondly,
in view of the low positioning accuracy of indoor fingerprint positioning algorithms, we propose a
region-adaptive weighted K-nearest neighbour positioning algorithm based on hierarchical clustering.
Finally, we effectively combine the two proposed algorithms and compare the results with those
of other calibration algorithms such as the linear regression (LR), support vector regression (SVR),
BPNN, and genetic algorithm-BPNN (GA-BPNN) calibration algorithms. The test results show that
among different mobile terminals, the proposed WOA-BPNN calibration algorithm can increase
positioning accuracy (one sigma error) by 41%, 42%, 44% and 36%, on average. The indoor field tests
suggest that the proposed methods can effectively reduce the indoor positioning error caused by the
heterogeneous differences of software and hardware in different mobile terminals.

Keywords: BP neural network; clustering algorithm; heterogeneity of software and hardware; indoor
positioning; whale optimisation algorithm; Wi-Fi RSSI calibration

1. Introduction

With the rapid development of society, people are spending most of their time in indoor
environments such as shopping malls and office buildings. Owing to the weak global
navigation satellite system (GNSS) signals received indoors, accurate indoor positioning
via GNSS is not possible [1]. Currently, indoor positioning has become a research hotspot.
In the field of indoor positioning, fingerprint positioning was verified to be a feasible
method for indoor positioning [2]. Considering the deployment cost and indoor positioning
accuracy, the indoor positioning method based on Wi-Fi signal is currently the most widely
used. However, owing to the heterogeneity of software and hardware between different
mobile terminals, the signal strength indication (RSSI) values received by different mobile
terminals from the same Wi-Fi access point (AP) at the same location differ considerably, as
shown in Figure 1, which will have a serious impact on indoor positioning accuracy. To
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solve the above problems and improve indoor positioning accuracy, calibrating the Wi-Fi
RSSI values received by different mobile terminals at the same position is necessary to
make the RSSI values consistent.
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Figure 1. RSSI received by different mobile terminals in the same direction at the same position at the
same time.

For indoor positioning and calibration, He et al. [3] proposed recording the signal
strength collected by different mobile terminals and using linear regression (LR) model
to calibrate the difference between different mobile terminals, which could help improve
positioning accuracy. However, owing to the nonlinear logarithmic variation in RF signal
strength with distance and the simple linear calibration method, the positioning accuracy
was poor. Therefore, an increasing number of scholars are examining nonlinear indoor
positioning and calibration algorithms. Li et al. [4] proposed a new algorithm that used
support vector regression (SVR) to construct the nonlinear mapping relation between the
RSSI and distance between tags and readers. Song et al. [5] proposed the possibility of the
nonlinear calibration of Wi-Fi signals by establishing a back-propagation neural network
(BPNN) model. Through repeated training, this method can obtain a relatively stable BPNN
calibration model, but the improper selection of the initial parameters of a BPNN model
will lead to poor calibration results. To solve this problem, Yu et al. [6] proposed to further
optimise the initial weights and thresholds of a BPNN model by using the selection and
mutation process of a genetic algorithm (GA) to overcome the problem of the BPNN model
falling easily into local optimisation. Although the above algorithms can reduce the error
caused by the heterogeneity of software and hardware in different mobile terminals, several
parameters must be set for a GA-BPNN model, which at present are selected empirically.

In the online phase, if the positioning area is large and the spacing of the fingerprint
reference points is dense, then matching the RSSI data collected from a real-time location to
each fingerprint data in the fingerprint database will lead to a large number of calculations
and will be unable to obtain the positioning results immediately. To reduce the fingerprint
point matching calculation and determine the current position in a certain area quickly,
some scholars used a clustering algorithm in the indoor positioning process to roughly
realise the location. Ferreira et al. [7] applied a K-nearest neighbour (KNN) classification
method to improve the performance of indoor localization. Xue et al. [8] utilised a K-means
clustering algorithm to analyse the geometric proximity between the reference point and
test point in the online phase. Zhao et al. [9] combined naive Bayes classifier (NBC) and
weighted KNN (WKNN) to achieve indoor positioning, which obtained a better result
than the traditional indoor positioning systems (IPSs). However, these methods must set
the appropriate value of K in advance. If the value of K is not set properly, it will have
a certain negative impact on the subsequent positioning results. Li et al. [10] proposed
the improved fuzzy c-means algorithm for regional division in the offline training phase,
which introduces the K-means clustering algorithm and between–within proportion (BWP)
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index to select the optimal initial clustering centre and number of clusters. He et al. [11]
proposed a regional division method based on a Voronoi graph that is constructed with
the initial reference points as the generating points, and the virtual reference points are
partitioned into the nearest Voronoi region.

To effectively solve the above problems, the main work of this paper is as follows:

(1) Firstly, we propose a Wi-Fi RSSI calibration algorithm based on a whale optimisation
algorithm (WOA)-BPNN and use the WOA to find the optimal initial weights and
thresholds of the BPNN model. The proposed algorithm has a simple process and few
parameters to adjust. Secondly, to speed up the establishment and optimisation of the
calibration algorithm and upgrade the updating and iterating speed, we propose a
nonlinear convergence factor a to simulate the shrinking behaviour of the surrounding
prey of the whales and obtain an improved WOA-BPNN calibration algorithm. The
convergence factor a changes dynamically only with the current iterations t and
effectively prevents the algorithm from falling into the local optimum. We use the
calibration algorithm to calibrate the Wi-Fi RSSI data received by the different mobile
terminals at the same position to make the Wi-Fi RSSI consistent. Finally, by changing
the hidden layer structure of the BPNN model, we compare the performance of
different BPNN models on the calibration results.

(2) Focusing on the problem of the low positioning accuracy of location fingerprint in-
door positioning algorithms based on the Wi-Fi RSSI, we propose a region-adaptive
weighted KNN (WKNN) positioning algorithm based on hierarchical clustering.
Firstly, we employ the BWP index to evaluate the clustering results and find the
optimal number of clustering regions, which can help narrow the online match-
ing positioning range and improve the positioning speed. Secondly, this algorithm
adaptively determines the K fingerprint data in the fingerprint database of its attri-
bution area, which is similar to the RSSI values received by the mobile terminals at
a real-time position, then uses the WKNN algorithm to calculate the final position
results comprehensively.

To verify the effectiveness of the two proposed algorithms we further combine the
WOA-BPNN calibration algorithm (in which the hidden layers of BPNN are double layers
and the number of neurons in each layer is six) with the region-adaptive WKNN position
algorithm based on hierarchical clustering, and compare the average positioning error
obtained after calibration with those of three other positioning algorithms (i.e., NN, KNN
and WKNN) and four other calibration algorithms (i.e., LR, SVR, BPNN and GA-BPNN).
The experiments show that the combination of the WOA-BPNN calibration algorithm
and region-adaptive positioning WKNN algorithm based on hierarchical clustering can
effectively reduce the indoor positioning error caused by the heterogeneity of software and
hardware in different mobile terminals, thereby improving the availability and universality
of the calibration algorithm.

2. Methods and Algorithms
2.1. Methods
2.1.1. BPNN

A BPNN is a neural network trained according to the error back-propagation algorithm,
consisting of an input layer, several hidden layers and an output layer [12]. Each layer can have
several neurons, and the connection state of the neurons between the layers is reflected by the
weights. A BPNN is a multilayer feedforward neural network with a strong learning ability that
can be used to process the complex mapping relationships of nonlinear functions and is often
used in classification or prediction problems. Selami et al. [13] employed a BPNN model to
reduce the effect of the nonlinearities presented in laser triangulation displacement sensors.
Hu et al. [14] developed a BPNN model to correct heading angle velocity output and vehicle
speed and to add the synthesized relative displacement to the previous absolute position to
realize a new vehicle position. Moreover, based on BPNN model, Xing et al. [15] proposed a
60 GHz impulse radio positioning algorithm, which has obtained a good positioning result.
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Differing from the above algorithms, in this study we apply a BPNN model to indoor
Wi-Fi RSSI calibration that corrects the Wi-Fi RSSI values received by different mobile
terminals based on the standard mobile terminal. Firstly, we utilise a WOA to help the
BPNN model find the optimal initial weights and thresholds. Secondly, to speed up the
establishment and optimisation of the calibration algorithm and to increase the updating
and iterating speed, we propose a nonlinear convergence factor, a. The model principle is
shown in Figure 2, and the algorithm steps are explained in Section 2.2.1.
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2.1.2. WOA

The WOA is a novel swarm intelligence optimisation algorithm based on the behaviour
of whales hunting prey proposed by Mirjalili and Lewis in 2016 [16]. When hunting, whale
populations cooperate with one another to drive and surround their prey. In the WOA,
the position of each whale represents a feasible solution. During the hunting process of
a whale population, each whale will randomly choose from two behaviours to update its
position. The first behaviour is to surround the prey, in which the whales will randomly
swim towards the best position to hunt the prey or randomly select a whale as their target
and swim to it. The second behaviour is to create a bubble net, in which the whales swim
in a circular motion and release bubbles to drive away their prey. In each iteration, the
whales will randomly choose from the two behaviours to hunt.

2.1.3. Agglomerative Hierarchical Clustering Method

The agglomerative hierarchical clustering method, a ’bottom-up’ clustering method [17]
that first treats each fingerprint point in the offline fingerprint database as a separate class,
then calculates the distance between every two points and selects the two closest classes
to merge into a new class, and repeats the process continuously. The merging stops when
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the termination condition is reached. The advantage of this clustering method is that it
demonstrates satisfactory flexibility, that is, setting the number of clusters in advance is
unnecessary. After setting the appropriate termination conditions, we will likely obtain the
required clustering results. The calculation of the distance between different classes gener-
ally adopts several methods, such as the minimum distance dmin, maximum distance dmax
and average distance davg. Owing to the instability of Wi-Fi RSSI in indoor environments,
the RSSI collected from two points far away may have certain similarities, so we adopt the
agglomerated hierarchical clustering method of average distance (average-linkage), and
divide the fingerprint database into regions according to the Euclidean distance between
every two fingerprint points, thereby avoiding matching to fingerprint points that are far
away in the online positioning phase.

2.2. Algorithms
2.2.1. Calibration Algorithm Based on WOA-BPNN

As a WOA uses few parameters to achieve quick convergence and does not easily en-
counter the local optimum problem, we employ it to optimise the BPNN model and model
the problem of the parameter selection of the BPNN model as parameter optimisation. We
establish an objective function to optimise the combination of parameters and use the WOA
to search for the optimal parameters, that is, the optimal initial weights and thresholds of
the BPNN model.

(1) A New Convergence Factor

The WOA includes two processes: global searching and local searching. If the algo-
rithm is intended for global searching, then it can keep the diversity of group and avoid
falling into local optimum; if it is intended for local searching, then it can search precisely
and speed up the search process. The searchability of the WOA depends on the value of
|A|, and the value of |A| varies with the change of the convergence factor a, see Equation
(3) for the relationship between A and a. A larger convergence factor will improve the
ability of global searching ability and reduce the possibility of premature maturity of the
algorithm. By contrast, a small convergence factor will improve the local searching ability
and efficiency of the algorithm.

The convergence factor of a traditional WOA changes linearly, but in the actual
searching process, the WOA changes non-linearly and causes slow convergence. Therefore,
to speed up the establishment and optimisation of the calibration algorithm and increase
the updating and iterating speed, we propose a nonlinear convergence formula [18] that
simulates the shrinking behaviour of the surrounding prey of the whales, as shown in
Equation (1), where the convergence factor a changes dynamically only with the current
number of iterations of whale population t, which can effectively prevent the algorithm
from falling into the local optimum.

a = 2− 2arcsin(
t

2tmax
) (1)

where t is the current number of iterations of the whale population and tmax is the maximum
number of iterations of the whale population.

(2) WOA-BPNN Calibration Algorithm Steps

As one of the most successful neural network learning algorithms, a BPNN demon-
strates satisfactory robustness and generalisation ability. However, the improper selection
of initial weights and thresholds will cause a BPNN model to fall into a local optimum,
thereby resulting in poor calibration results. Wang et al. [19] utilised the global search capa-
bility of the mind evolutionary algorithm to determine the initial weights and thresholds of
a BPNN model. Zhang et al. [20] employed the ant colony algorithm to optimise the initial
weights and thresholds of a BPNN model then established a calibration model. Owing to its
characteristics of few parameters, ability to jump out of the local optimum and satisfactory
convergence ability, we employ the WOA as well as an improved convergence factor a [21]
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to optimise the parameters of the BPNN model. The algorithm steps are presented below
(refer to Figure 2).

• Step 1: Randomly select several acquisition points in the room and use a standard
mobile terminal and test mobile terminal to collect the RSSI values of all APs at all
acquisition points. To reduce the noise impact of personnel disturbance and same
frequency interference during the RSSI propagation, process the received multiple
RSSI values of the same AP via mean filtering. Take the average RSSI values of each
AP collected from all acquisition points by the standard mobile terminal as the initial
standard sampling data and take the average RSSI values of all the corresponding
APs of the test mobile terminal at the corresponding acquisition points as the test
sampling data. In addition, take the test sampling data as the real input value of the
WOA-BPNN calibration model and take the initial standard sampling data as the real
output value of the WOA-BPNN calibration model.

• Step 2: Initialise the weight w0
ij and threshold θ0

j of each layer randomly to build the
BPNN, which also means initialising the whale group position Xi. Next, set the size
of the whale population N, the current number of iterations of the whale population
t = 0, the maximum number of iterations of the whale population tmax, the current
number of iterations of the BPNN model T, and the maximum number of iterations of
the BPNN model Tmax.

• Step 3: When the current number of iterations of the whale population t is less
than the maximum iteration number tmax of the whale population, according to the
fitness function formula, as Equation (2), calculate the fitness value of each whale,
obtain the position of the optimal fitness value, and then find the best fitness and the
corresponding optimal whale position Xbest.

f (Xi) =

Nsample

∑
i=1

∣∣yi − y′i
∣∣ (2)

where yi is the real value of the ith RSSI, y′i is the predicted value of the ith RSSI and
Nsample is the number of samples.

• Step 4: To speed up the establishment and optimisation of the calibration algorithm
and upgrade the updating and iterating speed, use the proposed nonlinear conver-
gence factor a to simulate the shrinking behaviour of the surrounding prey of the
whales. The convergence factor a changes dynamically only with the current iteration
times t and effectively prevents the algorithm from falling into the local optimum. The
formula of the nonlinear convergence factor a is shown as Equation (1). Update the
whale position parameters A and C. The formulas are shown in Equations (3) and (4).

A = 2ar− a (3)

C = 2r (4)

where r is a random value of [0, 1].
• Step 5: Randomly generate probability p and judge whether it is less than 0.5. If p ≥ 0.5,

then update the position by shrinking and surrounding, as shown in Equation (5).

Xt+1
i

= Xt
best
− A

∣∣∣C·Xt
best
− Xt

i

∣∣∣ (5)

where t is current number of iterations of the whale population, Xt
best is the optimal

whale position, Xt
i is the current whale position and A and C are the whale position

parameters obtained in Step 4, else if p < 0.5, then select the swimming mode accord-
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ing to the value of |A|: when |A|< 1 , the whales will choose to update their position
by swimming in a circular motion, as shown in Equation (6).

Xt+1
i =

∣∣∣Xt
best − Xt

i

∣∣∣·ebl · cos(2πl) + Xt
best (6)

where
∣∣Xt

best − Xt
i

∣∣ indicates the distance between the whale and the optimal position, b
is a constant that defines the logarithmic spiral shape and l is a random value in [−1, 1];
when |A|≥ 1 , the whales choose to swim randomly according to Equation (7):

Xt+1
i

= Xt
rand − A

∣∣∣C·Xt
rand − Xt

i

∣∣∣ (7)

where Xt
rand is the randomly selected position of a whale.

• Step 6: The current number of iterations of the whale population t increases automati-
cally, and the optimal position is updated according to Step 2. When the maximum
number of iterations of the whale population tmax is reached, it outputs Xbest, which
represents the optimal weight and threshold as the optimal initial parameters of the
BPNN model.

• Step 7: The BPNN performs forward propagation, processing data through the con-
nection weight wij between the neuron i and the neuron j and threshold θj of the
neuron j. Obtain the predicted output value using the nonlinear sigmoid activation
function, as shown in Equations (8) and (9), as follows:

Ij =

Nsample

∑
i=1

wijRSSIx,i + θj (8)

Oj =
1

1 + e−Ij
(9)

where wij is the connection weight between the neuron i and the neuron j, θj, Ij and
Oj are the threshold, input value and output value of the neuron j, respectively, and
RSSIx,i is the input value of the neuron i and Nsample is the number of samples.

• Step 8: With the forward propagation process, we obtain the predicted value of the
output layer neuron. According to the error between the predicted output value and
the real output value, obtain the loss function of the current iteration number Ej, as
shown in Equation (10); the error is propagated back to the upper layer of neurons to
obtain the error in this layer, and then passes layer by layer until the top hidden layer
is reached. Update and adjust the connection weights and thresholds based on the
gradient descent method, as shown in Equations (11) and (12), as follows:

Ej =
1
2

Nsample

∑
j=1

(RSSIy,j − RSSI′y,j)
2 (10)

w′ij = wij − η
∂Ej

∂wij
(11)

θ′j = θj − η
∂Ej

∂θj
(12)

where RSSIy,j is the real output value of the output layer neuron j, RSSI′y,j is the
predicted output value of the output layer neuron j, Nsample is the number of samples,
w′ij is the updated weight between the neuron i and the neuron j, θ′j is the updated
threshold of the neuron j, and η ∈ (0, 1) is the learning rate, if η is too large, the
convergence will be fast but easy to fall into the local optimum, if the value is too
small, the convergence will be slow but close to the global optimum.
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• Step 9: After repeated learning and training, when the current number of iterations of
the BPNN model T reaches the maximum number of iterations of the BPNN model
Tmax, select the BPNN model with the smallest loss function Ej as the final calibration
model, and save the parameters of the current WOA-BPNN calibration model and
corresponding mobile terminal model.

• Step 10: Repeat Step 1 to Step 8 for multiple mobile terminals, then establish the
calibration model database.

2.2.2. Region-Adaptive WKNN Algorithm Based on Hierarchical Clustering

The WKNN algorithm is a further improvement based on the K-nearest neighbour
(KNN) algorithm [22]. Different weighting factors are set according to the Euclidean
distance of different fingerprint reference points relative to the current position. Compared
with other fingerprint-based positioning algorithms, the WKNN algorithm has better
positioning accuracy and stability. However, regardless of whether the WKNN or KNN
algorithm is used, when performing the actual positioning, determining the value of K,
which is the number of neighbouring reference points, is necessary. The value of K has
an important influence on the positioning result. Thus, we propose an adaptive WKNN
method that can utilise the feature of the Euclidean distance and physical coordinates
between the real-time position and RSSI of the fingerprint database to adjust the value
of K dynamically during the online positioning process, which can help to improve the
positioning stability and obtain the best positioning accuracy.

The algorithm steps of the region-adaptive WKNN algorithm based on hierarchical
clustering are shown in Figure 3, and its process is described as follows:

• Step 1: In the offline phase, a mobile terminal collects the average RSSI data of each
Wi-Fi AP at each fingerprint point, match the RSSI of each fingerprint point with the
physical two-dimensional coordinates to build an offline location fingerprint database.

• Step 2: Calculate the Euclidean distance between two fingerprint points, then merge
the two fingerprint points with the smallest Euclidean distance into a new class and
recalculate the centre point of the new class. Finally, obtain the RSSI of different area
classes and centre points of each class.

• Step 3: In the online phase, the mobile terminal collects RSSI values from each Wi-Fi
AP at a real-time position to form a set of RSSI data. Calculate the Euclidean distance
D between the RSSI value of the real-time position and the RSSI value of the class
CLASS centre point F in turn, as shown in Equation (13), then divide the real-time
position into the class CLASS with the smallest Euclidean distance.

D =

√
Σn

j=1

(
rssij − RSSI iFj

) 2 (13)

where rssij is RSSI value of the jth Wi-Fi AP collected from the real-time position,
RSSIFj is the RSSI value of the jth Wi-Fi AP of the CLASS centre point F of class, and n
is the number of Wi-Fi APs.

• Step 4: Sort the Euclidean distance from each fingerprint point to the real-time po-
sition in class CLASS in ascending order. Find the corresponding two-dimensional
coordinates (x1, y1) of the fingerprint points, calculate the distance di, the average
distance d and the standard deviation S from the nearest neighbour point to the other
fingerprint points, as shown in Equations (14)–(16).

di =

√
(x1 − xi)

2 + (y1 − yi)
2 (14)

d =
d2 + d3 + . . . + dn

n− 1
(15)

S =

√
∑n

i=2 (di − d)
2

n− 1
(16)
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• Step 5: Filter the fingerprint points in class C further. When di > S, delete the ith RSSI,
otherwise, when di ≤ S, keep the ith RSSI. Finally, obtain K fingerprint points data,
n is the number of Wi-Fi AP.

• Step 6: According to the Euclidean distance of the remaining K fingerprint points,
calculate the corresponding weight factor and obtain the estimated two-dimensional
coordinates of the real-time position.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 22 
 

where rssij is RSSI value of the jth Wi-Fi AP collected from the real-time position, 

RSSIFj is the RSSI value of the jth Wi-Fi AP of the CLASS centre point F of class, and 

n is the number of Wi-Fi APs. 

• Step 4: Sort the Euclidean distance from each fingerprint point to the real-time posi-

tion in class CLASS in ascending order. Find the corresponding two-dimensional co-

ordinates (x1, y1) of the fingerprint points, calculate the distance 
id , the average dis-

tance d and the standard deviation S  from the nearest neighbour point to the other 

fingerprint points, as shown in Equations (14)–(16). 

2 2

1 1( ) ( )i i id x x y y= − + −
 

(14) 

1

...
32

−

+++
=

n

ddd
d n

 
(15) 

1

)(
2

2

−

−
=

 =

n

dd
S

n

i i

 
(16) 

• Step 5: Filter the fingerprint points in class C further. When id S , delete the ith 

RSSI, otherwise, when 
id S , keep the ith RSSI. Finally, obtain K fingerprint points 

data, n is the number of Wi-Fi AP. 

• Step 6: According to the Euclidean distance of the remaining K fingerprint points, 

calculate the corresponding weight factor and obtain the estimated two-dimensional 

coordinates of the real-time position. 

Offline Phase

Collect the RSSI data of each WiFi AP 

at each fingerprint point 

Match the RSSI of each fingerprint 

point with the physical two-

dimensional coordinates respectively 

to build an offline location fingerprint 

database

Calculate the Euclidean distance 

between two fingerprint points

Merge the two fingerprint points with 

the smallest Euclidean distance into a 

new class, and recalculate

 the center point of the new class

Obtain the RSSI of different area 

classes and center points of each 
class 

Collect the RSSI data from each WiFi 

AP is at the real-time position

Calculate the Euclidean distance δ 

between the RSSI value of the real-
time position and the RSSI value of 

the class CLASS center point F, 
then divide the real-time position 
into class CLASS with the smallest 

Euclidean distance

 Sort the Euclidean distance from 
each fingerprint point to the real-
time position in class CLASS in 

ascending order

Calculate the distance di, the 
average distance     and the 

standard deviation S from the 
nearest neighbor point (xi, yi) to 

other fingerprint points

If di  > S, delete ith RSSI, otherwise, 

keep it. Finally, obtain K 
fingerprint points data

d
−

Calculate the corresponding K 
weight factors, and finally obtain 
the estimated two-dimensional 

coordinates of the real-time 
position.

Online Phase

 

Figure 3. The algorithm steps for the region-adaptive WKNN algorithm based on hierarchical clus-

tering. 
Figure 3. The algorithm steps for the region-adaptive WKNN algorithm based on hierarchical clustering.

3. Experiments and Results

Our experimental environment is the seventh floor of the XianSu Building at the
Yaohu campus of Jiangxi Normal University, which includes a corridor (3 m × 21.5 m);
four laboratories, specifically, rooms 3705 (7 m × 7 m), 3707 (7 m × 7 m), 3712 (7 m × 7 m)
and 3713 (7 m × 7 m); and a corner. We arrange eight TL-WR885N routers on the wall at a
height of 2.1 m as the Wi-Fi RSSI signal access points (AP1-AP8). The mobile terminals used
in the experiment include a standard mobile terminal (Huawei mate10pro), test mobile
terminal 1 (Huawei mate8) and test mobile terminal 2 (Huawei P8), all of which contain
Wi-Fi sensors.

3.1. Wi-Fi AP Number Setting

To explore the influence of the number of Wi-Fi APs used to build the model on the
calibration effect of the WOA-BPNN calibration algorithm, we select 12 modelling points
and 12 test points randomly for the experiments at the experiment area described above.
The distribution of the modelling points (red dots), test points (blue dots) and APs (green
icons) is shown in Figures 4 and 5.
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Under different numbers of Wi-Fi APs (1–8), we use the standard mobile terminal and
test mobile terminals to collect the Wi-Fi RSSI modelling data at the modelling points at a
frequency of 30 s/time for 6 min. We use the standard mobile terminal and two test mobile
terminals to collect the test data at the test points using the same method. We average
all the RSSI data received from each AP in the data sample collected at each acquisition
point (for each AP, we obtain only one average RSSI value at each point after mean filter
processing; we process the subsequent obtained RSSI data in the same way) and take the
average RSSI value of each AP as the RSSI value of the acquisition point. In establishing
the calibration model, we take the modelling data of the test mobile terminals (test mobile
terminal 1 or test mobile terminal 2) as the input value of the calibration model and the
modelling data of the standard mobile terminal as the real output value of the calibration
model. The model generates the predicted output data after the modelling data of the test
mobile terminals pass through the calibration model, then compares and calculates the
error between the predicted output data and real output value, which are then propagated
back to the calibration model. Finally, we obtain a stable calibration model after continuous
adjustment. Therefore, we get the calibration model of the standard mobile terminal–test
mobile terminal 1 and standard mobile terminal–test mobile terminal 2. After establishing
the calibration model, we use the test data of the two test mobile terminals as the input
value of the calibration model to apply the corresponding model for the RSSI calibration.
Finally, we calculate the error between the test data of the standard mobile terminal and
test data of the test mobile terminals as well as the error between the data of the test mobile
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terminals after calibration and those of the standard mobile terminal. We analyse the error
reduction ratio p value of the RSSI calibration model for different numbers of APs.

P =
nS1<S0

Z
× 100% (17)

where S0 =|RSSIx − RSSIy
∣∣ is the error between RSSI value of the test mobile terminal and

that of the standard mobile terminal before calibration; S1 =|RSSI′x − RSSI′y
∣∣∣ is the error

between the RSSI value of the test mobile terminal after calibration and that of the standard
mobile terminal; ns1<s0 is the number of error reduction after calibration in the test data; Z
is the total number of test data sets, which is proportional to the number of APs.

Figure 6 shows that when the number of Wi-Fi APs continues to increase, the error
reduction ratio p value also increases. When the number of Wi-Fi APs equals one, the
error reduction ratio p of the RSSI calibration is the worst value, which shows that the
calibration model established with a single AP is unstable. Meanwhile, when the number
of APs increases from one to five, the value of p increases rapidly; when the number of
APs reaches six or more, the increase of the error reduction ratio p value is small for each
additional number of modelling APs. Therefore, considering the calibration efficiency and
actual calculation amount, this experiment shows that selecting five or six modelling APs
for modelling and calibration is appropriate.
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3.2. Region Division Result

In a hierarchical clustering algorithm, the number of clusters L will affect the quality
of the clustering results and ultimately affect the positioning accuracy. Thus, setting
an appropriate number of clusters L is necessary. Based on the experimental results
obtained in Section 3.1, we choose six APs (AP1, . . . , AP6) as the Wi-Fi RSSI signal APs
and use the coverage area of the APs as the experimental area. In addition, we choose 122
reference fingerprint points (red dots) in the experimental area, and the distance between
the reference points is 0.8 m. An experimenter holds the standard mobile terminal in
front of his/her chest, keeps the same height and direction and collects the Wi-Fi RSSI
fingerprint data at each reference fingerprint point at a frequency of 30 s/time for 3 min.
We average all the RSSI data collected from each AP to establish an offline fingerprint
database. According to the established offline fingerprint database, we set L as 3, 4, 5, 6, 7
or 8 then introduce the BWP [23] index to judge whether the clustering result is good or
bad. The experimental results are shown in Figure 7. We can conclude that when L = 4, the
result is the best. Therefore, we divide the offline fingerprint database into four regions
and calculate the clustering centres of each region. The final results of the regional division
in the environment are presented in Figure 8.
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Figure 8. Results of regional division.

The five-pointed star icons represent the centre position of each cluster. From right to
left, the coordinates of the four centre positions are (2.05, 3.85), (2.86, 13.04), (2.00, 21.50)
and (8.28, 14.16).

3.3. Hidden Layer Structure Setting

Setting the hidden layer structure of the BPNN model is one of the conditions for
establishing a satisfactory WOA-BPNN calibration algorithm model. In this study, we
set the number of hidden layers of the BPNN model as one or two layers. According to
Equation (18), we determine the number of neurons in each hidden layer. When the number
of hidden layers of the BPNN model is two, the number of neurons in the first hidden layer
and second hidden layer is the same.

Hhidden =
√

Iinput + Ooutput + R (18)

where Hhidden represents the number of neurons in the hidden layer, Iinput represents the
number of input layers, Ooutput represents the number of output layers and R is a constant
between 1–10. As both the number of neurons in the input layer and the output layer in
this experiment are 1, and too many or too few neurons in the hidden layer will cause the
over-fitting or under-fitting of the experimental data, thus we determined that the number
of neurons ranges from 5 to 11.

To compare and analyse the influence of the different BPNN models on the final
calibration effect of the WOA-BPNN calibration algorithm to select the optimal BPNN
model for the subsequent indoor positioning experiment, we chose the 12 modelling points
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(as shown in Figure 4) and the best number of Wi-Fi APs (six APs: AP1~AP6) to build a
stable WOA-BPNN model. Then, we conducted the experiment in the experimental area
described in Section 3.2. In addition, we add 19 test fingerprint points (purple triangles),
which are in the middle of the two reference points, to detect the positioning accuracy of
the model. The distribution of the test fingerprint points is shown in Figure 9.
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At the offline phase, we establish an offline fingerprint database according to the
method described in Section 3.2. At the online phase, we hold two test mobile terminals,
collect the Wi-Fi RSSI test fingerprint data at each test fingerprint point at a frequency of
30 s/time for 3 min, and average all the collected RSSI data of each AP as the test input
data of the WOA-BPNN model. Then, according to the mobile terminal models, calling
the corresponding model for the RSSI calibration to obtain the predicted output RSSI data
after calibration.

3.3.1. Influence of Hidden Layer Structure on Average RSSI Value

By changing the hidden layer structure of the BPNN model (e.g., the number of hidden
layers or number of hidden layer neurons), we discuss the impact of the different BPNN
model structures on the average RSSI results obtained after the calibration of the two test
mobile terminals. Under different BPNN model structures we carried out five experiments
to obtain the best calibration effect.

According to Figures 10 and 11, for the two test mobile terminals, the BPNN model
with double hidden layers can improve the calibration results of the WOA-BPNN calibra-
tion algorithm compared with the BPNN model with a single hidden layer. When the
hidden layer structure of the BPNN model is double hidden layers and the number of
neurons is six, the average RSSI error after the calibration is the smallest.

3.3.2. Influence of Hidden Layer Structure on Average Positioning Error

In this section, based on the five results of each BPNN model structure obtained in
Section 3.3.1, we discuss the influence of the different BPNN model structures on the average
positioning error results obtained after the calibration of the two test mobile terminals. The
best positioning result of each BPNN model structure is shown in Figures 12 and 13.



Appl. Sci. 2022, 12, 7151 14 of 22

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 22 
 

two test mobile terminals. Under different BPNN model structures we carried out five 

experiments to obtain the best calibration effect. 

According to Figures 10 and 11, for the two test mobile terminals, the BPNN model 

with double hidden layers can improve the calibration results of the WOA-BPNN calibra-

tion algorithm compared with the BPNN model with a single hidden layer. When the 

hidden layer structure of the BPNN model is double hidden layers and the number of 

neurons is six, the average RSSI error after the calibration is the smallest. 

 

Figure 10. Comparison of the average RSSI value after calibration of test mobile terminal 1. 

 

Figure 11. Comparison of the average RSSI value after calibration of test mobile terminal 2. 

3.3.2. Influence of Hidden Layer Structure on Average Positioning Error 

In this section, based on the five results of each BPNN model structure obtained in 

Section 3.3.1, we discuss the influence of the different BPNN model structures on the av-

erage positioning error results obtained after the calibration of the two test mobile termi-

nals. The best positioning result of each BPNN model structure is shown in Figures 12 and 

13.  

Figure 10. Comparison of the average RSSI value after calibration of test mobile terminal 1.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 22 
 

two test mobile terminals. Under different BPNN model structures we carried out five 

experiments to obtain the best calibration effect. 

According to Figures 10 and 11, for the two test mobile terminals, the BPNN model 

with double hidden layers can improve the calibration results of the WOA-BPNN calibra-

tion algorithm compared with the BPNN model with a single hidden layer. When the 

hidden layer structure of the BPNN model is double hidden layers and the number of 

neurons is six, the average RSSI error after the calibration is the smallest. 

 

Figure 10. Comparison of the average RSSI value after calibration of test mobile terminal 1. 

 

Figure 11. Comparison of the average RSSI value after calibration of test mobile terminal 2. 

3.3.2. Influence of Hidden Layer Structure on Average Positioning Error 

In this section, based on the five results of each BPNN model structure obtained in 

Section 3.3.1, we discuss the influence of the different BPNN model structures on the av-

erage positioning error results obtained after the calibration of the two test mobile termi-

nals. The best positioning result of each BPNN model structure is shown in Figures 12 and 

13.  

Figure 11. Comparison of the average RSSI value after calibration of test mobile terminal 2.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 22 
 

 

Figure 12. Comparison of average positioning error before and after calibration of test mobile ter-

minal 1. 

 

Figure 13. Comparison of average positioning error before and after calibration of test mobile ter-

minal 2. 

According to Figures 12 and 13, for the two test mobile terminals, under the condition 

of the same number of neurons in each hidden layer, whether the hidden layer of the 

BPNN model is a single hidden layer or double hidden layers, the average positioning 

error reaches the minimum value when the number of neurons in the hidden layer is six 

and five, respectively. 

It can be seen from the above results that more neurons in the hidden layer do not 

mean better WOA-BPNN calibration algorithm results. Therefore, based on the above re-

sults, and considering the problem of algorithm efficiency, we adopt the BPNN model 

with double hidden layers and six neurons in each hidden layer for the subsequent exper-

iments. 

3.4. Trajectory Positioning Points 

Based on the WOA-BPNN model established in the Section 3.3, and after processing 

the real-time positioning results of the two test mobile terminals, their trajectory position-

ing points are shown in Figures 14 and 15. 

Figure 12. Comparison of average positioning error before and after calibration of test mobile
terminal 1.



Appl. Sci. 2022, 12, 7151 15 of 22

Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 22 
 

 

Figure 12. Comparison of average positioning error before and after calibration of test mobile ter-

minal 1. 

 

Figure 13. Comparison of average positioning error before and after calibration of test mobile ter-

minal 2. 

According to Figures 12 and 13, for the two test mobile terminals, under the condition 

of the same number of neurons in each hidden layer, whether the hidden layer of the 

BPNN model is a single hidden layer or double hidden layers, the average positioning 

error reaches the minimum value when the number of neurons in the hidden layer is six 

and five, respectively. 

It can be seen from the above results that more neurons in the hidden layer do not 

mean better WOA-BPNN calibration algorithm results. Therefore, based on the above re-

sults, and considering the problem of algorithm efficiency, we adopt the BPNN model 

with double hidden layers and six neurons in each hidden layer for the subsequent exper-

iments. 

3.4. Trajectory Positioning Points 

Based on the WOA-BPNN model established in the Section 3.3, and after processing 

the real-time positioning results of the two test mobile terminals, their trajectory position-

ing points are shown in Figures 14 and 15. 

Figure 13. Comparison of average positioning error before and after calibration of test mobile
terminal 2.

According to Figures 12 and 13, for the two test mobile terminals, under the condition
of the same number of neurons in each hidden layer, whether the hidden layer of the
BPNN model is a single hidden layer or double hidden layers, the average positioning
error reaches the minimum value when the number of neurons in the hidden layer is six
and five, respectively.

It can be seen from the above results that more neurons in the hidden layer do not mean
better WOA-BPNN calibration algorithm results. Therefore, based on the above results, and
considering the problem of algorithm efficiency, we adopt the BPNN model with double
hidden layers and six neurons in each hidden layer for the subsequent experiments.

3.4. Trajectory Positioning Points

Based on the WOA-BPNN model established in the Section 3.3, and after processing
the real-time positioning results of the two test mobile terminals, their trajectory positioning
points are shown in Figures 14 and 15.
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4. Discussion
4.1. Comparison with Other Positioning Algorithms

To verify the effectiveness of the WOA-BPNN calibration algorithm proposed in this
study, we utilise four positioning algorithms, namely NN, KNN, WKNN and the proposed
region-adaptive WKNN, to compare the average positioning error results before and after
calibration with the WOA-BPNN calibration algorithm. Figure 16 shows the comparison
of the average positioning error of the different positioning algorithms. It can be seen
from Figure 16 that based on the proposed WOA-BPNN calibration algorithm, the average
positioning error obtained by the above four positioning algorithms after calibration is
much lower than the uncalibrated average positioning error. Among the algorithms,
the proposed region-adaptive WKNN algorithm obtains the best result. Thus, we can
conclude that the combination of the proposed WOA-BPNN calibration algorithm and
proposed region-adaptive WKNN algorithm can effectively eliminate the heterogeneous
differences in software and hardware in different mobile terminals to improve indoor
positioning accuracy.
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Figure 16. Comparison of average positioning error of different positioning algorithms before and
after calibration.

Meanwhile, to verify the effectiveness of the proposed region-adaptive WKNN algo-
rithm based on hierarchical clustering, we also compare the different positioning errors
of the four positioning algorithms based on the WOA-BPNN calibration algorithm, and
the results are shown in Figures 17 and 18. From the figures, we can see that under the
one-sigma positioning error, the positioning error of test mobile terminal 1 using the pro-
posed hierarchical clustering adaptive WKNN positioning method is about 0.61 m lower
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than that of the test mobile terminal using the NN positioning algorithm. In addition, the
positioning error of test mobile terminal 2 using the proposed method is about 0.76 m,
0.31 m and 0.22 m lower than that of the test mobile terminal using the NN, KNN and
WKNN positioning algorithms, respectively. Under the two-sigma positioning error, the
positioning error of test mobile terminal 1 is reduced by about 1.62 m, 1.33 m and 0.34 m
compared with that of the test mobile terminal using NN, KNN and WKNN positioning
algorithms, respectively. In addition, the positioning error of test mobile terminal 2 is
reduced by about 0.76 m, 0.31 m and 0.22 m compared with that of the test mobile terminal
using the NN, KNN and WKNN algorithms, respectively. Under the average positioning
error, the positioning error of test mobile terminal 1 and test mobile terminal 2 using the
proposed positioning method is 1.22 m and 1.31 m, respectively, and the comprehensive
average error can reach 1.27 m, which is about 0.64 m, 0.24 m and 0.14 m lower than that
of the three other positioning algorithms. Moreover, the average positioning accuracy of
the proposed algorithm is about 33%, 16% and 10% higher than that of the NN, KNN and
WKNN positioning algorithms, respectively. Thus, it can be seen that under the three types
of positioning error, the proposed method is better than the other positioning algorithms.
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4.2. Comparison with Other Calibration Algorithms

To verify the effectiveness of the proposed WOA-BPNN calibration algorithm, we
compare the calibration positioning points generated by the LR, SVR, BPNN and GA-BPNN
algorithms with those generated by the WOA-BPNN algorithm in real positioning points
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and obtain the positioning error of each positioning point, as shown in Figure 19. Moreover,
in the tests, we set the one-sigma positioning error and two-sigma positioning error based
on the ISO/IEC18305 international standard as the evaluation index and calculate the
positioning error of the different mobile terminals using the different calibration algorithms,
as shown in Table 1.
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Table 1. Comparison of positioning error of five calibration algorithms (m).

Mobile
Terminal Indicator

Algorithms
LR SVR BPNN GA-BPNN WOA-BPNN

Test
mobile

terminal 1

positioning error(one sigma) 1.71 1.81 1.84 1.65 1.02

positioning error (two sigma) 4.44 3.26 3.45 3.40 2.27

Test
mobile

terminal 2

positioning error (one sigma) 2.24 2.21 2.34 2.00 1.32

positioning error (two sigma) 3.49 3.41 3.29 2.61 2.72

It can be seen from the table that the proposed WOA-BPNN calibration algorithm
can effectively reduce the indoor positioning error. In this experiment, compared with the
one-sigma positioning error of different mobile terminals using the LR, SVR, BPNN and
GA-BPNN calibration algorithms, the one-sigma positioning error of the mobile terminals
using the proposed WOA-BPNN calibration algorithm is reduced by 41%, 42%, 44% and
36% on average. In addition, the proposed WOA-BPNN calibration algorithm reduces the
two-sigma positioning error of the mobile terminals by 37%, 25%, 26% and 17% on average,
compared with the four other algorithms. These results effectively show that the proposed
WOA-BPNN calibration algorithm is more accurate and feasible than the other calibration
algorithms. Moreover, it can be seen from the cumulative distribution function of the
positioning error in Figure 20 that the proposed calibration algorithm is better than the four
other algorithms. Therefore, the field test results demonstrate that the proposed algorithm
can effectively reduce the positioning error caused by the heterogeneity of mobile terminals
and improve indoor positioning accuracy, thereby further improving the availability of
positioning algorithms between different mobile terminals.
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5. Conclusions

Firstly, focusing on the problem of the heterogeneity of software and hardware in
different mobile terminals, we propose an indoor Wi-Fi RSSI calibration algorithm based
on a WOA-BPNN. We use the WOA to find the optimal initial weights and thresholds
of the BPNN, which addresses the drawback of the BPNN model falling easily into the
local optimum. By applying a nonlinear convergence factor a, we further improve the
convergence speed of the optimisation algorithm. The proposed calibration algorithm
is simple to operate for handheld mobile terminals. We also compare the impact of the
different structures of the BPNN model on the final calibration effect of the WOA-BPNN
calibration algorithm. The experimental results show that the BPNN model with double
hidden layers is more beneficial to the calibration effect of the algorithm than the BPNN
model with a single hidden layer. Moreover, the test results suggest that a larger number of
neurons in the hidden layer of the BPNN model do not directly lead to better calibration
results by the WOA-BPNN calibration algorithm, because too many neurons in the hidden
layer will lead to over-fitting in the network [11]. Secondly, to solve the problem of the low
positioning accuracy of location fingerprint indoor positioning algorithms based on Wi-Fi
RSSI, we propose a region-adaptive WKNN positioning algorithm based on hierarchical
clustering. Finally, we further combine the WOA-BPNN calibration algorithm (where the
hidden layer of the BPNN model is double layers, and the number of neurons in each layer
is six) with region-adaptive WKNN position algorithm based on hierarchical clustering.
Compared with the one-sigma positioning error of the different mobile terminals using the
LR, SVR, BPNN and GA-BPNN calibration algorithms, the one sigma positioning error of
the mobile terminals using the proposed WOA-BPNN calibration algorithm is reduced by
41%, 42%, 44% and 36% on average. In addition, the proposed WOA-BPNN calibration
algorithm reduces the two-sigma positioning error of the mobile terminal by 37%, 25%,
26% and 17% on average, compared with the four other calibration algorithms. Thus, the
proposed WOA-BPNN calibration algorithm can effectively reduce the indoor positioning
error caused by the heterogeneity of software and hardware in different mobile terminals
and improve the availability and universality of the positioning algorithm.
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Nomenclature

Symbol Meaning
a convergence factor
t the current number of iterations of the whale population
tmax the maximum number of iterations of the whale population
w0

ij the initial weight
θ0

j the initial threshold
Xi the whale group position
N the size of whale population
T the current number of iterations of the BPNN model
Tmax the maximum number of iterations of the BPNN model
f (Xi) the fitness function
Nsample the number of samples
yi the real value of the ith RSSI
y the predicted value of the ith RSSI
A one of the whale position parameters
C one of the whale position parameters
r a random value of [0, 1]
p a random probability
Xt

i the current whale position
Xt

best the optimal whale position
Xt+1

i
the position of the whale at the next moment∣∣Xt

best − Xt
i
∣∣ the distance between the current position and the optimal position

b a constant, which defines the logarithmic spiral shape
l a random value in [–1, 1]
Xt

rand the randomly selected position of a whale
Xbest the optimal weight and threshold of the BPNN model
wij the connection weight between the neuron i and the neuron j
θj the threshold of the neuron j
Ij the input value of the neuron j
Oj the output value of the neuron j
RSSIx,i the input value of the neuron i
Ej the loss function of the current iteration number
RSSIy,j the real output value of the output layer neuron j
RSSI′y,j the predicted output value of the output layer neuron j
w′ij the updated weight between the neuron i and the neuron j
θ′j the updated threshold of the neuron j
η the learning rate between 0–1

D
the Euclidean distance between the RSSI of the real-time position and the RSSI
of the class centre point F

rssij the RSSI value of the jth Wi-Fi AP collected in real-time position
RSSImj the RSSI value of the jth Wi-Fi AP of the centre point m of class
n the number of Wi-Fi APs
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(x1, y1) the corresponding two-dimensional coordinates of the fingerprint points
di the distance from the nearest neighbor point to other fingerprint points
d the average distance from the nearest neighbor point to other fingerprint points
S the standard deviation from the nearest neighbor point to other fingerprint points
p the error reduction ratio

S0
the error between RSSI value of the test mobile terminal and that of the standard
mobile terminal before calibration

S1
the error between the RSSI value of the test mobile terminal after calibration and
that of the standard mobile terminal

ns1<s0 the number of error reduction after calibration in the test data
Z the total number of test data sets, which is proportional to the number of APs
L the number of clusters
Mhidden the number of neurons in the hidden layer
Iinput the number of neurons in the input layer
Ooutput the number of neurons in the output layer
R a constant between 1–10
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