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Abstract: Wireless networks have gained significant attention and importance in healthcare as
various medical devices such as mobile devices, sensors, and remote monitoring equipment must be
connected to communication networks. In order to provide advanced medical treatments to patients,
high-performance technologies such as the emerging fifth generation/sixth generation (5G/6G) are
required for transferring data to and from medical devices and in addition to their major components
developed with improved optimization methods which are substantially needed and embedded
in them. Providing intelligent system design is a challenging task in medical applications, as it
affects the whole behaviors of medical devices. A critical review of the medical devices and the
various optimization methods employed are presented in this paper, to pave the way for designers to
develop an apparatus that is applicable in the healthcare industry under 5G technology and future
6G wireless networks.

Keywords: biomedical devices; fifth generation (5G); optimization methods; sixth generation (6G)

1. Introduction

Developments advancing the progress of wireless networking and big data technolo-
gies such as fifth and sixth generations (5G and 6G, respectively) are attracting more and
more attention as they provide an opportunity to enhance transferring data [1]. These
networks are preferable as they could deliver higher multi-Gbps peak data speeds and
would support massive network capacity with ultra-low latency [2]. Recently, healthcare
has become a hot research topic wherein medical treatments with the emerging 5G net-
works are combined together, leading to the high performance and precise treatment of
disease [3]. In the current-day remedy procedure, various data have been collected from the
human body through biomedical devices and sent to doctors through intelligent systems to
analyze the diseases or to monitor the evolution of a recovery—all this in contrast to the
conventional scenario, wherein doctors could make a decision with regard to determining
the disease how the patient should be treated, as described in [4,5]. Biomedical devices can
be on-body, off-body, and in-body depending on the medical application types where the
in-body model includes implanted devices and on-body with off-body species are external
devices for monitoring and controlling health issues [6,7]. In the field of body-centric wire-
less networks (BCWNs), antennas and amplifiers are two important components where
antennas are either used for receiving or transmitting radio waves and amplifiers are
typically employed for increasing the power of the signal. Hence, these essential devices
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(i.e., antennas and amplifiers) must be properly designed as their output responses can
affect the performance of the whole system [8].

Biomedical devices are significant tools as they can be used to diagnose, assist in
delivering health care, and treat patients by providing access to the physiological data
of patients [9]. These are employed for various targets such as medical imaging, bionics,
and clinical engineering which use implanted devices [10]. Figure 1 illustrates one of the
uses of biomedical devices as one of the active wearable sensors used for collecting the
physiological data from a patient, before transferring the data to the hospital through the
wireless networks. This task provides many benefits as it helps doctors diagnose critical
diseases such as cancer in a shortest time with reduced cost, and paving the way for doctors
to continuously consider the patient’s body behavior [11]. Additionally, electroencephalo-
gram (EEG), electrocardiogram (ECG), electromyography (EMG), and implanted devices
are some of the other uses of biomedical devices through the 5G wireless networks [12].

Transferring data

 to doctors Collecting data 

from patients

Amplifier

Rechargeable 

battery

Wearable 

Harvesting

Energy 

antennas

Belt

Figure 1. Conceptual diagram of a patient–physician relationship through wireless networks using
active wearable sensors: here it includes antennas and amplifiers located in the belt of the patient.

Typically, there are two license-free distant operations of medical devices introduced
by medical implant communication system (MICSs) and industrial, scientific and med-
ical (ISM) bands, where the frequency range of MICS is 402–405 MHz and for the ISM
band is 902–928 MHz, 2.4–2.5 GHz, and 5.725–5.875 GHz [13,14]. Biomedical devices,
especially implanted medical devices, can be equipped with wireless systems, includ-
ing (i) electronic circuits and (ii) antennas for exchanging and transferring data between
various apparatuses [15,16]. Usually, the antennas can be of different structures such as
dipole, loop, slot, and microstrip patch antenna; the diverse types of medical amplifiers
comprise differential, operational, instrumentation, chopper, and isolation to gather and
increase the signal integrity [17,18]. One example of the usefulness of devices such as smart
physiological sensors is that the patient can monitor their health at a reduced cost.

This paper provides a comprehensive overview of the various biomedical devices
employed in the recently published literature. Various used designs, simulation results,
and challenges of the designs are highlighted and required challenges around the var-
ious techniques are provided. This research can pave the way for designers and en-
gineers in more reliable and easily determining accurate and suitable designs/circuits.
In many cases, this requires high-performance optimization methods. Some of them are
also mentioned below.
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This comprehensive review is organized into five sections. Section 2 presents the
connection of biomedical devices with 5G and next-generation technologies. Section 3
describes in detail the various designed wearable devices in the recently published litera-
ture. Section 4 explains the used optimization methods in the field of biomedical devices.
Section 5 presents the challenges. Finally, Section 6 concludes this manuscript.

2. Biomedical Devices through 5G and Next-Generation Technologies

Biomedical devices operating in the ISM frequency band are employed for investi-
gating various physiological and biomedical signals [13]. The implantable and wearable
devices make use of the wireless communication technology for safely receiving data
from patients and transmitting any response data or enquiry from the doctors, in order to
diagnose and monitor diseases in real time. Hence, in some cases, advanced and high-rate
communication networks are required for transporting data. Figure 2 presents the overall
view of the wireless communication network topology from a medical viewpoint as the
wearable devices are gathering data from sick people and then transmitting data to the
doctors for remote processing.

Hospital

Wireless 5G networks

Wireless 5G networks

Wireless 5G networks

Wireless 5G networks

Home

Treatment through 5G 

network

Figure 2. Use of 5G technology to remotely treating patients.

Following the success of 2G, 3G, and 4G technologies, 5G technology has been pro-
posed for its higher throughput. This new technology aims to provide benefits to the
development of Internet of Things (IoT) that incorporates wireless sensor networks, wire-
less mesh networks, wearable health care systems [19–21], etc. According to the report by
the World Health Organization (WHO), a lack of healthcare workers is expected by 2035 [22].
Hereby, developing the self-health monitoring and intelligent wearable healthcare systems
becomes very critical, also considering the aging population in the world.

The 5G networks provide potential useful possibilities for healthcare thanks to the
unique characteristics in terms of speed, massive device connectivity, reliability, and so
on [12,23]. These wireless networks pave the connection between the hospital and patients
by commonly using integrated sensors and actuators [20].

The 5G technology, unlike Wi-Fi and Bluetooth, can handle the hazard of communi-
cation loss when connecting and managing the performances of several networks. Addi-
tionally, 5G networks can have suitable performance when there are multiple operators
with various and many users that are expected to have different applications. Hence,
5G technology enables medical devices to provide reliable communication services with
improved and critical life-supporting functions [23].
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With the development of the 5G technology, 6G technology is expected to support
even more mobile connections than 5G capacity and to provide data rates of 1 terabyte
per second. These advantages can be very good candidates to the Internet of Things (IoT)
which is slowly trying to be used in the medical applications that will be named as Internet
of Medical Things (IoMT) [24].

Consequently, the importance of 5G technology from a medical perspective [12,25–28]
can be summarized as follows:

• Improved speed of data transferring and large bandwidth;
• Advanced safety, health and security;
• Reduced waiting time (One millisecond end-to-end round-trip delay) for receiving

data from wearable devices;
• Improved efficiency with capability to connect to many devices;
• Reduced power consumption;
• Advanced capacity for supporting devices;
• Possibility of the implementation of higher security standards.

3. Wearable Medical Devices

Wearable medical devices are essential tools for monitoring human’s vital signs lead-
ing to improved healthcare. Figure 3 presents the typical sensing equipment used in
medical devices.

Figure 3. Various medical devices using sensors [29].

These types of devices can be either directly touching the skin or positioned/located
on the clothes of patients. What is popular as a fabrication process is printing technology
such as that of the flexible plastic foils attached to the body [30]. Wearable health technology
products can be employed to monitor tears, temperature, wound, breath, sweat, and blood
pressure [31–35].

Hao et al. presented the well-suited 5G wearable network able to provide low-latency
data processing with appropriate resource utilization [36]. The presented network includes
three parts as the 5G network, edge caching and computing, with network slicing (see
Figure 4). Hereby, it supports the connection of a large amount of devices and utilizes the
global cognitive engine for obtaining service-aware resource allocation.
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(a)

(b)

Figure 4. (a) The 5G ultra-dense cellular network in the wearable network macro-cell base station
(MBS), small cell base station (SBS), device-to-device (D2D) (top); and (b) illustration of edge cloud
and the data center (bottom) [36]. Reprinted/adapted with permission from Ref. [36]. Copyright
2022, IEEE.

Another aspect of using medical devices is to provide the ‘self-management’ of disease
by using wireless local area networks (WLANs) and 5G wireless networks, for example,
to control the long-term blood glucose by the patient to reduce diseases such as diabetes.
In [37], an interactive telecare system (ITCS) is presented for diabetic sick people where
IoT technology is employed for presenting the required action and alert service. The four
important steps in relation to the proposed ITCS include: monitoring the patient; noting
abnormal levels; notifying the caregiver and tracking the patient response; and finally
noting any behavior changes are demonstrated in [37].

The Italian Ministry of Economic Development has developed a continuous home
telemonitoring system that is appropriate for chronic patients and is presented in [38].
The system gathers the information and then the data are sent to the multi-edge computing
server through 5G technology using environmental sensors.
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Typically, these kind of devices use Internet of Things (IoT) to connect various appa-
ratuses together through the Internet which increases the flexibility and compatibility of
the overall performance. This connection can be provided using the smart sensors through
wireless networks or Bluetooth [9,39].

The mm-wave range extends from 30 to 300 GHz; in some cases, the 20–30 GHz band
is also considered where the WiGig protocol (IEEE 802.11ad) is appropriate for the wearable
devices, such as reality glasses with video streaming capabilities [40].

The wearable technology which enables the medical industry to incorporate the data
shared/achieved from the patient is provided to the doctors who can thus improving their
patient’s lifestyle. Wearable medical devices have various benefits including personaliza-
tion, fast diagnosis, optimum, early decisions by doctors, and cost-effective remedy. In [41],
a near-field magnetic communication system was reviewed which presents well-suited
cochlear commercialized implantable devices that can save the lives of deaf people. Figure 5
presents the cochlear implant schematic that can be used in the ears.

Figure 5. Illustration of cochlear implant (with a red dotted line) for a patient’s ears [41].

In medical applications, what is so critical and important is gathering information from
massive raw data. For this case, a new system structure is presented in [29] based on the
emotion-aware healthcare which analyzes the relevance between emotion and sick people.
Figure 6 presents the big data application in emotion-aware healthcare (BDEAH) where
the 5G technology is employed into the structure and results in improved performance
in whole system. As it can be noticed, the healthcare structure consists of a data center,
software-defined network (SDN) components, 5G infrastructure, and sensing equipment.

The 5G technology is able to provide appropriate information infrastructure for emerg-
ing IoT applications. Guo proposed a medical dongle that is powered by the smartphones
for monitoring and controlling the blood glucose and uric acid level [42]. Hence, by
accessing these data, the medical doctors can provide accurate treatment and precise con-
sultations.
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Figure 6. Presented emotion-aware healthcare in [29].

In [3], another magic aspect of 5G technology toward the diabetes is illustrated. In this
manuscript, Chen et al. presented a 5G-smart diabetes system that involves smart clothing,
smartphone, and big data clouds. The big data is employed for sensing and collecting
information that the patients are suffering from. Figure 7 shows the data sharing for
5G-smart diabetes. In this personalized analysis model, firstly the 5G network, social
network, and big data network are integrated for determining the interconnection. Then,
after providing related data regarding the patient, by using the artificial intelligence meth-
ods, as machine learning, deep learning, and cognitive computing, the diabetes can be
predicated in a smart and accurate way.

Diabetes 

patients

Collecting data and 

information from patients Supplying  assistance to 

patients through 5G 

networks

Personalized analysis through 

artificial intelligent

Sharing and transferring data 

from 5G networks and social 

networks

Figure 7. Data sharing procedure.

The use of wearable devices has increased during the COVID-19 pandemic wherein
these tools helped improve healthcare quality by providing social and potential distance
between hospital and patient [43,44].

Figure 8 presents the application of wearable devices during the COVID-19 pandemic
to monitor the symptoms and to pave the way for doctors to control patients’ healths
over time [45]. L. Lonini et al. proposed a solution to detect the COVID-19 diseased
state by collecting a number of physiological signals as heart activity, respiration, physical
activity, and cough sounds using a body-conforming soft wearable sensor. As presented in
Figure 9, by using this sensor placed on the suprasternal notch, the state of COVID-19 can
be classified [46].
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Figure 8. Practical use of medical wearable devices during the COVID-19 pandemic [45].
Reprinted/adapted with permission from Ref. [45]. Copyright 2022, IEEE.

Figure 9. COVID-19 detection classifier using physiological signals [46].

In medical applications, one of the most important factors which must be considered
is the security specification and the collected data from wearable devices are sensitive and
require protection [47]. The protection security using the heart rate pattern is depicted in
Figure 10.

Physiological data extraction 

from patient

Encryption key generation

Health information exchange 

through shared wireless 

channel

Figure 10. Intrawearable security solution.

L. L. Pon et al. presented a printed spiral resonator that is without external lumped
elements and it is appropriate to be used in biomedical devices [48]. Figure 11 illustrates
the fabricated printed spiral on the FR-4 substrate with the dielectric constant of 4.7 and
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a size of 66 mm × 70 mm × 0.4 mm. The measured maximum power transfer efficiency
(PTE) is 74.96% and PTE is more than 70% for all rotational angles from −180◦ until 180◦ at
the central frequency of 13.56 (MHz).

Figure 11. Printed spiral antenna proposed in [48]: top view (left) and bottom view (right).

N. Zhao et al. presented the procedure of characterizing the hand palm local channel
at mm-Wave frequency bands of 27–28 GHz, 29–30 GHz, and 31–32 GHz, [49]. This
study guides the handheld application developers and will develop low-power wireless
sensors for medical and wearable devices. Figure 12 illustrates the hand palm local feature
presented in [49], wherein two horn antennas and five human features are different in
palm lengths. This design will help antenna designers obtain suitable efficiency in out of
body-centric communication systems.

Figure 12. The localized hand palm channel for the five test subjects [49].

In [50], a dual-band dual-polarized wearable button antenna array is presented that
covers the two frequency bands of 4.50–4.61 GHz and 5.04–5.50 GHz which are suitable
for 5G applications (sub-6 GHz band). This antenna array is based on the crossed dipole
topology and is analyzed in free space and on the body. Figure 13 shows the antenna
structure in detail where it can replace a button on clothing and thus be wearable.
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Figure 13. Illustration of the wearable button antenna. Reprinted/adapted with permission from
Ref. [50]: Copyright 2022, IEEE. (a) top view; (b) bottom view; (c) radiator structure; and (d) side view.

From research and industry perspectives, monitoring sleep has become important
in the sleep healthcare systems. In [51], a new sleep healthcare system based on radio
frequency science for leveraging signal processing was presented, namely Sleep Guardian.
This system can detect and notify of any abnormal situation arising when a patient is
sleeping; additionally, it can be integrated in present Wi-Fi infrastructure. The healthcare
systems are connected through the base stations and the required data are collected through
accumulated healthcare big data where machine learning technology is employed for
predicting and better diagnosing patients.

Carneiro et al. [52] proposed electroencephalography (EEG) biosignals’ acquisition—
that is reusable—on e-textile and convenient. The proposed fabric-based headband tackles
the drawbacks of the bulkiness of the system, an unsuitable situation caused by the rigid
electrodes, and laborious tasks. In this study, the proposed headband where the printed
electrodes are getting advantage of a very low skin-electrode impedance.

Occhiuzzi et al. presented a dual chip flexible epidermal antenna that is for measuring
the skin parameters using the UHF Radio Frequency Identification (RFID) technology
inside the frequency band of 860 MHz–960 MHz [53]. Figure 14 describes the use of this
proposed RFID that is used for monitoring health by directly sampling from the skin
of patients. The used antenna is with two independent broadside radiating modes and
the results present the turn-on powers (Pto (dBm)) with the differential power (∆Pto) that
the chip is attached to different parts of the body such as the chest, forehead, abdomen,
and hand, where the antenna is within a distance of 50 cm from the body.
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Figure 14. RFID that is used on the skin of humans.

In [54], a new flow-guided nano-communication network was presented that can
be used in up-to-date medical applications to monitor, collect, and transmit various data
from the human body (Figure 15). This network can be operated in the bold circulatory
system. The presented optimization in this paper leads to maximize throughput by de-
termining a suitable frame size as a function of the available energy, nano-router location,
and transmission rate.

Figure 15. Illustration of flow-guided nano-network [54].

4. Optimizations for Healthcare and Biomedical Devices

Optimization term refers to achieving the best trade-offs between the targets and
constraints (see Figure 16) and improved optimization methods are required as the designs
become complex [55,56]. For this case, firstly the design variables are defined for each of the
biomedical devices, then the suitable optimization method is selected, aiming to optimize
the targeted output specifications. Due to the requirement of necessity, the designer
selects the output specifications and then determines the suitable optimization method for
achieving the desired outputs. For example, medical designers may need to enhance the
bandwidth or gain of biomedical devices. Hereby, an appropriate optimization method for
their problem will be selected that aims to improve the bandwidth or gain.

Importantly, in the field of healthcare, advanced technology and methods are required
to provide and diagnose whether negative feedbacks exist in live bodies to alert and save
lives in a timely manner [57–68]. Hereby, this section provides a comprehensive overview
of the various employed optimization methods on the biomedical devices.
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Figure 16. Aim of the optimization process.

4.1. Optimizations for the Mobile Cloud Computing (MCC) Technique

Mobile devices are another important tool that can provide healthcare services under
any condition and time (see Figure 17). The mobile cloud computing (MCC) has been rec-
ognized as an effective method for healthcare services. For developing the MCC technique,
various reported optimization methods are summarized by X. Wang and Z. Jin in [69].

Figure 17. Perspective representation of the MCC technique used in healthcare [69].

4.2. Geometry Optimization

For implantable medical devices, wireless energy transferring is developing expo-
nentially and the most famous solution is that of inductive powering. The inductive coils
misalignment is the main drawback in wider wireless powering and is solved by the geom-
etry optimization presented in [70]. A new algorithm for the coil couple design is presented
where it provides a performance metric where the maximum and minimum targeted values
of the load power are defined. This method ensures the stability and suitable output
specifications, and it is formal procedure that can be employed in the computer-aided
design (CAD) tool. The presented geometry optimization can optimize the transmitting
coil external radius, transmitting coil turns number, coils internal radii, and receiving the
coil turns number.

In [71], geometrical coil optimization was performed, which is employed for optimiz-
ing planar spiral coils with integrated capacitive elements for enhancing the power transfer
efficiency while reducing the size of transmitter and receiver configurations. The proposed
method results in a maximum efficiency of 31% with the existence of biological tissues
where a 30 mm primary and a 10 mm secondary coil is sized (see Figure 18).
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Figure 18. Geometrical coil optimization used for brain neural implant [71].

4.3. Optimizations Using the Artificial Neural Network (ANN)

Recently, artificial intelligence, big data analytic, and machine learning have become
successful optimization tools and become subjects of industrial interests [72–74]. Zheng et al.
presented the use of an artificial neural network (ANN) for estimating the magnetic res-
onance imaging (MRI) radio frequency (RF) exposure for the implantable plate system
where it considers the existing problems using the non-linear and high-dimensional fea-
tures [75]. The general performance of the ANN is improved by using the mean impact
value (MIV) and genetic algorithm (GA). The presented ANN in [75] includes six inputs,
two hidden layers, and one output layer with the transfer function of ‘tan-sigmoid’ where
the last outcomes are considered using the mean square error (MSE) algorithm. In this
manuscript, the MIV algorithm is employed for deciding the inputs of the ANN and feature
selections; additionally, the GA method is for optimizing and adjusting the weights and
bias of the ANN.

In [76], deep neural network (DNN) architecture is presented to be used in the biomed-
ical image segmentation. The proposed method is named the evolutionary compression
DNN method (ECDNN), where during the evolution, this method can simultaneously
optimize the network loss and the number of parameters. In this study, the framework of
the proposed ECDNN that is useful for biomedical image segmentation is presented. It
consists of three steps where firstly the convolutional neural network (CNN) is constructed
using the training dataset. Then, ECDNN reduces the size based on the CNNs and the
searching of Pareto-optimal optimization. Thirdly, the final solution is selected from the
Pareto-optimal set to compress the original model and update the method if required.
The presented procedure is fast as it finds a solution for compressing CNNs in a single run.

In clinical uses, the accuracy and robustness factors of brain–machine interfaces (BMIs)
are key important specifications as BMIs could provide a situation for driving the robotic
arm and computer cursor. Liang and Kao proposed the DNN method for optimizing
encoders and synthesizing the motor cortical neural population activity [77] (see Figure 19).
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Figure 19. (a) BMI system and neural encoder (top); (b) multilayer perceptron (MLP) architecture
(bottom).

In [78], the neural network (NN) is employed for use in electrocardiogram (ECG)
processor. For accurate authentication, the front-end signal processing of ECG signals
and back-end NNs is presented. The NN is used for minimizing and maximizing the
intra-individual distance and inter-individual distance over time, respectively. Figure 20
presents the schematic of the ECG processor that includes the front–end signal processing
modules and back-end NN-based ECG feature extraction modules. The proposed system
achieves 62.37 µW power consumption at 1.2 V supply voltage with a low equal error rate
(EER) of 1.36%.
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Raw 
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Reg. feature vector

Cosine similarity
Pass/Fail

Idf. feature vector

Figure 20. Employed NN for ECG processor.

Image segmentation and classification is another promising computation in diagnosing
diseases. R. J. S. Raj et al. presented the classification DNN for diagnosing lung cancer, brain
image, and Alzheimer’s diseases [79]. The opposition-based crow search (OCS) algorithm
was employed to enhance the performance of the DNN, leading an optimal feature selection
being derived. Figure 21 illustrates the flowchart of the presented classification DNN
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resulting in an accuracy of 95.22%, a sensitivity of 86.45%, and a specificity of 100% for the
used medical images.

Figure 21. The presented classification DNN with the use of the OCS algorithm in [79].

S. S. Sarmah presented the IoT-centered deep learning modified neural network (DLMNN)
that is performed in three steps as follows: authentication, encryption, and classification [80].
The employed classification DNN determines whether the patient is suffering from heart
disease and in the case of an abnormal situation, the system alerts the physician. Figure 22
summarizes the proposed methodology wherein patients must connect with IoT and the
presented DLMNN collects and performs an analysis of the extracted data with the security
of 95.87%.

Figure 22. The presented classification DNN with the use of the OCS algorithm in [80].
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4.4. Dimension Reduction Method

Tele-ophthalmology is an efficient method of diagnosing diseases during the early
stages by extracting optical images from parts of body. In [81], RetinaMatch was presented,
that developed a promising retinal matching technique with the combination of dimen-
sion reduction and mutual information (MI). The typical idea in the provided matching
technique is to narrow the optimization domain as a coarse localization process and the
patient’s image are mapped and compared with the RetinaMatch, leading to an accurate
diagnosis. Figure 23 presents the employed method using the coarse localization process
with the descriptions around the principal component analysis (PCA).

Figure 23. Details of RetinaMatch presented in [81].

4.5. Practical Gait Feedback Method

Meng et al. proposed a practical gait feedback method that requires suitable feed-
back [82]. This method does not need an alignment of the inertial measurement unit (IMU)
and consists of a hierarchical model (i.e., two-layer model). In the gait measurement system,
the high-level layer is a Bayesian recognition algorithm employed for observing the gait
phases and in the low-level layer, the calculation of the measured ankle plantar/dorsiflexion
angle from acceleration and angular rate data is completed. This construction leads to
enhance the efficiency of gait interventions.

4.6. Stochastic Optimization Algorithm

In [83], a method for exploring physiological conditions based on an integrated stochas-
tic optimization algorithm is presented (see Figure 24). The proposed framework consists of
levels as the generation, evaluation, and execution where the input is the clinical knowledge
of the heart model parameters. This automated construction safely and efficiently help
manage heart failure under various physiological conditions.
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Figure 24. Closed-loop device based on the stochastic method with the illustration of a cardiac
conduction network where circles shows the clusters of tissues.

4.7. Swarm Optimization

In the framework of IoMT, a healthcare monitoring system based on machine learning
techniques and modified salp swarm optimization (MSSO) algorithm is presented in [84].
It is employed for predicting blood pressure (BP), age, sex, chest pain, cholesterol, blood
sugar, etc., which are risks of heart disease. Figure 25 presents the health-monitoring system
with the employment of a Levy-based crow search algorithm (LCSA), modified salp swarm
optimization (MSSO), and an adaptive neuro-fuzzy inference system (ANFIS) processes.
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Figure 25. Illustration of the presented health monitoring for detecting heart diseases [84].

4.8. Nested Optimization

For the use of custom foot orthoses (CFOs), in [85], rapid evaluate and adjust device
(READ) prescription methodology was presented with the combination of follow-up and
design feedback loops. This methodology leads to fast evaluation with improved accu-
racy. In this manuscript, the 3D ergonomic measurement system (3DEMS) is presented
where the 3D database is firstly provided and then using the scanned plantar surface,
the arch is partitioned. The nested optimization method is able to provide the optimal
representative segments.

5. Challenges and Future Trends

As discussed in the previous sections, biomedical devices have growing exponentially
over the last ten years and have influenced the industry. Due to some challenges, as in
other fields, the biomedical industry is facing disruptions. Table 1 presents in summary the
various high-performance biomedical devices with use in different applications. Hereby,
this section is devoted to introducing some of the important issues for biomedical devices
from the practical industry point of view.

5.1. Security Concerns

Medical devices are growing and developing day-by-day and it is not essential to be
settled in clinical places. They can be placed at homes near patients—using both wired
and wireless channels—to continuously care for and record the data of sick people. This
state-of-the-art situation created by the biomedical and wearable devices tremendously
reduces the cost of healthcare. Hereby, one of the factors that has become important is that
of security. This matter is significant as the achieved data from patients are subject to legal
constraints; also, the lack of privacy may physically harm the patients due to the modified
or suppressed data [86–88].

For the medical devices that are working and communicating through the wireless
networks, interruptions from unauthorized people can generate problems and deep hazards.
In simple words, any remote offense can provide incorrect and false data that result in
inaccurate treatments which can be harmful [89].

The ‘endpoint Protection’ using the antivirus ‘cybeats’ where cryptography and vul-
nerability analysis are employed [90–92]. The cryptography is the science of secure commu-
nications techniques where just the sender and intended recipient can obtain the message,
as presented in Figure 26.
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Figure 26. Cryptography science as a solution for providing security in biomedical devices.

To any system, security is a significant issue and the medical devices typically comprise
of heterogeneous elements. Nowadays, medical data are transferred by wireless networks
due to the high reliability and speed. For this case, effective and trustworthy components
and systems must be employed for taking care of patients’ physical security and data
privacy, as well as of the physical security and data security of medical devices. For 5G
wireless networks, cryptography science can help in transmitting data from patient people
to doctors in an effective and healthy way.

Table 1. Summary of some reported biomedical studies with the focuses and output specifications of
each one.

Ref. Scope Contribution Specifications

[42] Provides concerns related to the fu-
ture wearable systems.

Introduces the system level dynamics
that governs next-generation personal net-
works.

Meeting the requirements of Wire-
lessHD, and ECMA-387 standards.

[29]
Constructing a system for joining
the emotion computing and emerg-
ing communication technologies.

Uses the 5G technology for accelerating the
original data collection.

Includes emotion and cloud comput-
ing with software-defined network.

[37] 5G healthcare with medical Internet
of Things (MIoTs).

Presents a medical dongle for blood glucose
and uric acid monitoring.

Uploading the medical images via on-
line medical platform.

[3] 5G-Smart Diabetes. A system including smart clothing, smart-
phone, and big data clouds.

Personalized diagnosis and treatment
suggestions.

[47] Wearable communication under 5G
networks.

Presenting a multilayer communication ar-
chitecture combines cloud/edge technolo-
gies, etc.

Efficiency, power efficiency, and con-
nectivity can be enhanced by employ-
ing transmission technologies.

[36] 5G wearable networks with cogni-
tive computing.

Presenting the network slice-based 5G wear-
able networks and a data-driven resource
management framework.

Improving the utilization ratio of re-
sources.

[48] Non-radiative wireless energy trans-
fer. Presenting the printed spiral resonator. Power transfer efficiency = 74.96%.

[93] A rectenna design at 28 GHz. Creating a detector working at low input
power levels.

Input power of 500 µW and responsiv-
ity of 96 V/W.

[49] Characterizing the hand palm local
channel.

Developing ultra-low power wireless sen-
sors for wearable devices. Path loss variation= higher than 3 dB.
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Table 1. Cont.

Ref. Scope Contribution Specifications

[50] Wearable antennas for 5G systems. Design of a dual-band dual-polarized but-
ton antenna.

Covering the 4.50–4.61 GHz band and
the 5.04–5.50 GHz bands.

[51] Sleep monitoring with low-cost
WiFi devices. Providing a fine-grained sleep log. Demonstrating the effectiveness of

SleepGuardian.

[52]
Headband for usage in human–
machine interfaces and sleep data
acquisition.

Using biomonitoring with wearable sen-
sors.

Comfortable and low weight (115 g) to
be used while sleeping.

[38] Telemonitoring systems for 5G ap-
plications.

Used for patients with chronic respiration
problems through 5G connectivity.

Successfully tested for 5G connectivity
for at least 48 h.

[53] Wearable multi-port antenna. Monitoring of the human body by sampling
health parameters. Provided gain of −13 dBi.

[70] Implant devices with electromag-
netic coupling.

Proposing algorithm for coil couple geome-
try.

Power ranges as 10 W, 100 mW,
and 300 µW.

[81] Health monitoring and teleophthal-
mology.

Presenting template matching method for
remote retina health monitoring.

Providing long-term retinal monitor-
ing.

[82] Gait phase recognition. Presenting template matching method for
remote retina health monitoring. Short delay response less than 20 ms.

[76] Biomedical image segmentation
based on the neural network.

Presenting an evolutionary compression
method.

Discovering efficient network architec-
tures.

[83] Cardiovascular implantable elec-
tronic devices.

Heart modeling with integrated stochastic
optimization algorithm.

Practical physiological model to be
used in clinical settings.

[65] Point-of-care diagnostics with wear-
able devices.

A wireless 1.8-gram self-contained architec-
ture.

Power consumption of 110 µW with
latency of 10.2 µs.

[77] Brain–machine interfaces with neu-
ral encoders. Reproduces heterogeneous neural activity. Enhances the fidelity of brain–machine

interface simulators.

[71] Biomedical electronics with seg-
mented coils.

Designs small-scale wireless power transfer
systems with optimizations. Wireless power link at 40.68 MHz.

[78] Designs a low-power device authen-
tication system. Designs ECG processor. Improving area and power consump-

tion by 64.5% and 51.0%.

[84] Optimization for adaptive neuro-
fuzzy inference system.

Identifies the heart condition by classifying
the received sensor data. Prediction model accuracy of 99.45%.

[85] Custom foot orthoses for satisfac-
tory treatment.

Presents the rapid evaluate and adjust de-
vice prescription methodology.

Improving the interaction between pa-
tient and physician.

[54] Design of flow-guided nano-
networks with optimizations.

Help in monitoring, data gathering,
and transmission inside the human body.

Enhancing the network throughput of
flow-guided nano-networks by select-
ing a suitable frame size.

5.2. Verifying the Successful Collaboration

As presented in Figure 1, various data can be collected from patients using biomedical
and implanted devices. Afterwards, these collected data through the wireless networks
were transferred to the doctors located in the hospitals. As it is clear from both the trans-
mitting and receiving sections, high-performance systems and devices must be installed
for ensuring the successful proficiency among the various components and using 5G
wireless networks.

5.3. Safety

Most medical devices have limited communication capabilities, and security has
become a major concern in all devices. Hence, from the initial design step up to the final
design step of medical devices, point-by-point factors such as medical tissue surroundings
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and outcome specifications must be considered important. These considerations will result
in more reliable and safety devices.

5.4. Speed

Due to the COVID-19 pandemic, the medical device industry has been affected to
the highest degree. More than four million people have already been infected by this
virus and the physical distance between the patient and doctor is significantly important.
Hence, biomedical devices with the appropriate wireless networks must be arranged
appropriately for transferring data. As described before, the 5G technologies are supporting
high-data transportation and have suitable speed. For this case, it is recommended that
this technology or even the sixth generation for future medical systems.

6. Conclusions

Biomedical devices play an important role in the healthcare communication systems.
For effectively transferring data between the patient and medical doctors, emerging 5G and
next generation technologies are required. Over the years, various medical and wearable
devices have been presented that are more suitable for 5G technologies. The effectiveness
of each device mainly depends on the applications to be used. This survey presents a
comprehensive study on the introduction of various medical devices which may be used
in next-generation 6G technology. It is well known that by increasing the technology
in communication devices, advanced optimization methods are required for designing
high-performance devices. From another point of view, this manuscript collects recently
employed optimization methods for biomedical devices. Hence, researchers can easily
determine the suitable wearable device for their communication technology and can select
the optimization method that best fits their problem.
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