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Abstract: This paper aims to develop a method that could serve as a tool for evaluating extracted
raw materials in terms of use by considering the place of extraction and consumption. Dijkstra´s
algorithm solves many of the shortest path problems observed in the production planning of raw
materials. The algorithm requires knowledge of the relative distance between the vertices and the
definition of the Euclidean distance of the vertices from the target vertex. The algorithm scans all
of the paths and chooses the one with the minimum distance. At the same time, it would be able to
identify the places of sale of raw materials and transport sites for the transportation of raw materials.
It would have a database of point and line sources of occurrence (mining, deposit), places of transport
(transmission network), and points of sale (seller). At present, geo-statistics is becoming an essential
tool for solving various problems in modern deposit geology. Its results are used to calculate reserves
and the economic valuation of the deposit. In the process of production planning, it is necessary to
constantly process and analyze the geological information obtained during the mining survey.

Keywords: Dijkstra’s algorithm model; production planning; raw materials; efficiency

1. Introduction

The planning process requires making several important decisions about goals and
ways to achieve them, the resources needed, and the required use of the company’s re-
sources. Decision-making requires having several options and alternative solutions [1].
Their creation is based on information about possibilities and abilities [2]. An important
part of management is also information and decision-making, which create the precondi-
tions for the implementation of planning and the initial function of management [1]. In
organizations, planning is a very important activity and a priority management function,
and according to the plans, managers manage the organization. As a process, planning
involves setting goals, setting the means to achieve the goals, and identifying ways and
means to achieve the goals. The result of planning is a plan focused on the purpose of the
organizational unit, the business entity, and the determination of procedures and means
for achieving it by the set deadline and at the required level [2].

Planning has a direct impact on [3]:

• Increasing efficiency: To a large extent, successful business activity depends on plan-
ning. For these activities to be as effective as possible, it is necessary that the objectives
are set as clearly as possible and that the optimal options for achieving them and the
evaluation criteria are defined.
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• Risk reduction: Risk in the organization can be eliminated by good planning. Planning
makes it possible to identify risks in various business activities and can thus reduce
their negative impact on them.

• Successful organizational changes: The better managers’ ideas about organizational
change are, the easier it will be for them to cope with the consequences. Successful
adaptation in the organization is not possible without a good planning process.

• Development of managers: The most positive impact on the development of managers,
but also the organization, comes from the analysis of the development of the internal
and external environment, finding the problem and subsequent problem solving, and
accepting permanent changes [2,3].

Figure 1 shows the relationship between the first two most important functions in
management, namely the relationship between planning and control.
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Figure 1. The relationship between important functions in the company management [Authors
own processed].

We can see that the first activity that the company performs is planning. Functional
departments or company management initially prepare plans, which are then implemented.
After their implementation, another phase occurs, namely the control phase, which aims to
determine whether all of the company’s projects have been fulfilled. It can be said that the
task of management is to reach the achieved goals with the planned objectives and to find
out whether the plans were met, to what extent, and if not, which factors caused them to
not be completed [3]. Production planning in the area of mineral resources form the basis
of production in the metallurgical, electrical, chemical, construction, ceramic, and glass
industries as well as in other industries, and represent one big group. A significant part is
the extraction of non-metallic, construction, and energy raw materials [3]. The production
of most non-metallic and building materials (limestone, dolomite, magnesite, gypsum,
building stone, etc.) substantially covers their domestic consumption [4,5]. Reserved
mineral deposits represent the state’s mineral wealth and are owned by the state: the
deposits of reserved minerals are part of the land for state deposits of non-reserved minerals
(e.g., gravel, brick raw materials, etc.) [6,7].

The raw materials policy includes all activities by which the state influences and de-
fines the goals of society through the use of domestic mineral resources [4]. It builds on the
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long-term societal needs of economic and social development regarding the environmental
aspects of sustainable development related to geological research and exploration and
the use of proven reserves of minerals and obtaining raw materials abroad to ensure the
stability of the economy [4].

2. The Work Methodology

The aim of the present paper is the optimization of the production process and the pre-
sentation of the selected idea for an algorithm. Specifically, Dijkstra’s algorithm, which we
will use for the construction sector, considers the place of extraction and the consumption
of raw materials [3,6].

We aimed to develop a method that would optimize the model of economic feasibility
of raw material sales based on certain inputs, sources of building materials, and general
characteristics. In the paper, we used Dijkstra’s algorithm (Figure 2) [5], which is an
algorithm for finding the shortest path between nodes in a graph.
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Dijkstra’s algorithm consists of the following six steps:

1. Assign the vertex vk:

• The value of minimum path MC(vk) = O(vk), i.e., MC(vk) = JCkk;
• The permanent condition (St(vk) = 1);
• The predecessor Pred(vk) = k.

2. Assign to the other vertices vi, where i = 1, 2, . . . , m, i 6= k:

• The value of minimum path MC(vi) = ∞;
• The transient state (St(vi) = 0);
• The predecessor Pred(vi) = −1.

3. Choose the vertex vk as the working vertex vp (we assigned the value k to the p, i.e.,
p = k).

4. For each vertex vi where i 6= p, which is adjacent to the working vertex vk, and whose
state is transient, calculate the value MC(vp) + O(hj) = MC(vp) + JCpi (hj is the edge
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connecting the working vertex with the vertex vi), and if this value is lower than
MC(vi), then set MC(vi) = MC(vp) + JCpi and Pred(vi) = p.

5. For all of the vertices vi whose state is transient, find the vertex vl with the lowest
value MC(vl) and

• Choose the vertex vl as the working vertex;
• A it a permanent state (St(vl) = 1).

6. Repeat the procedure in points 4 and 5 until all peaks have a permanent state.

In Table 1, we define the basic parameters of road transport. These data were obtained
from freight forwarding companies. For simplicity, the spaces of the individual heights of
the adjacent peaks are given in tens of kilometres (Table 1).

Table 1. Distances of neighbouring places along the road.

v1 v2 v3 v4 v5 v6 v7 v8

v1 0 5 9 - 22 - - -
v2 5 0 5 8 - - - -
v3 9 5 0 - 13 - - -
v4 - 8 - 0 - 8 - -
v5 22 - 13 - 0 9 - 25
v6 - - - 8 9 0 25 -
v7 - - - - - 25 0 3
v8 - - - - 25 - 3 0

Stocks represent the amount of raw material that will be mined in the future. The
present value of a tonne of stocks is lower than the current value of a tonne of stocks
currently being extracted [6,7]. The process of valuing mining operations during the
early stage of mining affects the long-term value of operations at the deposit, e.g., the
initial extraction of higher-quality ore increases the initial profits but reduces the average
value of the remaining ore in the warranty, which reduces the life of the mine and of the
whole project [8].

The process of valuing mining operations during the early stage of mining affects the
long-term value of operations at the deposit [9], e.g., the initial extraction of higher-quality
ore increases the initial profits but reduces the average value of the remaining ore in the
deposit, which reduces the life of the mine and the whole project. In addition, economic
and operational conditions may change unexpectedly during the life of a raw material
extraction project [10,11]. The first reason is geological uncertainty. The quantity and quality
of stocks are determined on the basis of samples that allow statistical estimates [12,13].
The second reason is economic uncertainty [14]. The amount and quality of the stocks
to be mined in a given period depend on the costs of mining and processing the useful
mineral and the selling price of the final product [15–17]. Because future sales prices
cannot be determined accurately, it is difficult to decide on stocks in a deposit, even if
they are selected with the high degree of accuracy allowed by new stock estimates using
geostatistical methods [16–18].

3. Results and Discussion

Based on the rules for creating a matrix of unit prices and Relations (1) and (2), (Table 2),
we created matrices of JC-type 8 × 8 unit prices for road transport [19].



Appl. Sci. 2022, 12, 7088 5 of 12

Table 2. Matrix of unit prices for road transport.

1 2 3 4 5 6 7 8

1 7.20 0.75 1.35 ∞ 3.30 ∞ ∞ ∞
2 0.75 7.00 0.75 1.20 ∞ ∞ ∞ ∞
3 1.35 0.75 0 ∞ 1.95 ∞ ∞ ∞
4 ∞ 1.20 ∞ 0 ∞ 1.20 ∞ ∞
5 3.30 ∞ 1.95 ∞ 0 1.35 ∞ 3.75
6 ∞ ∞ ∞ 1.20 1.35 0 3.75 ∞
7 ∞ ∞ ∞ ∞ ∞ 3.75 0 0.45
8 ∞ ∞ ∞ ∞ 3.75 ∞ 0.45 0

In our case, we propose an optimal solution of a model in which the network of
mining and processing sites and customer sites, including their transport interconnection,
represents the graph G = {V, H} and has the following properties [20,21]:

• G is a continuous undirected graph without multiple edges and loops;
• V = {v1, v2, · · · , vm} is a set of graph vertices that represent mining and processing

and consumption points;
• H = {h1, h2, · · · , hn} is a set of graph edges that represent the transport network (road

or rail) between individual places; the vertices of the graph, which correspond to the
mining processing, are evaluated, and the evaluation of such a peak vi is defined
by [22]:

O(vi) = PTNi + NTNi + PSNi + NSNi (1)

where PTNi is the direct extraction costs per tonne of raw material, NTNi is the indirect
extraction costs per tonne of raw material, PSNi is the direct processing costs per tonne of
material, and NSNi is the indirect processing costs per 1 tonne ton of material; the vertices
of the graph, which correspond to those customer points, are not simultaneously mining–
processing points and are not evaluated, and all of the edges of the graph are evaluated.
The evaluation of the edge hi connecting the vertices vk and vl is defined by equation [21]:

O(hi) = PN × VZDkl (2)

The parameters of the distance of peaks (cities) and parameters of the financial costs
of transportation are presented in Table 2.

It should be noted that for the value of ∞, the unit price matrices mean that the
respective vertices of the graph are not adjacent. In computer processing, the value ∞ is
replaced by a sufficiently large number: infinity [22–24]. We will optimize the path in the
graph for road traffic (Figure 2) for the peaks corresponding to the individual mining and
processing sites, i.e., for the peaks v1 and v2, using the described algorithm [25,26]. The
search procedure and its results are clear in Table 3, in which the states of the vertices of the
graph are indicated as follows: the permanent top state is in blue, permanent peaks that are
also the working peaks in a given step are in green, and temporary peaks with minimum
values are in red.

In step 0 (Figure 3), we set the evaluation of the source, the peak v1, to the value of the
price of the raw material after production behind the plant gates, i.e., the work area. We
set the predecessor as ourselves, and marked it as permanent (green). The other vertices
on the map only form customer sites (white). We marked the transport costs between the
individual peaks in blue. A sufficiently significant number of reserves in the deposit is
required for a long-term project [6].
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Table 3. Finding the optimal path from peak 1.

Peak
Step Parameter 1 2 3 4 5 6 7 8

The length of the
journey 7.20 ∞ ∞ ∞ ∞ ∞ ∞ ∞

Condition 1 0 0 0 0 0 0 00
Predecessor 1 −1 −1 −1 −1 −1 −1 −1

The length of the
journey 7.20 7.95 8.55 ∞ 10.50 ∞ ∞ ∞

Condition 1 0 0 0 0 0 0 01
Predecessor 1 1 1 −1 1 −1 −1 −1

The length of the
journey 7.20 7.95 8.55 9.15 10.50 ∞ ∞ ∞

Condition 1 1 0 0 0 0 0 02
Predecessor 1 1 1 2 1 −1 −1 −1

The length of the
journey 7.20 7.95 8.55 9.15 10.50 ∞ ∞ ∞

Condition 1 1 1 0 0 0 0 03
Predecessor 1 1 1 2 1 −1 −1 −1

The length of the
journey 7.20 7.95 8.55 9.15 10.50 10.35 ∞ ∞

Condition 1 1 1 1 0 0 0 04
Predecessor 1 1 1 2 1 4 −1 −1

The length of the
journey 7.20 7.95 8.55 9.15 10.50 10.35 14.10 ∞

Condition 1 1 1 1 0 1 0 05
Predecessor 1 1 1 2 1 4 6 −1

The length of the
journey 7.20 7.95 8.55 9.15 10.50 10.35 14.10 14.25

Condition 1 1 1 1 1 1 0 06
Predecessor 1 1 1 2 1 4 6 5

The length of the
journey 7.20 7.95 8.55 9.15 10.50 10.35 14.10 14.25

Condition 1 1 1 1 1 1 1 07
Predecessor 1 1 1 2 1 4 6 5

The length of the
journey 7.20 7.95 8.55 9.15 10.50 10.35 14.10 14.25

Condition 1 1 1 1 1 1 1 18
Predecessor 1 1 1 2 1 4 6 5

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 13 
 

 
Figure 3. Finding the optimal path from peak 1—step 0. 

Continuing step 1 (Figure 4), all of the peaks adjacent to v1 were re-evaluated. The 
evaluation consisted of summing the price at the top of v1 and the transport price at the 
top of v1. Then, we found that out of all of the peaks that were not permanent, the peak 
with the minimum rating v2 (red) was a temporary peak. 

 
Figure 4. Finding the optimal path from peak 1—step 1. 

As mentioned in the methodology of the presented paper, the primary use of this 
algorithm is to find the shortest path in an edge-rated oriented graph. In step 2 (Figure 5), 
we set the vertex v2 as permanent and working (green). Then, we repeated the procedure 
in step 1. Again, we found the vertex with the minimum rating in this step. It was a tem-
porary vertex v3 (red). 

 
Figure 5. Finding the optimal path from peak 1—step 2. 

Figure 3. Finding the optimal path from peak 1—step 0.

Continuing step 1 (Figure 4), all of the peaks adjacent to v1 were re-evaluated. The
evaluation consisted of summing the price at the top of v1 and the transport price at the
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top of v1. Then, we found that out of all of the peaks that were not permanent, the peak
with the minimum rating v2 (red) was a temporary peak.
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As mentioned in the methodology of the presented paper, the primary use of this
algorithm is to find the shortest path in an edge-rated oriented graph. In step 2 (Figure 5),
we set the vertex v2 as permanent and working (green). Then, we repeated the procedure in
step 1. Again, we found the vertex with the minimum rating in this step. It was a temporary
vertex v3 (red).
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We proceeded similarly in step 3 (Figure 6), only we chose another vertex v3 (green)
for the permanent and working peak. In this case, the peak with the minimum rating is a
temporary peak v4 (red). We can generally say that the Dijkstra algorithm is finite because
exactly one node is added to the set of visited nodes in each passage of its cycle. At most,
there are as many cycle transitions as there are peaks in the graph peaks.
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In step 4 (Figure 7), we use v4 as the starting point, which is permanent and working
(green). After subsequent optimization, v6 becomes a temporary peak with a minimum
rating (red). Dijkstra’s algorithm solves the problem of finding the shortest paths in the
edge-evaluated and oriented graph. All of its edges must have non-negative weights.
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For step 5 (Figure 8), we use a permanent and working peak v6 (green), in which the
optimal peak with a minimum rating becomes a temporary peak v5 (red).
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For step 6 (Figure 9), we use a permanent and working vertex v5 (green), in which the
optimal vertex with a minimum rating becomes a temporary vertex v7 (red).
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We repeated the procedure for step 7 (Figure 10), for which we used a permanent
and working peak v7 (green), in which the optimal peak with a minimum rating became a
temporary peak v8 (red).
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In step 8 (Figure 11), we use a permanent and working peak, v8 (green), in which after
reassessment, all of the other peaks become optimal peaks with a minimum rating due to a
smaller rating than in working peak v8.
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In the following graph of vertices, we plot the final state (without colours) of route
optimization from the vertex v1 as a source of building material (Figure 12). At each
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peak, there is the optimal minimum purchase price as well as the predecessor on the
optimal route.
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To illustrate the creation of a model for finding the optimal path based on the data
obtained using our algorithm, which we worked with to find the most financially advan-
tageous connection along the path from the customer to the supplier location, we use the
following graph showing the optimal route (Figure 13):
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The presented paper aimed to find the shortest paths from one specific vertex of the
graph to all of the other vertices using the proposed method. The algorithm maintains a set
of vertices whose shortest path length has been found.

Discussion and Limitation

Dijkstra’s algorithm is a classic algorithms that solves the problem of finding the
shortest paths from a single source point. If we are looking for the shortest point-to-point
path, we stop the process when we find the distance to the point. It works by creating a
steep shortest path, and during the algorithm, the nodes can acquire the states of reached,
unattained, and finished [2]. A node is in the ready state when its distance from the root of
the tree has been found and is therefore included in the shortest path tree [2].

Restricted road planning takes into account all of the constraints or certain types of
constraints that occur in the road network and seeks to address this problem or parts of
it [2,14]. There are different ways to deal with this problem, but other methodsoften only
solve it using a certain set of constraints, such as dual graph representation, and are focused
on allowed tapping and disabled tapping [15,21]. This approach creates a dual graph over
the original graph that addresses the constraints. Another approach is to extend the Dijkstra
algorithm so that attributes are added to work with the constraints. All of the approaches
to constrained route planning can be grouped into two main groups [27]:
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• Methods that deal with editing a graph, representing a graph, or creating auxiliary
graphs. This group includes, for example, dual graph representations.

• Methods that modify the crawling algorithm without changing the original graph.

The different groups of approaches have different problems. The main problems with
the graph editing group are the memory requirements and the time required to transform
the chart. Memory and time requirements increase with the size of the graph. In the group
dealing with the adjustment of the algorithm, these memory and time requirements vary
considerably, and they can be larger but also smaller than when editing the graph and
mainly depend on the adjustment transferred to the algorithm.

4. Conclusions

The created algorithm generally searches for the shortest possible-optimal path be-
tween the start vertex and the target vertex. The method requires knowledge of the relative
distance between the vertices and the definition of the Euclidean distance of the vertices
from the target vertex (so-called distance as the crow flies) [27]. The algorithm scans all of
the paths and chooses the one with the minimum distance. Using the previously described
algorithm, we found our shortest (optimal) route from the top of v_1 (source of the raw
material). Our optimal path is shown in Figure 13 in red. Dijkstra’s algorithm can also be
modified so that it can be used to find distances and the optimally shortest oriented routes
from any given vertex to other vertices and not only ones on evaluated (applies to our case)
oriented graphs but also to other vertices of unrated oriented graphs. The locations of the
vertices were verified. The geological conditions of their origin determine the exploited
mineral deposits. In contrast to regions that are poor in minerals, there are regions that
are relatively rich in mineral deposits, and the regional infrastructure and employment
have been adapted accordingly. However, from the current trend of using the domestic
raw material base and not opening new deposits, especially those of non-metallic minerals,
it is not possible to expect a substantial increase in employment in this sector soon.
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