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Abstract: Based on the introduction and analysis of difficulties encountered during technical inspec-
tion of the wire rope of a winding mine hoist (WMH) working at high speed, an open-loop permanent
magnet magnetizer was used to simulate and analyze the effect of the structural dimensions of this
magnetizer on the magnetic leakage field of a defect, and the results of the simulation analysis were
initially verified by experiments. Additionally, in order to keep the axial position of the probe in
line with the axial position of the wire rope, a rocker arm was proposed to act in coordination with
a motor to drive the clutching open and closed probe, thereby creating an on-line nondestructive
testing device to float and track the movement of the wire rope in different directions. Finally, the
device was applied to testing of WMH wire rope on site to validate the effectiveness and feasibility of
the method.

Keywords: magnetic flux leakage (MFL); permanent magnet magnetizer (PMM); on-line; high speed;
wire rope; winding mine hoist (WMH)

1. Introduction

Mine hoisting (WMH) wire rope is an essential component for connecting the hoisting
conveyance and hoister, as well as a significant tool in the transmission of power. It has been
widely used in various industrial fields, including cranes, elevators and metallurgy [1–3].
However, wire rope defects may occur as a result of wear, corrosion, fatigue, broken
wire, and other damage, resulting in a decrease in strength or, at times, safety issues and
even fatalities [4–6]. The traditional wire rope safety strategy relies mostly on experience
and the routine replacement of wire ropes, resulting in greater economic costs and the
risk of unexpected abnormal damage during reinstallation, leading to more sudden and
serious accidents.

The NDT methods for wire rope include magnetic flux leakage (MFL) testing meth-
ods [7,8], ultrasonic testing (UT) methods [9], X-ray inspection [10], acoustic emission (AE)
inspection methods [11,12], and eddy current testing (ECT) methods [13]. Among them,
the MFL testing method is considered to be the most effective method for detecting wire
rope defects [14,15]. For the purpose of enhancing the sensitivity and effectiveness of signal
acquisition of leakage magnetic fields at defects, it is necessary for the structural design of
the MFL detection device and the magnetic sensitivity sensor to be optimized in order to
increase the ability of the MFL device to stimulate leakage magnetic fields at defects and
also to increase the ability of the magnetic sensitivity sensor to acquire signals. For example,
B Wu [16] used an orthogonal test method (OTM) to optimize the design of an MFL sensor
consisting of Helmholtz-like excitation coils, a magnetic shield and a TMR device. Xingliang
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Jiang [17] used an improved small-habitat adaptive genetic algorithm to reduce the weight
of the detector and improve the robot’s carrying capacity. XiaolanYan [18] proposed an iron
core as a coil winding skeleton for the nondestructive testing of wire ropes, which altered
the MFL path of defects and improved the signal-to-noise ratio of the coil’s output. Yiqing
Zhang [19] developed a wire rope wire breakage detection sensor based on the magnetic
concentration principle and optimized the structural parameters of a toroidal multi-loop
permanent magnet exciter (CMPME) to identify external wire breaks in 24 mm diameter
wire ropes. Donglai Zhang [20,21] designed a simple and portable magnetic detection
device based on a magnetic probe structure to qualitatively and positionally detect wire
rope defect. Hongyao Wang [22] proposed a novel magnetic aggregation bridge detection
method using magneto resistive (MR) sensor arrays that can detect multiple types of wire
ropes damage with a maximum signal-to-noise ratio of 60 dB. W. Sharatchandra Singh [23]
developed a flexible GMR array sensor for detecting defects of LF and LMA types on
64 mm diameter wire ropes. The transducer consisting of a fluxgate sensor proposed in [24]
demonstrated the feasibility of detecting low frequency and LMA defects in weak magnetic
fields with greater sensitivity and better signal-to-noise ratio, compared to Hall elements
or induction coils. The fast speed of the wire ropes in operation on the site causes jitter
and swings that can cause wear between the wire rope detection sensor and the wire rope;
therefore, it was necessary to design a detection sensor with simple structure that is able to
adapt to the actual operating conditions of the wire rope.

In order to accommodate jitter and random oscillations among ropes running at high
speed, an open-loop permanent magnetization method [25] was used in this study to design
an on-line floating tracking testing device incorporating a rocker arm coordinated with an
open-close probe. The effect of the magnetizer size and MFL signals of defects was also
studied in depth, and the applicability and effectiveness of this online testing device were
confirmed through experimental and field testing.

2. In-Service WMH Wire Rope and Its NDT Challenge

The WHM is a traditional hoisting equipment, with one end of the wire rope wound
around a winch, and the other end around a guide wheel to adjust the direction of the
connection to the transport cage. In the case of wire rope work, as shown in Figure 1, the
wire rope is released or retrieved by rotating the winch forward and backward to produce
relative movement along the wire rope axis. As the wire rope rotates around the winch,
the rope body shakes from side to side and deviates from the central axis, producing the
deviation angle θ. Moreover, with changes in tension and speed, the rope sways frequently
from the groove of the drum, creating a specific amplitude of δ. Accordingly, along the
wire rope axis direction, to establish a spatial coordinate system, the wire rope motion state
can be divided into linear motion along the X axis, horizontal wobble along the Y axis, and
vertical vibration along the Z axis.

In addition, the surface of the wire rope is coated with oil for protection, and the
traditional leakage detection methods (leakage detection devices with magnetic yokes) are
not suitable for online high-speed detection due to the small spacing between the wire
rope and the wire rope. Otherwise, it will cause scraping oil and wire rope wear, and
cannot withstand the friction and impact caused by the relative high-speed movement of
the wire rope and the probe, thereby reducing their service life. Therefore, it is necessary
to use non-contact measurement methods, and the lifting distance (the distance between
the wire rope surface and the probe) should be maintained in order to ensure normal
operating conditions in a non-contact setting. Essentially, there are several issues that must
be addressed for the on-line detection of wire ropes, as follows:

(1) Probes must be able to open and hold wire ropes for closed-loop structures; there-
fore, 360-degree closed-loop structures and devices (including excitation and receiving
devices) are not available.
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(2) Ropes can run at about 15 m/s, and the rope has twining movements at the same
time, so any detection method must satisfy the requirements of high-speed operation in
addition to tracking movement and ensuring safety.

(3) The dusty environment, dirty oil, complicated vibration movements, and anti-
explosion requirements prevent the use of heavy equipment. As a result of maintenance or
replacement, a rope’s posture may change. Thus, the testing equipment should be capable
of automatically adapting to a variety of rope positions.
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Figure 1. Schematic diagram of the working principle of the WMH system.

3. Analysis of the Novel Probe
3.1. Open-Loop Permanent Magnetizer

In the nondestructive testing of steel wire rope, permanent magnetic leakage detection
devices have been widely adopted [14,15]. The three main types of permanent magneti-
zation sensors for steel wire rope are depicted in Figure 2: (a) a sensor of the magnetic
bridge type consisting of multiple independent sets of magnetizers [17,26]; (b) a sensor
with radial magnetization consisting of two semi-annular sets of upper and lower magne-
tizers [19,27]; and (c) an open-loop sensor with axial magnetization consisting of upper and
lower half-loop magnetizers [25,28].

Appl. Sci. 2022, 12, x FOR PEER REVIEW 4 of 18 
 

magnetizers [19,27]; and (c) an open-loop sensor with axial magnetization consisting of 
upper and lower half-loop magnetizers [25,28]. 

   
(a) (b) (c) 

Figure 2. Three types of wire rope permanent magnetization sensors: (a) multi-loop magnetic bridge 
circuit type detection sensor; (b) radially magnetized detection sensor; and (c) open-loop sensor 
with axial magnetization. 

Magnetic pole surfaces of the detection sensors interact with the corresponding wire 
rope surfaces, resulting in frictional wear to both the measuring probe and high-speed 
running wire ropes, making it difficult to distinguish between the probe and the wire 
rope. In order to analyze the magnetic force applied to the wire rope shown in Figure 2, 
finite element models were constructed of three detection sensors with the same axial 
length, diameter, and spacing between magnets. The dimensions and properties of the 
three sensors are summarized in Table 1. 

Table 1. Parameters of the finite element model for the detection sensor. 

Parts Sizes Material Properties 

Wire Rope Diameter is 30 mm,  
length is 500 mm. X52 steel 

(a) Six sets of identical 
magnetic bridge circuit 

type sensors 

Magnets 
Length in Z-direction is 30 mm, 
width in X-direction is 20 mm, 
height in Y-direction is 15 mm. 

NdFeB52 

Magnetic Cores 
Length in Z-direction is 120 mm, 
width in Z-direction is 20 mm, 
height in Y-direction is 10 mm. 

Q235 

Distance between the magnet 
and the surface of the wire rope 10 mm  

(b) Radially magnet-
ized sensor 

Magnets 
Inner diameter is 50 mm,  
outer diameter is 80 mm,  

thickness is 30 mm. 
NdFeB52 

Magnetic Cores 
Inner diameter is 80 mm,  
outer diameter is 100 mm,  

length is 120 mm. 
Q235 

Mating gap between upper and 
lower magnetizers 4 mm  

(c) Open-loop sensor 
with axial magnetiza-

tion 

Magnets 
Inner diameter is 70 mm,  
outer diameter is 100 mm,  

thickness is 30 mm. 
NdFeB52 

Magnetic Cores 
Inner diameter is 70 mm,  
outer diameter is 100 mm,  

thickness is 60 mm. 
Q235 

Mating gap between upper and 
lower magnetizers 4 mm  

Figure 2. Three types of wire rope permanent magnetization sensors: (a) multi-loop magnetic bridge
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Magnetic pole surfaces of the detection sensors interact with the corresponding wire
rope surfaces, resulting in frictional wear to both the measuring probe and high-speed
running wire ropes, making it difficult to distinguish between the probe and the wire
rope. In order to analyze the magnetic force applied to the wire rope shown in Figure 2,
finite element models were constructed of three detection sensors with the same axial
length, diameter, and spacing between magnets. The dimensions and properties of the
three sensors are summarized in Table 1.

Table 1. Parameters of the finite element model for the detection sensor.

Parts Sizes Material Properties

Wire Rope Diameter is 30 mm,
length is 500 mm. X52 steel

(a) Six sets of identical magnetic
bridge circuit type sensors

Magnets
Length in Z-direction is 30 mm,
width in X-direction is 20 mm,
height in Y-direction is 15 mm.

NdFeB52

Magnetic Cores
Length in Z-direction is 120 mm,
width in Z-direction is 20 mm,
height in Y-direction is 10 mm.

Q235

Distance between the magnet and
the surface of the wire rope 10 mm

(b) Radially magnetized sensor

Magnets
Inner diameter is 50 mm,
outer diameter is 80 mm,

thickness is 30 mm.
NdFeB52

Magnetic Cores
Inner diameter is 80 mm,
outer diameter is 100 mm,

length is 120 mm.
Q235

Mating gap between upper and
lower magnetizers 4 mm

(c) Open-loop sensor with
axial magnetization

Magnets
Inner diameter is 70 mm,
outer diameter is 100 mm,

thickness is 30 mm.
NdFeB52

Magnetic Cores
Inner diameter is 70 mm,
outer diameter is 100 mm,

thickness is 60 mm.
Q235

Mating gap between upper and
lower magnetizers 4 mm

Figure 3 illustrates three types of sensors on the wire rope force situation. The magnetic
force applied to the wire rope by multiple magnetic bridge sensors is densely distributed
and has a large value, while the magnetic force applied by the open-loop sensor with axial
magnetization is sparsely distributed and has a very small value. In Table 2, the magnetic
force components and the total force generated by the different sensors are shown. The total
magnetic force generated by the three magnetizers, (a), (b), and (c), is 29.406 N, 73.263 N
and 15.439 N; in other words, the open-loop sensor with axial magnetization applies the
smallest magnetic force to the wire rope, which permits high-speed operation of the wire
rope by reducing friction between it and the sensor. At the same time, the sensor with a
larger inner diameter is located far from the surface of the wire rope, thus enhancing its
service life.
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Figure 3. Magnetic force distribution of wire rope under different sensors: (a) multi-loop magnetic
bridge circuit type detection sensor; (b) radially magnetized detection sensor; and (c) open-loop
sensor with axial magnetization.

Table 2. The components and total of the magnetic force generated by the different sensors.

Magnetizers The Force Fx in the
X-Direction (N)

The Force Fy in the
Y-Direction (N)

The Force Fz in the
Z-Direction (N) Total Force Fsum (N)

(a) Six sets of identical magnetic
bridge circuit type sensors 19.552 −7.060 −20.798 29.406

(b) Radially magnetized sensor 18.270 −45.756 −54.222 73.263

(c) Open-loop sensor with axial
magnetization 12.363 6.658 −6.418 15.439

The structural configuration and detection principle of the open-loop magnetizer
are shown specifically in Figures 4 and 5. An open-loop magnetizer is a split structure
composed of two identical axially magnetized rings, probe A and probe B, one of which
consists of two magnets and a magnetic core to act as a magnetization circuit. The two
magnetized rings are placed in the probe housing and combined to form a single unit. The
magnetically sensitive elements can be enclosed in ring probe shoes of varying diameters
to detect wire ropes of varying diameters. A core is added between the two magnets
for strength and mounting of the probe, but the two parts, the magnets and core, can
still create a magnetic field for defect detection. The invention provides a device with
integrated monetization and signal output, which has the advantages of small size, light
weight and compatibility. It can adapt to some specimens with significant shake amplitudes
and fast speeds.
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According to Kirchhoff’s law in the magnetic circuit, the magnetic potential F of a
ring-shaped permanent magnet can be expressed as the product of the reluctance and
magnetic flux, and when the magnetic flux line passes through the air, the following
equation can be obtained:

F = Φ1 Rair, (1)

where Φ1 is magnetic flux outside of the permanent magnet, and Rair is the reluctance
within the air. When the magnetic flux line passes through the magnetic core and the
specimen of the wire rope, we can obtain

F = Φ2 (Rleft + Rspecimen + Rright), (2)

where Φ2 is magnetic flux within the permanent magnet and the specimen, and Rleft and
Rright are the reluctance within the permanent magnet’s left and right-side regions, respec-
tively. By dividing Equation (1) by Equation (2), we can obtain the following relationships:

Φ1

Φ2
=

Rle f t+Rspecimen+Rright

Rair
, (3)

Φ1

Φ1+Φ2
=

Rle f t+Rspecimen+Rright

Rle f t+Rspecimen+Rright+Rair
, (4)

The total magnetic flux produced by the ring-shaped permanent magnet of Φtotal can
be described as,

Φtotal = Φ1 + Φ2, (5)

Thus, the magnetic dissipation rate λ of the permanent magnet in the new probe could
be calculated as,

λ =
Φ1

Φtotal
=

Rle f t+Rspecimen+Rright

Rle f t+Rspecimen+Rright+Rair
, (6)

As Equation (6) shows the ratio of the flux leakage in the air by the excitation source
to the total flux provided by the excitation source, in order to reduce the flux leakage in the
air, it is necessary to reduce the magnetic dissipation rate λ, i.e., to increase the flux inside
the specimen and increase the magnetic saturation rate. The reluctance of Rair should be
increased, or the parameters of Rleft, Rright, and Rspecimen should be decreased. As a result,
the magnetic energy of the permanent magnet can be fully used.

For the design of the open-loop permanent magnet detection sensor, the finite ele-
ment method (FEM) simulation is used to analyze the effect of the magnetizer size on
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the magnetic excitation performance of the defect, as shown in Figure 6. A finite el-
ement model is established for a steel bar with a diameter of 30 mm and a length of
1000 mm; the dimensions of the length × width × depth of the defect on its surface are
1 mm × 1 mm × 1 mm; and X52 steel is used as the material property. The MFL detector
employs an open-magnetization method with a ring magnet and an intermediate magnetic
core to form a magnetization loop, and a gap between the upper and lower magnetizers
of the probe is 4 mm to allow for machining and assembly. The material of the magnet
is NdFeB N52, which has a coercivity of 955,000 A/m, relative permeability of 1.21, and
remanent magnetization of 1.45 T. The material property of the magnetic core is Q235 steel.
The ring magnet and magnetic core have the same inner and outer diameters. Considering
the magnetizing effect of the permanent ring magnet, the key dimensions of the magnetizer
are the inner diameter (ID), the outer diameter (OD), the axial height of the magnet (H),
and the axial length of the middle armature (L). The lifting distance is the distance between
the magnetic sensing element and the surface of the wire rope. In general, the amplitude
of the detection signal decreases rapidly with the increasing lifting distance, so the lifting
distance is usually chosen to range from 2 to 10 mm [19,29,30]; however, the lifting height
should be as high as possible in order to prevent friction between the device and the wire
rope, thus extending the probe’s service life. A height of 5 mm was used in this study. In
the simulation, the values of ID, OD, H, and L were varied by a single control variable,
and the magnetic induction intensity (axial and radial components) was extracted along
an axial direction at a height of 5 mm from the defect center of the steel bar surface in
order to establish the influence law of size on the defect leakage magnetic field so that an
open-loop wire rope leakage magnet detector could be designed to improve the defect
detection performance and reduce the design size and weight.
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3.2. Simulation Analysis
3.2.1. Variable Is the Axial Length (L) of the Yoke

Select ID = 70 mm, OD = 100 mm, H = 15 mm, the length of the armature (L) varies
between 10 and 80 mm. The change curve of defect characteristics is shown in Figure 7: the
peak value of defect MFL signal increases first, then decreases as L increases, reaching its
maximum value at L = 30 mm.
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Figure 7. Changes in magnetic flux density with the changed axial length (L) of the yoke: (a) axial
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3.2.2. The Variable Is the Axial Height (H) of the Magnet

Based on the simulation results of Figure 7, the variation curves of the defect charac-
teristics are selected when L = 30 mm, ID = 70 mm, OD = 100 mm, and the axial height
(H) of the magnet is varied between 5 and 40 mm, as shown in Figure 8. With the increase
in the L value, the peak value of the defect MFL signal increases gradually, and the peak
value is maximal when H = 40 mm.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 18 
 

(a) (b) 

Figure 8. Changes in magnetic flux density with the changed axial height (H) of the magnet: (a) axial 
component of magnetic flux density; and (b) radial component of the magnetic flux density. 

3.2.3. The Variable Is the Outer Diameter (OD) of the Magnet 
As shown in Section 3.2.2, the simulation concludes that the larger the axial height 

(H) of the magnet, the greater its ability to detect defects. However, the value is too large, 
dramatically increasing the cost and increasing the overall size. Considering the design 
requirements, choose H = 30 mm, ID = 70 mm, and L = 30 mm; the magnet’s outer diameter 
(OD) varies between 80 and 140 mm. The change curve of the defect characteristics as 
shown in Figure 9. The peak value of the defect MFL signal generally increases as L in-
creases, and it decreases slightly when the outer diameter is 130 mm. 

(a) (b) 

Figure 9. Changes in magnetic flux density with the changed outer diameter (OD) of the magnet: 
(a) axial component of magnetic flux density; and (b) radial component of the magnetic flux density. 

3.2.4. The Variable Is the Inner Diameter (ID) of the Magnet 
Select H = 30 mm, L = 30 mm, and OD = ID + 40 mm; the inner diameter (ID) of the 

magnet varies between 50 and 100 mm. The change curve of the defect characteristics is 
shown in Figure 10; when ID = 60 mm, the peak value of the defect MFL signal is the 
maximum, with the overall trend diminishing with the increase in ID. 

Figure 8. Changes in magnetic flux density with the changed axial height (H) of the magnet: (a) axial
component of magnetic flux density; and (b) radial component of the magnetic flux density.

3.2.3. The Variable Is the Outer Diameter (OD) of the Magnet

As shown in Section 3.2.2, the simulation concludes that the larger the axial height
(H) of the magnet, the greater its ability to detect defects. However, the value is too large,
dramatically increasing the cost and increasing the overall size. Considering the design
requirements, choose H = 30 mm, ID = 70 mm, and L = 30 mm; the magnet’s outer diameter
(OD) varies between 80 and 140 mm. The change curve of the defect characteristics as
shown in Figure 9. The peak value of the defect MFL signal generally increases as L
increases, and it decreases slightly when the outer diameter is 130 mm.
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3.2.4. The Variable Is the Inner Diameter (ID) of the Magnet

Select H = 30 mm, L = 30 mm, and OD = ID + 40 mm; the inner diameter (ID) of the
magnet varies between 50 and 100 mm. The change curve of the defect characteristics
is shown in Figure 10; when ID = 60 mm, the peak value of the defect MFL signal is the
maximum, with the overall trend diminishing with the increase in ID.
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Figure 10. Changes in magnetic flux density with the changed inner diameter (ID) of the magnet:
(a) axial component of magnetic flux density; and (b) radial component of the magnetic flux density.

3.3. Signal Characterization

For in-depth study and analysis of defect information, the features of the MFL signal
are extracted, including the difference between the maximum and minimum values of the
signal D (Dz and Dy), the span between the peak and the valley S (the span between the
valley and the valley of the single peak Sz, the span between the peak and the peak of the
double peak Sy), the envelope are A = 1

2 ∑n
i=1( B i−1+Bi )d, between the signal curve and

the zero line (the absolute area Az and the absolute area Ay), where Bi is the flux density
component of the ith data point, and d is the spacing between the two data points Bi−1 and
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Bi, shown in Figure 11, to analyze the variation patterns of the three eigenvalues under
different variables.
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Figure 11. Defect signal characteristics: (a) Eigenvalues of the axial component of the signal;
(b) Eigenvalues of the radial component of the signal.

Figure 12a–d shows, in order, the variation law of signal characteristics (D, S and A)
when the variables are H, L, OD and ID. As shown in Figure 12a, Dz, Dy, Az, and Ay
first increase and then decrease with increasing L, and the defect signal characteristics
are maximal when L is 30 mm, whereas Sz and Sy are almost unchanged. Figure 12b
shows that Dz, Dy, Az, and Ay gradually increase with an increase in H, while Sz and Sy
remain essentially constant. In Figure 12c, Dz, Dy, Az, and Ay generally increase with
increasing OD, while Sz and Sy are essentially constant. In Figure 12d, Dz, Dy, Az and
Ay first increase and then gradually decrease with the increase in ID, while Sz and Sy are
basically unchanged. This means that the change in the dimensions of the magnetizers
(permanent magnets and cores) will not have an effect on S (Sy and Sz), but primarily on
D (Dz and Dy) and A (Az and Ay) for the same defect. For better detection of the leakage
field of defects, the length L of the magnetic core should not be too large, while the values
of the thickness H and OD of the magnet should be larger, and the ID of the magnet should
be smaller.

3.4. Preliminary Experimental Verification

In order to verify the simulation results, several magnetizer sizes were focused on,
selecting for experimental comparison: (1) ID = 70 mm, OD = 100 mm, H = 15 mm,
L = 10 mm; (2) ID = 70 mm, OD = 100 mm, H = 15 mm, L = 30 mm; (3) ID = 70 mm,
OD = 100 mm, H = 15 mm, L = 60 mm; (4) ID = 70 mm, OD = 100 mm, H = 15 mm,
L = 60 mm, and (5) ID = 70 mm, OD = 100 mm, H = 30 mm, L = 30 mm. As illustrated
in Figure 13, a detection sensor was machined to size and an experimental system was
developed to detect damage to the wire rope. A wire rope is magnetized to saturation by
an open sensor. A leakage magnetic field is created on the surface of the magnetized wire
rope when there is a defect. And the leakage magnetic field is captured by the inductor
and passed through the data acquisition card, which converts it into electrical signal that
can be analyzed by a PC analysis system. After the signal has been analyzed and processed
by the data acquisition and test software, the curve of the detected signal is displayed on
the screen in real-time.
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Figure 14 shows two different types of damage on a wire rope with multiple broken
wires and a single broken wire, highlighted with red circles. The detection device is fixed,
and the wire rope is moved back and forth to spot sweep the damage of the wire rope.
Figure 15 shows the experimental results of damage detection of wire rope under different
magnetizer sizes. When ID = 70 mm and OD = 100 mm are unchanged, (1) the value of
H = 15 mm remains unchanged, while L is 10 mm, 30 mm and 60 mm in order, then when
L = 30 mm, the maximum amplitude of the damage signal is detected; (2) when L = 30 mm,
while H is 15 mm and 30 mm, it is obvious that when H = 30 mm, the maximum amplitude
of the damage signal is detected. Therefore, when designing the size of the magnetizer,
the inner diameter of the magnet should be determined by the diameter of the wire rope,
and the thickness and outer diameter of the magnet should be increased appropriately to
reduce the length of the armature.
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4. Key Techniques of the Method

On site, an on-line testing device is needed to send the open-loop permanent mag-
netization probe to the WMH wire rope so that the axis of the probe is aligned with the
axis of the wire rope and it can float to track the movement of the wire rope in different
directions. It is therefore designed to work in conjunction with the telescopic cylinder
(electric cylinder) to bring the probe into the appropriate position; the working principle of
this device is shown in Figure 16. The detection device is mainly composed of an inspec-
tion probe for opening and closing with clutch, a lifting cylinder (electric cylinder) and a
rocker arm. At first, the lifting cylinder (electric cylinder) and the rocker arm will raise the
probe to a specific position such that the probe axis coincides with the wire rope axis. The
testing probe is controlled by a cylinder (electric cylinder) that slides the two parts of the
probe along parallel linear guide rods to close or open them so that the probe is looped or
disengaged from the wire rope.
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Figure 16. On-line testing devices.

The testing probe is closed to encircle the wire rope in the testing process and is driven
by a floating tracking mechanism which allows the Y and Z degrees of freedom to be
released so as to accommodate the vibration and wobble of the wire rope, thereby tracking
the movements of the rope to detect. The floating tracking mechanism mainly consists of
the first linear guide bar, bearing adapter plate, the second linear guide bar and the bottom
plate, as shown in Figure 17. The testing probe controlled by the cylinder (electric cylinder)
is installed on the first linear guide bar by the bearing, which is installed on the bearing
adapter plate, and this part allows the testing probe to be freely moved in the Y direction.
The bearing adapter plate is installed on the second linear guide bar by the bearing. The
second linear guide bar is perpendicular to the first linear guide bar and is installed on a
base plate connected to the rocker arm and the lifting cylinder (electric cylinder); this part
can enable the probe to move freely in the Z direction. A spring is also connected between
the bearing adapter plate and the bottom plate so that, on the one hand, the probe remains
at the midpoint of the slide in the Z-direction of the tracking mechanism, and, on the other
hand, the jitter amplitude in the Z-direction of the wire rope may be dynamically adjusted,
cushioning and absorbing the changes in the attitude of the probe.
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Figure 17. Test probes with floating tracking.

The probe is fitted with wear sleeves at both ends and the floating tracking mechanism
accommodates rope wobble in any direction by leaving a small gap between the wear
sleeves and the wire rope. The inner diameter of the magnetic sensitive probe shoe in
the probe is usually 2–5 mm larger than the inner diameter of the wear-resistant sleeve,
and the wear-resistant sleeve is used with the magnetic sensitive probe shoe to detect the
corresponding specifications of the wire rope by replacing certain specifications of the
probe shoe and the wear-resistant sleeve so as to realize the magnetic sensitive probe shoe
to keep the fixed lifting away and non-contact detection with the wire rope.

The entity is machined and assembled according to the operating principle of the
in-line testing device and the detection probe, as shown in Figure 18, and is mounted on a
WMH wire rope running at high speed for real-time inspection.
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Figure 18. On-line testing device.

5. Testing Apparatus and Experiments

In order to evaluate the feasibility and practicality of the device, it was installed at
the mine hoist site. Figure 19 indicates the installation principle of the device and on-site
installation environment. A floating tracking on-line detection device utilizing an open-
loop probe is attached to the guide wheel. The probe is driven by a cylinder (electric
cylinder) to hold a co-axial line with the wire rope.
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online MFL method was developed, as well as an on-line testing device coordinated with 
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vented apparatus performed well for the on-line testing of wire rope, and this device can 
be expanded into multiple groups of the same device for detecting the requirements of 

Figure 19. Installation of the device: (a) installation principle of the device; (b) on-site installation.

The test signals for a single broken wire and two adjacent broken wires in a wire rope
are shown in Figure 20. The validity and feasibility of the newly proposed on-line test
method and device for WMH wire ropes were confirmed by the characteristics of the test
signals. They have a wide range of application prospects in the near future, particularly
under complex operating conditions.
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(c) detection signals.

6. Conclusions

Based on MFL technology, a new probe for detecting WMH wire ropes was developed,
and the performance of the testing probe was further enhanced by finite element analysis,
which enables a large defect leakage field to be generated. Additionally, a new online MFL
method was developed, as well as an on-line testing device coordinated with the new probe
in order to ensure that the probe could detect defects in the wire rope without interference.
A study of the results of the experiments revealed that the newly invented apparatus
performed well for the on-line testing of wire rope, and this device can be expanded into
multiple groups of the same device for detecting the requirements of multiple ropes. In
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addition, the apparatus may also be used for other similar occasions, including coiled
tubing and coiled rod.

Furthermore, the quantitative relationship between the size of the detection mag-
netizer and the leakage field of the defect, including the diameter of the wire rope, the
lifting distance and the type of defect, still requires further investigation. Research will
be continued to determine the best match for the magnetizer size of the probe and the
diameter of the particular wire rope. The relationship between the number of broken wires
and the amplitude of the defect signals will also be studied.
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