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Abstract: As cyberattacks develop in volume and complexity, machine learning (ML) was extremely
implemented for managing several cybersecurity attacks and malicious performance. The cyber-
physical systems (CPSs) combined the calculation with physical procedures. An embedded computer
and network monitor and control the physical procedure, commonly with feedback loops whereas
physical procedures affect calculations and conversely, at the same time, ML approaches were vulnera-
ble to data pollution attacks. Improving network security and attaining robustness of ML determined
network schemes were the critical problems of the growth of CPS. This study develops a new Stochas-
tic Fractal Search Algorithm with Deep Learning Driven Intrusion Detection system (SFSA-DLIDS)
for a cloud-based CPS environment. The presented SFSA-DLIDS technique majorly focuses on the
recognition and classification of intrusions for accomplishing security from the CPS environment.
The presented SFSA-DLIDS approach primarily performs a min-max data normalization approach to
convert the input data to a compatible format. In order to reduce a curse of dimensionality, the SFSA
technique is applied to select a subset of features. Furthermore, chicken swarm optimization (CSO)
with deep stacked auto encoder (DSAE) technique was utilized for the identification and classification
of intrusions. The design of a CSO algorithm majorly focuses on the parameter optimization of
the DSAE model and thereby enhances the classifier results. The experimental validation of the
SFSA-DLIDS model is tested using a series of experiments. The experimental results depict the
promising performance of the SFSA-DLIDS model over the recent models.

Keywords: Internet of Things; deep learning; cyber physical systems; cloud computing; intrusion
detection; security

1. Introduction

With the emergence of disruptive technology, Industry 4.0 is experiencing huge tran-
sitions in terms of cost efficiency and performance [1]. In particular, this applies to smart
computing on a big scale, namely, Cloud Computing, the Internet of Things (IoTs), and
Cyber Physical System (CPS). CPS is a multi-dimensional, complex system that integrates
a computer, network, and physical environment [2]. With the deep collaboration of 3C
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(control, computation, and communication) techniques, the dynamic control, information
servicing, and real-time perception of large engineering systems are realized [3]. CPS
realizes the organic design of physical, computation, and transmission systems, making the
system capable, reliable, and effective for simultaneous collaboration, resulting in extensive
and important application prospects. CPS is utilized in different industries and fields [4,5].
In recent times, the information technology sector has expanded rapidly. Innovations
and breakthroughs of several techniques have been established, resulting in earth-shaking
changes in people’s lives [6].

Particularly, in the process of rapid development, embedded technologies are often
applied to human life [7,8]. CPS has become the most prominent in researches and devel-
opment direction for scholars in different countries because of its extensible, scalable, and
interactive features, and also it becomes a priority investment region for large enterprises.
In contrast to embedded technologies, a CPS, as a combination of computer technology and
physical equipment, transforms a computing object from distributed to unified, discrete
to continuous, and digital to analog [9]. In contrast to the IoT system, the perceptibility
of CPS after the connection of physical entities pay increased attention to dynamic or
ongoing data control of the information services and major component of the device. In
comparison to software system, CPS focuses on the feedback and control of the physical
process, highlighting the dynamic response and interaction of data processing [10].

In relation to CPS security, a conventional pattern approaches the cyber and phys-
ical systems individually and cannot address vulnerability that is related to embedded
controllers and networks that are intended for controlling and monitoring physical pro-
cesses [11]. Hence, it is necessary for an organic security system to protect CPS from
cyberattacks. In this study, there exists strong evidence of the necessity for security in this
system and the havoc that can result if the security is disregarded. To identify unexpected
errors and attacks in CPS, an anomaly detection method is suggested to mitigate the threat.
For instance, state estimation (i.e., Kalman filter), rule, statistical models (histogram-based
model and Gaussian model) based methods are applied for learning the regular status
of CPS [12]. However, each method generally needs expert knowledge (for example, op-
erator manually extracts some rules), or should know the fundamental distribution of
data. The machine learning (ML) approach does not depend upon domain-specific knowl-
edge [13]. However, it generally needs an abundance of labeled datasets (for example,
classification-based method). As well, they could capture the unique attribute of CPS (for
example, spatial-temporal relationship). The intrusion detection (ID) method is dedicated
to ensuring network security.

This study develops a new Stochastic Fractal Search Algorithm with Deep Learning
Driven Intrusion Detection system (SFSA-DLIDS) for a cloud-based CPS environment. The
presented SFSA-DLIDS technique majorly focuses on the recognition and classification of
intrusions for accomplishing security from the CPS environment. The presented SFSA-
DLIDS approach primarily performs min-max data normalization approach to convert
the input data to a compatible format. In order to reduce a curse of dimensionality, the
SFSA technique is applied to select a subset of features. The SFSA uses the idea of fractals
to satisfy the intensification (exploitation) property needed by optimization algorithms,
and the stochasticity feature to guarantee the diversification (exploration) of the search
space. Additionally, chicken swarm optimization (CSO) with deep stacked auto encoder
(DSAE) technique was utilized for the identification and classification of intrusions. The
experimental validation of the SFSA-DLIDS model is tested using a series of experiments.

2. Literature Review

Li et al. [14] present a novel federated DL approach termed DeepFed, for identifying
cyber threats against industrial CPSs. Especially, the authors’ primary design is a novel
DL-based ID method for industrial CPSs, creating utilization of CNN and GRU. Secondary,
the authors create a federated learning structure and permit several industrial CPSs to com-
bine a detailed ID method from a privacy-preserving approach. de Araujo-Filho et al. [15]
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present FID-GAN, a novel fog-based, unsupervised IDS for CPSs employing a generative
adversarial network (GAN). The IDS was presented to a fog structure that takes compu-
tation resources as near as possible to the end node and so provides for a lesser latency
requirement. For achieving superior detection rates, the presented structure estimates a
reconstruction loss depending upon the reform of data instances mapped to latent spaces.
Alohali et al. [16] project a novel AI-enabled multimodal fusion-based IDS (AIMMF-IDS)
for CCPS from the Industry 4.0 environments. The presented method primarily executes
the data pre-processed approach in two manners such as data conversion and data nor-
malization. Moreover, an improved fish swarm optimization-based FS (IFSO-FS) system
is utilized to suitable selective features. The IFSO approach was developed by utilizing a
Levy Flight (LF) model as the search process of a typical FSO technique in order to avoid
the local optimum problems.

Althobaiti et al. [17] examine a novel cognitive computing-based IDS approach for
achieving security from industrial CPS. The presented method contains pre-processing for
discarding the noise which exists from the data. Afterward, the proposed method utilizes
a binary bacterial foraging optimization (BBFO) based FS approach for selecting the best
subset of features. Additionally, the GRU method was executed for identifying the occur-
rence of intrusions from the industrial CPS environments. The authors in [18] primarily
present a new self-learning spatial distribution technique called Euclidean distance-based
between-class learning (EBC learning) that enhances between-class learning by comput-
ing the Euclidean distance (ED) amongst KNN of distinct classes. Moreover, a cogni-
tive computing-based ID model termed order-line SMOTE and EBC learning dependent
upon RF (BSBC-RF) is also presented as dependent upon EBC learning to industrial CPSs.
Ibor et al. [19] present a new hybrid technique for intrusion forecast on a CPS’s communica-
tion network. The authors utilize a bio-simulated hyperparameter searching approach for
generating an enhanced DNN infrastructure dependent upon the basic hyperparameters of
NNs. In addition, the authors develop a forecasting method dependent upon the enhanced
NN infrastructure. Some other methods in the literature are available in [20–23].

3. The Proposed Model

In this article, a new SFSA-DLIDS technique has been projected for the classification
and identification of intrusions from the CPS environment. The presented the SFSA-DLIDS
model primarily performs a min-max data normalization approach to convert the input data
to a compatible format, followed by the SFSA technique, which is applied to select a subset
of features. Finally, the CSO-DSAE approach was utilized for the identification and classifi-
cation of intrusions. Figure 1 depicts the block diagram of the SFSA-DLIDS approach.
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3.1. Data Pre-Processing

At the initial stage, the presented approach performs the min-max data normalization
approach to convert the input data to a compatible format. It can be executed to scale the
feature from the zero and one range with the execution in Equation (1):

ν′ =
v−minA

maxA −minA
(1)

At this point, minA and maxA signifies the minimal and maximal values of features A.
The original and normalized values of the elements, A have been demonstrated by ν and ν′

correspondingly. It is apparent in the above formula that the maximal and minimal feature
values were mapped to one and zero correspondingly.

3.2. Feature Selection Using SFSA Technique

In this work, the SFSA technique is applied to select a subset of features. SFSA is
based on the specific development marvel of a random fractal and basically uses two
processes afterward for population initialization: (1) diffusion and (2) update to enhance
the searching [24]. In the arithmetical modeling of the SFSA, the finest solution is only
preferred from the diffusion method to generate novel arrangements, while overlooking
discrete arrangements. The procedure for making a new arrangement is characterized as
Gaussian walks (Gw) that are determined in the following:

Gw1 = Gaussian (µG, σ) + (rand(0, 1)× PB − rand (0, 1)× Pi) (2)

Gw2 = Gaussian(µP, δ) (3)

The expression: rand(0, 1) refers to an arbitrary value that lies between zero and one,
Pi and PB denotes the i-th solutions and every particle diffuses around its position and
completes correspondingly; µG and µP indicates the Gaussian means walk that is equivalent
to |Pi| and |PB| correspondingly; δ denotes the standard deviation that is calculated by:

δ

∣∣∣∣ log(g)
g

(Pi − PB)

∣∣∣∣ (4)

In Equation (4), g represents the iteration count. In the optimization technique, g is
increased but lesser than ending criteria Gmax, δ are attuned dynamically. All the particles
are diffused around their current situation by using the Gaussian walk until a predeter-
mined extreme dissemination number YD is obtained. Based on the following equation,
many generated solutions are attained:

Pij = LBij + rand(0, 1)×
(
UBij − LBij

)
, j = 1, 2, 3, . . . , YD (5)

In Equation (5), UBij and LBij refers to the upper as well as lower limits of j-th values
of solution i; yD denotes the maximal diffusion count of solutions generated by the SFSA.
Then, the quality of solution has been calculated and the optimal solution PB is defined. In
this step, two methods are used: initially update the solution of (p) probability according
to the value of Pa < rand (0, 1) as follows:

Pa =
rank(Pi)

ND
(6)

P′ij = Paj − rand(0, 1)× (Pa1 − Pa2) (7)

In Equation (7), rank (p) refers to the rank of ith solutions amongst different arrange-
ments in the population; P′i indicates the new solution of the i-th solution; Pa1 and Pa2
signifies the random solution of population. Next, improve the exploration accordingly
and apply the variations to the solution based on discrete solutions from the population.
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However, the process initiates by sorting each arrangement based on the following equa-
tion. When Pa < rand(0, 1) for the P′i , there is no update for the present solution Pi or else
the solution was upgraded by the following expression:

P′′i =

{
P′i ¯rand(0, 1)× (P′t − PB) rand(0, 1) ≤ 0.5
P′i + rand(0, 1)× (P′t − P′r) rand(0, 1) > 0.5

(8)

Let P′t and P′t be the solution randomly designated from the Gaussian distribution.
The following phase is for comparing the quality of P′′i with P′i and

(
P′′i
)

is superior to
(

P′i
)

then P′′i is substituted Pi or else P′i not upgraded.
The fitness function (FF) of the SFSA system utilized from the presented system was

planned to contain a balance among the amount of chosen features from all the solutions
(minimal) and the classifier accuracy (maximal) reached by utilizing these selective features.
Equation (9) defines the FF for evaluating solutions:

Fitness = αγR(D) + β
|R|
|C| (9)

whereas γR(D) denotes the classifier error rate of provided classifier (the KNN technique
was utilized). |R| stands for the cardinality of chosen subset and |C| signifies the entire
amount of features from the dataset, α, and β signifies the 2 parameters equivalent to
significance of classifier quality and subset length. ∈ [1, 0] and β = 1− α.

3.3. DSAE-Based Data Classification

To recognize and classify intrusions, the DSAE model has been exploited in this study.
In our study, the SAE used is developed by different LR and AE layers [25]. AE is the
fundamental component of SAE classification. Figure 2 demonstrates the infrastructure of
SAE. It comprises an encoding step (Layer 1 to Layer 2) and a reconstruction or decoding
step (Layer 2 to Layer 3). This procedure is expressed in the following equation, where W
and WT (the transpose of W) refers to the weight matrix of mode b and b′ are two distinct
bias vectors, s indicates a nonlinearity function, namely the sigmoid function applied in
the work, γ denotes a latent depiction of x input layer, and z is regarded as a prediction of
x given γ and it must have the identical shape as x.

γ = s(Wx + b). (10)

z = s
(

WTγ + b′
)

(11)

Numerous AE layers are collectively stacked to procedure in an unsupervised pre-
training phase (Layer 1 to Layer 4). The latent depiction ′y calculated by an AE is utilized
as the input to the following AE layers. All the layers are trained by an AE by reducing the
reconstruction error that perform as a single layer at a time. The reconstructing error (loss
function (x, z)) is evaluated in different methods. In our work, we apply cross-entropy
for measuring the reconstructing error, as demonstrated in Equation (12), where xk and zk
denotes the kth component of x and z, correspondingly.

L(x, z) = −
d

∑
k=1

[xklnzk + (1− xk)ln(1− zk)] (12)
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The reconstructing error is minimalized by the Gradient Descent mechanism. The
weight in Equations (10) and (11) need to be upgraded based on the following equations,
where 0 indicates the learning rate:

W = W − α
∂L(x, z)

∂W
. (13)

b = b− α
∂L(x, z)

∂b
. (14)

b′ = b′ − α
∂L(x, z)

∂b′
. (15)

Once the layer is pre-trained, the network enters the supervised finetuning phase.
In the supervised finetuning phase, add an LR layer to the resultant layer. In this work,
probability that the x input vector (Layer 4) belonging to i-th class is determined in the
above equation, where y represents the predicted class of input vector x. W and b denote
the weight matrices and the bias vector, correspondingly, Wj and Wj denote the irh and jrh

row of matrixes W, correspondingly, bi and bj denote the ith and jth elements of vector b,
correspondingly, and so f tmax refers to the nonlinearity function. The class with the maxi-
mum probability was assumed as the prediction label ypred of x input vector, as determined
in Equation (17). The predictive error of sample dataset D(Loss(D)) is evaluated according
to the true label, as demonstrated in Equation (18), where yi indicates the true label of xi.
Loss(D) is minimalized by the Gradient Descent model that is the same as the procedure
of minimalizing the abovementioned reconstruction error:

P(Y = i|x, W, b) = so f tmax (Wx + b) =
eWix+bj

∑j eWjx+bj
. (16)
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ypred = argmax (P(Y = i|x, W, b)) (17)

Loss (D) = −
D

∑
i=0

In (P(V = yi|xi, W, b)) (18)

3.4. Hyperparameter Tuning Using CSO Algorithm

Here, the CSO algorithm was executed for the parameter optimization of the DSAE
approach and thereby enhances the classifier results. Meng et al. [26] suggest the CSO
technique. A novel SI optimized technique was presented for simulating the hierarchy
and foraging performance of chickens. The population was separated into many sub-
groups. All the subgroups contain cock, chick, and hen. The CSO technique follows the
subsequent principles:

(1) The whole population contains many sub-populations, each of which comprises cock,
amount of hens, and many chicks.

(2) The fitness value (FV) of all the particles from the population was computed. The
particle is classified depending upon the FV. Some particles with optimum FVs were
chosen as cocks, some particles with worse FVs were chosen as chickens, and remain-
ing particles were chosen as hens.

(3) In specific hierarchy, the dominance connection and mother–child connection re-
mained unaffected. However, as the chicks produced, the population connection
was modified. The hierarchy control connection and maternal connection of chicken
swarms were variations all the G time.

(4) The cock controls the flock, the hen follows the cock from its individual populations
and the chick food was nearby the hens. The hen arbitrarily combines a subpopulation.
The connection among mother as well as child from the flock was arbitrarily intro-
duced. The cock with main searching range and an optimum searching capability was
led from the flocks. The chick particle has the worse foraging capability and minimum
foraging range. The foraging capability and searching range of hen particles were
amongst cock as well as chick particles.

In CSO, there were N particles from the entire chick flock. The amount of roosters
can be determined as Nr. The amount of hens was determined as Nh, and the amount of
chickens was Nc. Distinct types of chickens are distinct place upgrade formulas if they
can be determined as food [20]. The roosters are one of the adjustable individuals from
chickens and, most apparently, for defining food from the entire population.

The formula for place upgrade of cock particles is depicted in Equation (19):

Pj
i (t + 1) = Pj

i (t) ∗
(
1 + Randn

(
0, σ2))

σ2 =

{
1 Wi < Wk

exp
(
(Wk−Wi)
|Wi |+ε

)
others

(19)

In which, the k ∈ [1, cn], and k 6= i. Randn
(
0, σ2) means the Gaussian distribution

with mean value of 0 and standard deviation of σ2. An individual place of Pj
i (t) is the

value of jth dimensional of ith individual at tth iterations. ε is some lesser constant; k refers
to the random cock from every cock except ith cock; Wi refers the FV equivalent to ith

cock; Wk denotes the FV equivalent to kth cocks. The hens are maximal proportion of
individuals from the entire chick population. Their place upgrade formulation is depicted
in Equation (20):

Pj
i (t + 1) = Pj

i (t) + K1 ∗ Random ∗
(

Pi
r1(t)− Pj

i (t)
)
+ K2 ∗ Random ∗

(
Pj

r2(t)− Pj
i (t)

)
K1 =

exp(Wi−Wr1)
|Wi |+ε

K2 = exp (Wr2 −Wi)

(20)
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whereas Random stands for the arbitrary number amongst zero and one, which follows the
standard normal distribution. r1 represents the cock from the group but ith hen was placed.
r2 demonstrated that some cock excepting the cock from the set of ith hen. Therefore r1
is distinct in r2. The chick follows the hen searching and chick place upgrade equation
demonstrated in Equation (21):

Pj
i (t + 1) = Pj

i (t) + FL ∗
[

Pj
m(t)− Pj

i (t)
]

(21)

In which FL refers to the average amount equally distributed from zero and two. Pj
m(t)

implies the hen place equivalent to ith chick. The CSO system determines an FF to accom-
plish superior classifier performances. It determines a positive integer for exemplifying the
best efficiency of candidate results. In this scenario, the reduced classification error rate has
been supposed that FF is providing in Equation (22). An optimum outcome is a decreased
error rate and a worse solution accomplishes an improved error rate:

f itness(xi) = Classi f ierErrorRate(xi)

= number o f misclassi f ied samples
Total number o f samples ∗ 100

(22)

4. Results and Discussion

The experimental validation of the SFSA-DLIDS model is tested using two benchmark
datasets, namely, NSLKDD 2015 [27] and CICIDS 2017 [28] datasets. Table 1 illustrates the
details on two benchmark datasets. The NSLKDD 2015 dataset holds samples under two
classes. It includes 67,343 samples under normal class and 58,630 samples under anomaly
class. In addition, the CICIDS 2017 dataset holds 50,000 samples under normal class and
50,000 samples under anomaly class.

Table 1. Dataset details.

Class
No. of Samples

NSLKDD 2015 CICIDS 2017

Normal 67,343 50,000

Anomaly 58,630 50,000

Total 125,973 100,000

Figure 3 indicates the confusion matrices produced by the SFSA-DLIDS approach on
the test NSLKDD 2015 dataset. With 70% of training (TR) dataset, the SFSA-DLIDS model
has recognized 46,762 samples into normal class and 40,054 samples into anomaly class.
In addition, with 30% of the testing (TS) dataset, the SFSA-DLIDS method has recognized
20,147 samples into normal class and 17,062 samples into anomaly class. Additionally, with
20% of TS dataset, the SFSA-DLIDS approach has identified 13,390 samples into normal
class and 11,665 samples into anomaly class.

Table 2 and Figure 4 showcase the overall classification output of the SFSA-DLIDS
model on the test NSLKDD 2015 dataset. The results implied that the SFSA-DLIDS model
has resulted to enhanced results under all aspects. For instance, with 70% of TR data, the
SFSA-DLIDS model has offered average accuy of 97.74%, precn of 97.76%, recal of 97.74%,
and Fscore of 97.74%. Simultaneously, with 30% of TS data, the SFSA-DLIDS approach has
rendered average accuy of 97.86%, precn of 97.88%, recal of 97.87%, and Fscore of 97.86%.
Concurrently, with 20% of TS data, the SFSA-DLIDS method has provided average accuy of
99.32%, precn of 99.32%, recal of 99.33%, and Fscore of 99.32%.
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The training accuracy (TA) and validation accuracy (VA) acquired by the SFSA-DLIDS
approach on NSLKDD 2015 dataset is demonstrated in Figure 5. The experimental outcome
denoted that the SFSA-DLIDS algorithm attained maximal values of TA and VA. In specific,
the VA is higher than TA.



Appl. Sci. 2022, 12, 6875 10 of 17

Table 2. Result analysis of SFSA-DLIDS approach with various measures on NSLKDD 2015 dataset.

Class Labels Accuracy Precision Recall F-Score

Training Phase (70%)

Normal 97.74 98.76 96.67 97.71

Anomaly 97.74 96.76 98.80 97.77

Average 97.74 97.76 97.74 97.74

Testing Phase (30%)

Normal 97.86 98.94 96.79 97.85

Anomaly 97.86 96.82 98.95 97.87

Average 97.86 97.88 97.87 97.86

Training Phase (80%)

Normal 99.35 99.34 99.36 99.35

Anomaly 99.35 99.37 99.34 99.35

Average 99.35 99.35 99.35 99.35

Testing Phase (20%)

Normal 99.32 99.39 99.28 99.33

Anomaly 99.32 99.26 99.37 99.32

Average 99.32 99.32 99.33 99.32
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The training loss (TL) and validation loss (VL) obtained by the SFSA-DLIDS method-
ology on NSLKDD 2015 dataset are accomplished in Figure 6. The experimental outcome
represented that the SFSA-DLIDS technique exhibited minimal values of TL and VL. Partic-
ularly, the VL is less than TL.
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Figure 7 represents the confusion matrices generated by the SFSA-DLIDS algorithm on
the test CICIDS 2017 dataset. With 70% of TR dataset, the SFSA-DLIDS methodology recog-
nized 33,748 samples into normal class and 34,669 samples into anomaly class. Moreover,
with 30% of TS dataset, the SFSA-DLIDS approach recognized 14,607 samples into normal
class and 14,752 samples into anomaly class. Along with that, with 20% of TS dataset, the
SFSA-DLIDS method recognized 10,026 samples into normal class and 9839 samples into
anomaly class.
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Table 3 and Figure 8 show the overall classification output of the SFSA-DLIDS tech-
nique on the test CICIDS 2017 dataset. The results portrayed that the SFSA-DLIDS approach
resulted to improvised results under all aspects. For example, with 70% of TR data, the
3-DLIDS method rendered average accuy of 98.45%, precn of 98.51%, recal of 98.39%, and
Fscore of 98.44%. In the meantime, with 30% of TS data, the SFSA-DLIDS technique pre-
sented average accuy of 98.46%, precn of 98.52%, recal of 98.39%, and Fscore of 98.45%.
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Simultaneously, with 20% of TS data, the SFSA-DLIDS approach offered average accuy of
99.44%, precn of 99.44%, recal of 99.44%, and Fscore of 99.44%.

Table 3. Result analysis of SFSA-DLIDS approach with various measures on CICIDS 2017 dataset.

Class Labels Accuracy Precision Recall F-Score

Training Phase (70%)

Normal 98.45 97.79 99.35 98.56

Anomaly 98.45 99.24 97.42 98.32

Average 98.45 98.51 98.39 98.44

Testing Phase (30%)

Normal 98.46 97.79 99.37 98.57

Anomaly 98.46 99.26 97.40 98.32

Average 98.46 98.52 98.39 98.45

Training Phase (80%)

Normal 99.48 99.49 99.54 99.52

Anomaly 99.48 99.47 99.42 99.44

Average 99.48 99.48 99.48 99.48

Testing Phase (20%)

Normal 99.44 99.47 99.49 99.48

Anomaly 99.44 99.41 99.40 99.40

Average 99.44 99.44 99.44 99.44
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The TA and VA attained by the SFSA-DLIDS algorithm on CICIDS 2017 dataset are
demonstrated in Figure 9. The experimental outcome shows the SFSA-DLIDS algorithm
gained higher values of TA and VA. To be specific, the VA is higher than TA.
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The TL and VL acquired by the SFSA-DLIDS technique on CICIDS 2017 dataset are
exhibited in Figure 10. The experimental outcome denoted the SFSA-DLIDS approach
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For ensuring the enhanced performance of the SFSA-DLIDS model, a comparative
examination is made in Table 4 [3,13]. The results implied that the WISARD, Forest-PA,
and LIB-SVM models have obtained lower accuy values of 96.22%, 96.53%, and 96.56%
respectively. Followed by the GSAE and AE-RF models which attained slightly enhanced
accuy values of 97.44% and 97.55%, respectively. Though the FURIA model resulted in
reasonable accuy of 98.82%, the SFSA-DLIDS model accomplished maximum accuy of
99.44%. From the detailed results and discussion, it is obvious that the SFSA-DLIDS model
has shown enhanced security in the CPS environment.

Table 4. Comparative analysis of SFSA-DLIDS approach with existing algorithms.

Methods Accuracy Precision Recall F1-Score

SFSA-DLIDS 99.44 99.44 99.44 99.44

GSAE 97.44 96.44 98.79 97.74

AE-RF 97.55 97.08 98.15 97.66

WISARD 96.22 97.27 96.85 98.75

Forest-PA 96.53 96.99 96.85 97.88

LIB-SVM 96.56 97.38 97.32 97.75

FURIA 98.82 97.83 96.94 98.55

5. Conclusions

In this article, an innovative SFSA-DLIDS method was devised for the classification
and identification of intrusions from the CPS environment. The presented SFSA-DLIDS
model primarily performed a min-max data normalization approach to convert the input
data to a compatible format, followed by the SFSA technique which was applied to select
a subset of features. Finally, the CSO-DSAE approach was utilized for the identification
and classification of intrusions. The design of the CSO algorithm majorly focuses on the
parameter optimization of the DSAE model and thereby enhances the classifier results. The
experimental validation of the SFSA-DLIDS model was tested using a series of experiments.
The experimental results established the enhanced performance of the SFSA-DLIDS method
over the existing ones with maximum accuracy of 99.35% and 99.48% on the test NSLKDD
2015 and CICIDS 2017 datasets, respectively. Therefore, the presented SFSA-DLIDS model
was implemented as an effectual tool to recognize intrusions in the CPS environment.
In future, outlier detection approaches should be integrated for improving the overall
detection efficiency of the SFSA-DLIDS technique. In addition, the proposed model can be
realized on a big data environment in our future work.
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