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Abstract: The training of deep neural networks usually requires a lot of high-quality data with good
annotations to obtain good performance. However, in clinical medicine, obtaining high-quality
marker data is laborious and expensive because it requires the professional skill of clinicians. In
this paper, based on the consistency strategy, we propose a new semi-supervised model for medical
image classification which introduces a self-attention mechanism into the backbone network to learn
more meaningful features in image classification tasks and uses the improved version of focal loss
at the supervision loss to reduce the misclassification of samples. Finally, we add a consistency loss
similar to the unsupervised consistency loss to encourage the model to learn more about the internal
features of unlabeled samples. Our method achieved 94.02% AUC and 72.03% Sensitivity on the ISIC
2018 dataset and 79.74% AUC on the ChestX-ray14 dataset. These results show the effectiveness of
our method in single-label and multi-label classification.

Keywords: semi-supervised learning; medical image classification; intrinsic characteristic relationship
of samples; self-attention mechanism; self-ensembling model

1. Introduction

Large-scale deep neural networks have made great achievements in many computer
vision tasks; for example, qualitative breakthroughs have been made in the fields of image
classification [1], image recognition [2] and object detection [3]. This success should be
attributed not only to the progress of deep learning methods but also to the large number
of well-annotated data used for supervised learning. Annotating data is an expensive
and time-consuming task for experts. For example, in the medical field, the annotation of
many datasets requires not only the professional medical knowledge of senior experts but
also the manual annotation of gigabytes of images, making it a tedious task. Compared
with limited numbers of labeled images, a large number of original unlabeled images
exist in reality. To make use of them more widely, a series of methods beyond traditional
supervised learning have been developed, such as semi-supervised learning [4,5], weakly
supervised learning [6], and unsupervised learning [7]. In our research, we focus on the
semi-supervised deep learning method, which learns from a small number of labeled data
and a large number of unlabeled data and is used for medical image classification.

For a long time, the medical field has been studying semi-supervised learning [8,9],
aiming at reducing the tedious work of artificially marking data. In recent years, it has
attracted wide attention and made remarkable progress in various large-scale computer-
vision natural image classification tasks [10]. The recent semi-supervised learning method
in the field of medical image analysis can be roughly divided into three categories:
(1) Adversarial-learning-based approach [11,12]: Dong et al. [13] introduced semi-supervised
adversarial learning for lung segmentation. Diaz-Pintet al. [14] introduced the generative
adversarial network into glaucoma assessment, where both labeled and unlabeled data is
used to train an image synthesizer for data augmentation. (2) Graph-based method [15]:
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Aviles-Rivero et al. [15] constructed a graph model of chest disease diagnosis given ex-
tremely limited labeled data and assigned labels to unlabeled samples by the method
of label propagation. (3) Consistency-based method [16]: Li et al. [17] improved the π

model [18] and used it for a semi-supervised skin lesion segmentation and transformation
consistency strategy. Cui et al. [19,20] strengthened the prediction consistency between the
student model and the teacher model, and Su et al. [5] effectively improved the method
based on consistency regularization by constraining the feature space to learn the features
between different classes and different features within the same class.

As for skin lesions, accurate classification is very important for clinical diagnosis. On
account of the similarities among skin lesions, many studies have been carried out [21–24]
to solve this problem. Early research work [25] mainly collected features by hand, such
as shape, color, texture, etc., to distinguish different types of lesions. However, recent
research work mainly uses the remarkable feature extraction ability of the convolutional
neural network to solve this problem. For example, Codella et al. [21] integrated CNNs,
sparse coding, and a support vector machine for melanoma identification and achieved
good results. Yu et al. [22] proposed a very deep network to distinguish melanoma from
non-melanoma lesions. Zhang et al. [23] put forward a model to focus on semantically
meaningful lesion areas using the self-attention ability of convolutional neural networks.

In the context of chest disease diagnosis, the automatic diagnosis platform for ChestX-
ray is also of far-reaching significance in clinical practice. The early research in this area was
mainly based on manual classification, which largely depends on the quality of manually
extracted features. With the emergence of large-scale datasets and the rise of deep neural
networks, convolution neural networks have been used in recent research to solve this
problem [24,26]. For example, Wang et al. [24] proved the effectiveness of using a multi-label
learning framework to detect and even locate chest diseases from ChestX-ray samples. After
the ChestX-ray14 dataset was published, Rajpurkar et al. [27] proposed a more advanced
model to detect 14 common chest diseases. However, these methods rely to a great extent
on a large number of high-quality annotated data, and a semi-supervised model based on a
graph recently proposed by Aviles-Rivero et al. [24,28] solves this problem well.

In this paper, we propose a new semi-supervised model for medical image classi-
fication. With the consistency-based strategy [29], our framework uses a self-attention
mechanism [30] to weigh image features in convolutional neural networks in channel
and space so that the model can learn by itself and focus on the features that play a key
role in the task. At the same time, a sample intrinsic feature relationship loss similar to
unsupervised loss is introduced into the network, which helps to obtain extra information
from unlabeled data. Finally, the improved version of focal loss [31] is introduced into the
supervision loss, aiming at focusing on the samples with incorrect judgment and making
them fit the label value. Our contributions are as follows:

1. We fully learn the features of unlabeled data by introducing a sample intrinsic feature
consistency loss similar to unsupervised consistency loss inside the network which is
effective for both single-label and multi-label classification tasks;

2. Based on focal loss, a new loss function is introduced to supervision loss which can
effectively notice samples with wrong classifications and pay more attention to the
characteristics of samples that easily lead to wrong classification;

3. We conduct experiments on two large medical datasets for skin lesion classification
and chest diseases and the experimental results show that our model is effective and
superior to the current semi-supervised learning method.
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2. Related Work

This section describes some basic methods used in our proposed semi-supervised
image classification framework. Specifically, Section 2.1 summarizes the previous semi-
supervised models and analyzes their advantages and disadvantages. In Section 2.2 we
introduce a self-attention mechanism inside the network to make it more autonomous so as
to capture the features useful for the current task. Section 2.3 introduces the differences in
the internal features of the samples and explores the internal semantic relations. Section 2.4
introduces the previous supervised loss function used to mark data and describes its
shortcomings before introducing focal loss.

2.1. Semi-Supervised Learning Based on Consistency Regularization

The consistency-based method involves using the information of unlabeled data
effectively by making two prediction results for an image consistent through random
enhancement. Most previous work has tried to design an effective method to generate a
consistent target close to the real mark of the image. For example, the π model directly takes
the network output as the consistency target [18]. The Temporal Ensembling method [29]
uses the exponential moving average (EMA) prediction result for unlabeled data as the
consistency target, the quality of which can be improved because it comes from the set
information of the previous period. However, the Temporal Ensembling method needs
to integrate the information of the previous period, which requires a huge prediction
matrix and makes training data-heavy. Therefore, the Mean Teacher [30] was brought into
being. Instead of maintaining the exponential moving average (EMA) prediction, the Mean
Teacher framework uses the exponential average weight of the student model to reconstruct
the teacher model. Since the teacher model comes from the integration of the student model,
its prediction can also produce a reliable consistency goal. Recently, some work has studied
more effective image enhancement functions and how to generate more reliable consistency
targets to improve the benefits of consistency regularization. For example, Xie et al. [32–34]
proved that using better image enhancement methods to create undisturbed samples can
greatly improve the performance of model classification. By enhancing the local smoothness
of the given input label distribution, the proposed virtual anti-disturbance [10] can prevent
the model from straying further and further from the correct path because of the bad
target by generating a more reliable consistency target [35] and can improve the existing
consistency-based method by exploring the internal relationships among input data [36].
Different from the above work, our goal is to effectively strengthen the performance of
the classifier by paying more attention to the main characteristics of differences between
different types of samples and introducing a parameter into the supervision loss to make
the prediction result for each labeled sample closer to the real label.

2.2. Self-Attention Mechanism

At present, the attention mechanism [30,37,38] has been applied to various tasks in
computer vision, such as image classification [38,39] and object segmentation [40]. The
channel attention module [37] enhances the channel relationship by squeezing and expand-
ing the block, thus adaptively recalibrating each channel of the current image features
according to the current task and then integrating the obtained channel attention weight
with the original feature map to effectively utilize some features that play a key role in the
current task. Based on the channel attention mechanism, a spatial attention module [38] can
be added, which can more comprehensively judge each pixel in a picture in each channel
and capture them, which is relevant to the current task. Here, the channel attention module
runs in series with the spatial module. Park et al. [30] proposed that the channel and spatial
attention modules should be run in parallel and that the obtained channel and spatial
relation matrix should be added and fused with the original feature map. In this way, the
model can pay more attention to the features that play a decisive role in the current task to
improve the discrimination ability of the model.
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2.3. Consistency Paradigm of Sample Relationship

In the previous research work on semi-supervised learning based on consistency
regularization, the features of labeled and unlabeled samples were learned as much as
possible by forcing the two most different predicted values of samples through different
disturbances, and no more attention was paid to the semantic relationships between
samples. On the premise that human diagnosis usually makes reliable decisions based on
previous cases, Liu et al. [36] introduced a novel sample relationship consistency paradigm
matrix, which constructed a case-level Gram matrix to simulate the structured relationship
between different samples. Given a small batch of input samples with B samples, the
activation feature graph of the L layer is defined as Fl ∈ RB×H×W×C, where H and W are
the spatial dimensions of the activation feature graph, and C is the number of channels.
Then, the activation feature graph is reshaped into Al ∈ RB×H×W×C, and its Gram matrix
is calculated as follows:

Gl =
(

A(xi, θ,η)l
)
×
(

A(xi, θ,η)l
)T

(1)

where A(xi, θ,η)l represents the activation feature graph of the layer of each sample,
respectively, which means the semantic relationship of this sample in the convolutional
neural network. Finally, the sample relationship matrix normalized by L2 can be defined as:

Rl =

(
Gl

1

‖ Gl
1 ‖

, · · · · · · ,
Gl

B

‖ Gl
B ‖

)
(2)

This encourages the model to explore additional semantic information from unlabeled
data, but we think that matrix Gl may lose some characteristic information because of its
multiplication relationship and the reduction in the number of dimensions.

2.4. Supervision Loss

In recent semi-supervised classification models, the classification loss for labeled data
always makes the predicted value of the sample closer to the labeled value by minimizing
cross-entropy loss [39]. However, the cross-entropy function calculates the total loss of
each batch in the sample, so the probability of the sample which may cause individual
misjudgment approaching the real label in the later training process is low. Both focal
loss [31] and reduced focal loss [40] pay more attention to misclassified samples by adding
weight in front of the cross-entropy function. In the subsequent training process, they can
effectively reduce the loss and make them closer to the real labels. More importantly, the
performance of the classifier model will gradually improve with the training rounds. We
think that the “fixation” of the weighting factor will weaken the classification effect of the
model with the increase in the number of training rounds.

3. Method

Figure 1 describes our semi-supervised learning framework for medical image classifi-
cation which integrates attention mechanisms and the intrinsic relationship characteristics
of samples into student and teacher models. This enables the model to spontaneously
capture features that are more significant in the current classification task and extract
richer intrinsic information from samples of unlabeled data. Finally, the improved focus
loss is introduced into the supervision loss, so that the minimization goal of the model is
mainly dominated by misjudged samples, which effectively improves the performance of
the model.
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Figure 1. Overview of our semi-supervised framework for medical image classification. The teacher’s
weight θ′ is updated to the exponential moving average (EMA) of the student’s weight θ. The
objective function of optimizing the student model includes the supervised loss (Ll) on the marked
set and two unsupervised consistency losses (Lifr and Lu) on the unlabeled set and the marked set,
respectively. By minimizing the three losses, the whole framework can fully mine the features of
labeled samples and unlabeled ones, thereby accurately classifying them.

3.1. Channel and Spatial Attention Mechanisms

As depicted in Figure 2, in this paper, we add the attention mechanism proposed
in [30] to the convolutional neural network, which is divided into two modules: channel
attention and spatial attention. In terms of channel attention, we define the module as:

Mc(F)= BN(W1(W0AvgPool(F)+b0)+b1) (3)

where F ∈ RH×W×C is the input image, H and W are the length and width of the input
feature map, and C is the number of channels of the input feature map.W0 ∈ RC/r×C,
b0 ∈ RC/r, W1 ∈ RC/C×r, b1 ∈ RC. Firstly, the input characteristic map is reshaped to
F ∈ R1×1×C through AvgPool(F), and then through W0 and W1, successively, the calibrated
weighting matrix Mc(F) of each channel is adaptively obtained through extrusion and
expansion. The spatial attention module is as follows:

Ms(F) =
(

f1×1
3

(
f3×3
2

(
f3×3
1

(
f1×1
0 (F)

))))
(4)

Figure 2. The attention module structure of this paper consists of two modules: channel attention
and spatial attention. The two modules run in parallel, and the weighed matrixes of each channel
of the sample features and of each image pixel in the channel are obtained spontaneously and then
integrated into the original sample features.
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At first, the input sample F ∈ RH×W×C is subjected to a 1 × 1 convolution for dimen-
sion reduction, then two 3× 3 cavity convolutions to increase its receptive field, and, finally,
a 1 × 1 convolution is performed to obtain the weighting matrix Ms(F) of each pixel of
each image in the calibrated channel. These are combined to generate the final attention
feature map.

M(F)= σ(Mc(F)+Ms(F)) (5)

Since the two dimensions are different, they need to be adjusted to RH×W×C first. The
final characteristic diagram is as follows:

F =(F + F × M(F)) (6)

The intrinsic feature channel hides the basic information of the convolution filter,
which is helpful for the network model to learn more useful features for the current task.

3.2. Loss of Consistency of Intrinsic Characteristics

Inspired by the paradigm matrix of sample relation, which encourages the network to
explore the semantic relationship between unlabeled samples to improve the expressive
ability of the model, the activated feature graph from the deep layer contains more advanced
semantic information than the activated feature graph from the middle. As shown in
Figure 1, we use the intrinsic sample features before the classification level to construct
an intrinsic relationship consistency loss similar to the unsupervised loss. Given a small
batch of input samples containing B samples, we define the intrinsic feature graph before
the classification level as Fl ∈ RB×1×1×C, where 1 and 1 are the spatial dimensions of the
active feature graph and C is the number of channels. After the intrinsic characteristics of
the student model are standardized, the matrix is as follows:

Kl =

(
F(xi, θ,η)l

1

‖ F(xi, θ,η)l
1 ‖

, · · · ,
F(xi, θ,η)l

B

‖ F(xi, θ,η)l
B ‖

)
(7)

Similarly, after the intrinsic characteristics of the teacher model are standardized, the
matrix is:

K′l =

(
F
(
xi, θ′,η′

)l
1

‖ F
(
xi, θ′,η′

)l
1 ‖

, · · · ,
F
(
xi, θ′,η′

)l
B

‖ F
(
xi, θ′,η′

)l
B ‖

)
(8)

where F(xi, θ,η)l represents the intrinsic characteristic diagram of each sample, which
means the internal relationship of this sample in the convolutional neural network, and the
intrinsic characteristic relation matrix requires that the internal relationship characteristics
of the same sample should be consistent under different disturbances. Therefore, the loss
function of the sample intrinsic relationship matrix is defined as:

Lifr = ∑x∈{SL,SU}
1
B
‖ K′l−Kl ‖2

2 (9)

where x is the total set of labeled and unlabeled samples, while K′l and Kl represent the
intrinsic characteristic matrix of samples obtained under different weights and disturbances,
respectively. By minimizing the loss function model of the intrinsic characteristic matrix of
samples, it will be encouraged to capture the intrinsic differentiation characteristics among
samples under different weights and disturbances and then help to obtain additional
intrinsic information from unlabeled samples. In comparison, the feature map from the
deep layer contains more advanced information than that from the middle. Therefore,
the characteristic map before the last average pool layer is used to calculate the intrinsic
characteristic matrix Kl of the sample.
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3.3. Semi-Supervised Learning Framework

The semi-supervised loss function [18,30] previously used for classification tasks can
be divided into two parts: the supervised loss of labeled samples and the unsupervised
consistency loss of total samples. We express labeled datasets and unlabeled datasets
as SL =

{(
xi, yi)}N

i=1 and SU =
{

xi}N+M
i=N+1, respectively, where xi is an inputted two-

dimensional medical image, such as a skin lesion image or a chest disease image, and yi

is an artificially marked image real label using one-hot coding. The overall optimization
objectives of the whole framework are as follows:

min
θ

(
∑N

i=1
LS(f(xi; θ), yi)+λLU

({
xi
}N+M

i=N+1
; f(·), θ,η, θ′,η′

))
(10)

where LS represents the supervised loss (cross-entropy loss) of labeled samples, LU repre-
sents the unsupervised consistency loss of total samples, f(·) represents the classification
network, θ and θ′ are the parameter weights of the student model and teacher model,
respectively, and η and η′, respectively, represent two different disturbances of the two
models with the same input. λ is a weighting factor used to weigh the supervised loss
against the unsupervised loss. Its teacher model parameter weight θ′ is the exponential
average of the student model weight θ, and the iterative training of teacher model weight
with time is defined as:

θ′t= aθ′t−1 + (1− a)θt (11)

where a is the smoothing coefficient super-parameter that controls the weight update
rate. In terms of unsupervised loss, to encourage the consistency of the outputs of the
student model and the teacher model, we keep the traditional individual consistency
mechanism [29] as follows:

Lu = ∑N+M

i=1
Eη,η′ ‖ f

(
xi, θ′,η′

)
− f(xi, θ,η) ‖2

2 (12)

In terms of supervision loss, focal loss [31] is defined as follows:

FL(pt) = −(1− pt)
γ log(pt) (13)

pt is set to:

pt =

{
p if y = 1

1− p otherwise
(14)

pt marks the predicted probability value of the sample. In Figure 3, we introduce the
super-parameter threshold on the basis of focal loss. Compared with this, the supervision
loss is defined as follows:

Ll =

{
WC × L_w × (− log(pt)) otherwise
WC × H_w × (− log(pt)) if pt > threshold

(15)

where L_w = 1 and H_w = (1− pt)
γ, respectively, represent the weights that should be

given to the samples with wrong classification and correct classification. As the number of
training rounds increases, the classification performance of the model will be continuously
improved and the value of pt will also increase (it will not exceed the predicted value of 1),
so we set the threshold as follows:

threshold =(1/N) +

(
lp− 1

N

)
/epochs × epoch (16)
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Figure 3. A detailed description of our semi-supervised framework supervision loss.

Since the categories of datasets are unbalanced, WC is the weight of each category in
the total sample, while the tag predicts that the sum of each category is 1, N is the total
number of categories of datasets, epochs is the total number of training rounds, and epoch
is the current round.

3.4. Total Loss Function and Details

Our semi-supervised learning framework is based on the consistent regularization
machine strategy [18], that is, two predicted values obtained by forcing the same samples to
be similar in two random enhancement ways are used as labeled data. Finally, the overall
optimization loss function of the whole framework can be described as follows:

L = Ll + λ(Lu + Lifr) (17)

In the formula, the former item is the supervised loss of marked samples, and the
latter item is the unsupervised loss, which is a super-parameter to balance the supervised
loss and unsupervised loss.

For comparison with the original paper, during the training period, we adopted
the same image enhancement technology and set a series of parameters. For example,
we adopted two random perturbation forms, including (1) image enhancement, random
rotation, translation, horizontal flipping, etc., to randomly transform each sample in each
small batch. At the same time, the rotation angle was in the range of −10 to 10, the
horizontally and vertically translated pixels ranged from −2% to 2% of the image width,
and the input was randomly flipped horizontally and vertically with a probability of 50%.
(2) Dropout layer in the network: we added a random dropout layer before the last pool
layer in each block of the densenet network [41] that we used, with a dropout rate of
0.2, which is only turned on in the training stage and is turned off in the verification and
testing stages.

4. Experiments

In this section, we describe some experiments with two large public medical datasets,
namely, the ISIC 2018 skin lesions dataset (single label) and the ChestX-ray14 chest dis-
eases dataset (multi-label), and then discuss the experimental results to evaluate our
proposed method.

4.1. Parameter Setting

As the following parameters have been mentioned in the previous model, for com-
parison with the original paper [36], we improve and recast our model based on SRC-MT
common code and implement our method with densenet as the backbone of the network,
which is trained by the Adam optimizer [42] with default parameter settings. We set the
batch size to 48, and each small batch contains 12 labeled samples and 36 unlabeled samples.
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In Equation (3), the parameter r is set to 16 [30] and the self-attention module is placed
in the pool layer behind each block of the network [30]. In Equation (11), the exponential
average attenuation rate a is set to 0.99, just as mentioned in [28,29]. γ in Equation (15) is set
to 2, and we imagine the trained classifier as the ideal situation. We set lp in Equation (16)
to 1 and we define λ in Equation (17) as:

λt = 1 × e(−5(1−t/T))2
(18)

This is used to control the value of λ, to ensure that the training loss will not be domi-
nated by the unsupervised loss at the beginning of network training when the consistency
target of labeled data is unreliable [10]. The learning rate is initialized to e−4 and decays
exponentially with the power of 0.9 after each round.

4.2. ISIC 2018 Dataset

The ISIC 2018 dataset is used for single-label classification. It consists of 10,015 skin
lesion examination images, which are labeled as instances of seven common skin lesions.
We divide the dataset as follows: 70% for training, 10% for verification, and 20% for testing.
There are 60 rounds of training, and the ramp factor T is set to 30. Before training, we
adjust each image in the dataset to a size of 224 × 224 and normalize it using the statistical
data collected from the ImageNet dataset. We use DenseNet121 [4], which is pre-trained
on ImageNet, as the backbone of our network, and use AUC—Accuracy, Sensitivity, and
Specificity—to evaluate our model.

Table 1 shows the classification performance of the latest semi-supervised framework
with 20% of the labeled data (1400 images). As we can see, the self-training method has
more advantages than other methods in terms of Specificity, while its indicators need to be
improved. While SS-DCGAN improves AUC by 0.7%, which indicates that the GAN-based
method helps to improve the semi-supervised classification framework. On the other hand,
the TCSE method indexes show that consistency regularization is effective in utilizing
unlabeled data. However, TE integrates the forecasts of different periods and generates a
more reliable consistency target, so it performs slightly better than TCSE. The performance
of MT AUC proves its superiority in semi-supervised learning. SRC-MT improves four
indicators at the same time, which proves that SRC can make full use of unlabeled data
information. The AUC and Sensitivity indicators for our method show that it helps the
model to make more effective use of unlabeled data and improve the classification of
positive samples, while the improved performance of negative samples is poor.

Table 1. Performance comparison between the ISIC 2018 dataset and previous examples of semi-
supervised learning.

Method
Metrics

AUC Sensitivity Accuracy Specificity

Self-training [8] 90.58 67.63 92.37 93.31
SS-DCGAN [14] 91.28 67.72 92.27 92.56

TCSE [17] 92.24 68.17 92.35 92.51
TE [30] 92.70 69.81 92.26 92.55
MT [18] 92.96 69.75 92.48 92.20

SRC-MT [39] 93.58 71.47 92.54 92.72

Ours 94.02 72.03 92.61 91.78

We also studied the influence of the different percentages of labeled data, as shown in
Table 2: under the settings of 5%, 10%, and 20% labeled data, our method achieved 94.02%
AUC and 72.03% Sensitivity, but the results were not clear for the other two indicators.
These results demonstrate the impact of our method with different labeling ratios for
the data.
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Table 2. Performance comparison of our methods on the ISIC 2018 dataset with different percentages
of labeled data.

Method
Percentage Metrics

Labeled Unlabeled AUC Sensitivity Accuracy Specificity

Upper bound 100% 0 95.43 75.20 95.10 94.94

SRC-MT 5% 95% 87.61 62.04 88.77 89.36
Ours 5% 95% 89.56 64.32 88.56 88.96

SRC-MT 10% 90% 90.31 66.29 89.30 90.47
Ours 10% 90% 91.24 67.56 89.56 90.16

SRC-MT 20% 80% 93.58 71.47 92.54 92.72
Ours 20% 80% 94.02 72.03 92.61 91.78

Figure 4 shows the AUC indicators of our method for each category of the ISIC 2018
dataset, in which the AUC performance of our method reaches 95% in most categories,
and the worst performance in Melanoa and Benign keratosis, which may be due to the
small number of inter-class characteristics making it difficult for the model to accurately
identify it.

Figure 4. AUC performance of each category for the ISIC 2018 dataset.

4.3. ChestX-ray14 Dataset

The ChestX-ray14 dataset is used for multi-label classification. It contains 112,120 frontal
chest X-rays of 30,805 unique patients, each of which is marked with one or more common
chest diseases out of a total of 14. In order to make a fair comparison with the previous
methods, we divided them into a training set, a verification set, and a test set with the
proportions 70%, 10%, and 20%. They were a total of 20 rounds of training, and the slope
factor T was set to 10. Before training, we adjusted each image in the dataset to the size of
384 × 384 and normalized it using the statistical data collected from the ImageNet dataset.
As this dataset is much larger than ISIC 2018 dataset, DenseNet169 pre-trained on ImageNet
was adopted as our network backbone. Referring to the previous work [15], we only used
AUC as our model evaluation index.
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Table 3 compares the performance of the previous method with ours under the dif-
ferent percentages of labeled data. The observation shows that GraphXNET performs
particularly well with 20% labeled data, but its fluctuations with labeled data are very
large, indicating that it largely depends on the size of labeled samples. SRC-MT is not only
superior to the GraphXNET method but also more “stable” given the same scale change of
labeled data. However, our method has better AUC performance than SRC-MT in each
percentage marking stage, and its stability has not decreased.

Table 3. AUC performance comparison of semi-supervised models with different markers on the
ChestX-ray14 dataset.

Label Percentage 2% 5% 10% 15% 20%

GraphXNET [15] 53 58 63 68 78
SRC-MT 66.95 72.29 75.28 77.76 79.23

Ours 68.24 73.65 77.62 78.35 79.74

Table 4 compares our method with MT and SRC-MT to analyze the impact on multi-
label classification tasks. As we have observed, with 20% labeled data, our method achieves
79.74% AUC, which is better than that of MT 78.83% and SRC-MT 79.23%. Among 14 kinds
of chest diseases, there may be some differences among the categories due to the imbalance
of sample classification, but they are generally good, which can prove the effectiveness of
our proposed method for multi-label classification.

Table 4. Semi-supervised model’s AUC performance with respect to different categories in the
ChestXray-14 dataset.

Method Fully Supervised MT SRC-MT Ours

Labeled 100% 20% 20% 20%
Unlabeled 0 80% 80% 80%

Atelectasis 77.32 75.12 75.38 76.12
Cardiomegaly 88.85 87.37 87.70 88.06

Effusion 82.11 80.81 81.58 81.77
Infiltration 70.95 70.67 70.40 70.57

Mass 82.92 77.72 78.03 78.86
Nodule 77.00 73.27 73.64 74.23

Pneumonia 71.28 69.17 69.27 69.56
Pneumothorax 86.87 85.63 86.12 86.32
Consolidation 74.88 72.51 73.11 73.84

Edema 84.74 82.72 82.94 83.13
Emphysema 93.35 88.16 88.98 90.02

Fibrosis 84.46 78.24 79.22 80.43
Pleural Thickening 77.34 74.43 75.63 75.61

Hernia 92.51 87.74 87.27 87.86

Average AUC 81.75 78.83 79.23 79.74

4.4. Discussion of Parameters (lp)

The parameter lp in the supervision loss indicates the prediction probability value for
the model pair and each category after the training. As shown in Table 5, we also studied
the influence of lp hyperparameters in Equation (16) in different conditions. Generally
speaking, we adopted different lp values in the range of 0.6 to 1.0 and examined the
performance of our network model with 20% labeled data. It can be seen that, with the lp
range at 0.8, our model performance is not very sensitive to lp values, and that the larger
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the lp value is, the better the model’s performance. Therefore, we set the value of lp to 1 in
the experiment.

Table 5. Effects of different lp parameter values on the performance of our semi-supervised model
on the ISIC 2018 dataset.

Parameter (lp)
Metrics

AUC Sensitivity Accuracy Specificity

0.6 92.24 68.34 91.06 89.65
0.7 92.70 69.75 91.54 90.86
0.8 93.55 71.54 91.98 91.24
0.9 93.86 71.87 92.24 91.66
1.0 94.02 72.03 92.61 91.78

5. Discussion

We conduct experiments on the ISIC 2018 dataset and the ChestX-ray14 dataset and
compared them with existing semi-supervised learning methods. Specifically, the experi-
mental results for the two datasets show that, compared with the original methods, our
method has improved AUC and Sensitivity, and the AUC performance on the ChestX-ray14
dataset also proved significant. However, for the ISIC 2018 dataset, the Accuracy and
Specificity results were not so ideal.

The above experimental results show that it is a good idea for us to automatically
capture important features by adding a self-attention mechanism to the backbone network
and to weight the supervision loss of labeled samples by exploring intrinsic feature rela-
tionships among samples and introducing super-parameters related to the performance of
the classifier. However, the experimental results for Accuracy and Specificity show that our
method still has shortcomings and we think that the reason for this result may be that the
ISIC 2018 dataset has a small number of samples and uneven distribution of positive and
negative samples. In the future, we can try to manually generate some images to rectify the
imbalance of samples in the hope that we can achieve a good performance on all indicators.

In real life, many datasets may have only a small portion of labeled data, with most
of the data remaining unlabeled. Existing semi-supervised models can classify these
data. However, we have improved the AUC and Sensitivity metrics by improving the
existing methods, and we think that our proposed loss of intrinsic feature consistency and
improvement of supervisory loss are still meaningful contributions.

6. Conclusions

In the present work, we have studied the problem of semi-supervised learning in
medical image classification that aims to reduce the manual labeling of medical image data.
We introduced the self-attention mechanism into the backbone network to focus more on
the features that are more relevant to the current task and used the improved version of
focal loss to narrow the gap between wrongly classified and correctly labeled samples at the
supervision loss point and recommended the intrinsic feature consistency loss of the sample
to make more effective use of the unlabeled data. Compared with existing semi-supervised
learning methods, our experimental results for two datasets show that our method achieved
94.02% and 72.03% on AUC and Sensitivity indicators, but its Accuracy and Specificity
scores were not so good. This shows that our method still has some shortcomings, but
it is worth discussing exploring the intrinsic characteristic relationships among samples
and controlling the weighting of sample loss by introducing a super-parameter that varies
with the performance of the classifier model. In addition, the proposed consistency loss
and supervised loss functions of sample intrinsic characteristics can also be combined with
other semi-supervised methods.
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