
Citation: Wang, L.; Liu, C.; Fang, J.

Design of a Single-Stage

Transformerless Buck–Boost Inverter

for Electric Vehicle Chargers. Appl.

Sci. 2022, 12, 6705. https://doi.org/

10.3390/app12136705

Academic Editor: Adel Razek

Received: 10 May 2022

Accepted: 16 June 2022

Published: 1 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Design of a Single-Stage Transformerless Buck–Boost Inverter
for Electric Vehicle Chargers
Lixia Wang, Chenming Liu and Jingyang Fang *

School of Control Science and Engineering, Shandong University, Jinan 250100, China;
lixiawang@mail.sdu.edu.cn (L.W.); liuchenming@mail.sdu.edu.cn (C.L.)
* Correspondence: jingyangfang@sdu.edu.cn

Abstract: This paper details the design and implementation of a single-stage transformerless buck–
boost inverter for electric vehicle (EV) chargers. Being different from conventional H-bridge inverters,
the proposed inverter operates like buck–boost dc/dc converters instead of buck dc/dc converters.
As a consequence, the advantages of a buck–boost dc/dc converter, i.e., the arbitrary relationships
between its input voltage and output voltage, are still applicable to the proposed inverter. Specifically,
it remains in normal operation even when the peak ac output voltage is higher than the dc-link
voltage. Simulation results are finally presented to illustrate its effectiveness.
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1. Introduction

Dc/ac power electronic converters, i.e., inverters, have found widespread applications
in the areas of renewable generation [1–5], power conditioning [6–9], energy storage
systems [10], and electric vehicles (EVs) [11,12]. Generally, buck-type inverters, such as the
well-known H-bridge inverters, are employed to achieve the objective of dc to ac power
conversion [1–10]. However, due to the inherent voltage step-down characteristic of buck
converters [13], the peak ac output voltage for the buck-type inverter should always be
lower than its input dc-link voltage. This requirement imposes several limitations on
the design and operation of buck-type inverters. For example, in applications where the
input dc voltage is equivalent to or lower than the output ac voltage, one additional stage
of dc/dc power converter is necessary to boost up the dc-link voltage. Otherwise, the
undesirable over modulation of buck-type inverters may occur, which will disrupt the
system from normal operation [6].

Although the adoption of another dc/dc converter into the dc/ac power conversion
system with low dc-link voltages, e.g., photovoltaic generation [1], is a feasible and widely
used solution, this approach will inevitably increase the system cost and complexity. It
is therefore highly desirable that the inverter can operate without any limitations on the
relationships between its dc voltage and ac voltage. As an interesting attempt, Peng F.
proposed a novel inverter, named the z-source inverter, which simultaneously achieves the
objectives of dc to ac conversion and voltage boost [14]. Nevertheless, it necessitates extra
filter components and complicated control algorithms.

As an alternative simple solution, a single-stage transformerless buck–boost inverter is
proposed in this paper. By directly extending the operating principles of dc/dc buck–boost
converter into dc/ac applications, the proposed inverter can be designed and operated in a
straight-forward way, as will be discussed in the following sections.

2. System Schematic

Figure 1 shows a schematic diagram of the proposed single-stage transformerless
buck–boost inverter system, where the dc-link voltage Vdc is maintained as a constant Vdc
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by a dc power supply. Through operating the semiconductor switches S1–S4, the inductor
Lf can be charged from both directions, and then it will be discharged to supply the filter
capacitor Cf and the load Ro so long as switch S5 or S6 are turned-on. In Figure 1, iL, iR, and
vc denote the inductor current, load current, and capacitor voltage, respectively.
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Figure 1. Schematic diagram of the proposed single-stage transformerless buck–boost inverter system.

3. Operation Principle

The operation principle of the proposed buck–boost inverter can be explained well by
the switching patterns illustrated in Figures 2 and 3. Assuming that the desirable waveform
of the output voltage vc is a sinusoid, which pulsates at fundamental frequency. Under this
assumption, the operation of semiconductor devices will be dependent on the sign of vc. For
the case of a positive half-wave of vc, S1 and S4 remain in the off-state, as shown in Figure 2.
As it can be observed from Figure 2a, when S2 and S3 turn on, the dc power supply charges
the inductor Lf, and hence, the inductor current iL increases linearly. Meanwhile, S6 remains
in the off-state and the capacitor Cf releases its energy to supply the load Ro. In contrast, it
is clear from Figure 2b that the inductor Lf transforms its energy to the capacitor Cf and
load Ro when S2 and S3 turn-off, together with S6 switched on. For the case of a negative vc,
the operations of S2, S3, and S6 are replaced by S4, S1, and S5, respectively. From the above
analysis, the proposed buck–boost inverter operates very similar to the conventional dc/dc
buck–boost inverter, except for its bipolar output voltage. As a consequence, it enables
both the operation of voltage step-down and boost.
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Figure 2. Switching patterns for the positive half-wave of vc: (a) Inductor charged, (b) Inductor discharged.
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Figure 3. Switching patterns for the negative half-wave of vc: (a) Inductor charged, (b) Inductor discharged.

4. Mathematic Model

Let Ts denote the switching period, Ton represent the switching-on time of S2 and S3
or S1 and S4 in each switching cycle, Toff stand for the switching-on time of S5 or S6 in each
switching cycle, and do = Ton/Ts designate the duty cycle. The state equation description of
the proposed buck–boost inverter can be derived from Figure 2 as follows: diL

dt

dvC
dt

 =

0 0

0 −1
RoC f

 iL

vC

+

 1
L f

0

vdc, (1)

 diL
dt

dvC
dt

 =

 0 −1
L f

1
C f

−1
RoC f

 iL

vC

+

0

0

vdc (2)

where (1) and (2) represent the equations for switching-on and switching-off, respectively.
The state space average model of the proposed inverter can be further derived through
adding (1) and (2) with their respective weighted coefficients of do and 1-do as follows: diL

dt

dvC
dt

 =

 0 −(1−do)
L f

1−do
C f

−1
RoC f


 iL

vC

+

 do
L f

0

vdc. (3)

Based on (3), the transfer functions from the dc-link vdc to the inductor current iL and
capacitor voltage vc can be derived as:

iL(s)
vdc(s)

=
do(C f Ros + 1)

C f L f Ros2 + L f s + Ro(1− do)
2 , (4)

vC(s)
vdc(s)

=
Rodo(1− do)

C f L f Ros2 + L f s + Ro(1− do)
2 . (5)

In steady-state, (4) and (5) can be reorganized as:

IL
Vdc

=
do

Ro(1− do)
2 , (6)

VC
Vdc

=
do

1− do
. (7)

It should be noted that (1)–(7) are only applicable to the case of positive output voltages
(see Figure 2). In the case of negative output voltages, as shown in Figure 3, the vdc in (1)–(7)
should be replaced by −vdc. This nonlinear behavior will bring in additional concerns to
controller design. In order to address this problem, the absolute value of duty cycle do is



Appl. Sci. 2022, 12, 6705 4 of 8

used instead of its actual value. Furthermore, when the reference duty cycle crosses zero
from a positive value to a negative value, the driving pulses of S2 and S3 are shifted to S1
and S4, and vice versa. Through this approach, the sign of the output voltage vc can always
be regulated to follow the sign of its reference, and (1)–(7) are applicable to |vc|.

5. Controller Design
5.1. Open-Loop Control

It is obvious from (7) that the duty cycle for a desirable sinusoidal output voltage
vc = VCp sin(ωt) can be expressed as:

do =

∣∣VCp sin(ωt)
∣∣

Vdc +
∣∣VCp sin(ωt)

∣∣ . (8)

5.2. Closed-Loop Control

A typical double-loop controller, i.e., an outer voltage-loop and an inner current-
loop controller [15,16], is incorporated to regulate the proposed buck–boost inverter. Its
relevant control block diagram is shown in Figure 4, where Kpwm denotes the gain of the
pulse-width modulator (PWM), z−1 represents one sampling period time delay, and ZOH
stands for the mathematical model of the zero-order-hold behavior of the pulse-width
generator [7]. It should be mentioned that the proposed controller is implemented by
a digital controller, and hence, the transfer functions of the controllers are expressed in
the discrete z-domain. In contrast, the system plant model, which is described by (3), is
represented in the continuous s-domain. Additionally, a control block denoted as Gd(z) is
employed in the current controller to effectively dampen the resonant peak introduced by
the LC-filter. Moreover, taking the varying loads into consideration, the load current iR(s) is
treated as a disturbance here.
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The transfer function from the output of PWM generator to the inductor current iL(s)
can be derived from Figure 4 as follows:

Tvi_iL(s) =
iL(s)
vi(s)

=
C f s

C f L f s2 + (1− do)
2 . (9)

In addition, the transfer function from the output of PWM generator to the output
voltage vc (s) can be derived as:

Tvi_vC(s) =
vC(s)
vi(s)

=
1− do

C f L f s2 + (1− do)
2 . (10)

Applying the z-transformation with ZOH into (9) and (10), the relevant discrete
expressions can be obtained as:

Tvi_iL(z) = Z
[
(1− z−1) · Tvi_iL(s)

s

]
= (z−1)·sin[(1−do)ωrTs ]

(1−do)L f ωr ·{z2−2z cos[(1−do)ωrTs ]+1} ,
(11)
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Tvi_vC(z) = Z
[
(1− z−1) · Tvi_vC(s)

s

]
= (z+1)·{1−cos[(1−do)ωrTs ]}

(1−do)·{z2−2z cos[(1−do)ωrTs ]+1}
(12)

where ωr = 1/(LfCf)1/2 denotes the resonance frequency of the LC-filter. After the derivation
of (11) and (12), the simplified control block diagram of the proposed buck–boost inverter
is illustrated in Figure 5, where all the transfer functions are expressed in the z-domain. The
system and control parameter values are tabulated in TABLE I. It should be mentioned that
the proportional gains Gi and Gd are used for the current controller, while a proportional-
resonant (PR) controller with its proportional gain denoted as Gvp and resonant gain
denoted as Gvr is employed as the voltage controller.
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Based on Figure 5 and the system parameter values listed in Table 1, the pole-zero map
of the closed-loop voltage control is illustrated in Figure 6, where the zeros are represented
as circles while the poles are denoted as crosses. The effectiveness of the proposed damping
control block Gd(z) can be clearly observed by comparing Figure 6a,b. As seen, the system
poles are located much closer to the center of the unit circle after the carefully designed
Gd(z) is enabled. It should be highlighted that the variation in the duty cycle will influence
the stability of the proposed inverter, while the stability of conventional H-bridge inverters
is independent of do. As a consequence, all the closed-loop poles should always stay within
the unit cycle as the duty cycle varies. In order to ensure the system stability, the maximum
value of the output voltage vc should be given first, and then the maximum do can be
derived according to (8). Next, the variation range of do can be obtained. Finally, the map of
the closed-loop poles can be drawn to validate whether the system poles are always inside
the unit cycle. As it can be seen from Figure 6a, the system can be stable even when the
duty cycle is as high as 0.8, which corresponds to an output voltage of 400 V.

Table 1. System and Control Parameter Values.

Description Symbol Value

Dc-link voltage Vdc 100 V

Filter inductor Lf 1 mH

Filter capacitor Cf 50 µF

Load resistor Ro 10 Ω

Output voltage VC 50–150 V

Current controller Gi/Gd 1/4

Voltage controller Gvp/Gvr 0.2/100

Fundamental frequency fo 50 Hz

Switching frequency fs 10 kHz
Sampling frequency

Rated power Po 1 kW
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6. Simulation Results

Simulations models were built in Matlab/Simulink software based on the system
parameter values listed in Table 1 and the schematic diagram shown in Figure 1. The
simulation waveforms of capacitor voltage vc and inductor current iL under two cases,
where the peak ac voltages (50 V and 150 V) are lower than and higher than the dc-link
voltage, are demonstrated in Figures 7 and 8. For these two cases, the dc-link voltage vdc is
maintained as a constant 100 V. As observed, the proposed inverter enables the operations
of both buck-type and boost-type inverters. As mentioned, the switching patterns are
changed while the system structure remains fixed. These results are consistent with the
theoretical analysis.
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7. Conclusions

In this paper, a single-stage transformerless buck–boost inverter has been proposed
to directly achieve dc to ac conversion regardless of the relationships between its dc-link
voltage and peak ac output voltage. The proposed inverter is an equivalent replacement of
a conventional boost converter cascaded with an inverter, while the former features simpler
circuit structure, lower cost, smaller volume, and straight-forward implementation. The
analysis based on its state space average model indicates that the stability of the proposed
inverter is dependent on the value of its duty cycle. Fortunately, this issue can be addressed
by a well-designed outer voltage-loop plus inner current-loop controller. Simulation results
are presented to validate its effectiveness.
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