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Abstract: With the continuous increase in user-side flexible controllable resources connected into a
distribution system, the components of electrical load become too diverse and difficult to be accuracy
forecasted. A short-term load forecast method that integrates variational modal decomposition
(VMD), gated recurrent unit (GRU) and time convolutional network (TCN) into a hybrid network
is proposed in this paper. Firstly, original electrical load sequence data with noise are decomposed
into intrinsic IMF components with different frequencies and amplitudes based on the VMD method.
Secondly, a combined load forecasting method based on the GRU and TCN network is proposed for
the high and low-frequency load subsequent signals, respectively. Finally, the high and low-frequency
signals forecasting results of the GRU and TCN network are rebuilt for the final load forecasting. The
experiment results based on actual operation data (data set 1) and simulation data (data set 2), which
show that the proposed method can reduce the forecasting error by 36.20% and 10.8%, respectively, in
comparison with VMD-GRU. The reliability and accuracy of the proposed method is verified through
the comparison with other methods such as LSTM, Prophet and XG Boost.

Keywords: short-term load forecasting; variational modal decomposition (VMD); gated recurrent
unit (GRU); time convolutional network (TCN); hybrid algorithm

1. Introduction

With the presentation of the goal of “carbon peaking and carbon neutrality” in China,
the construction of a new electrical power system based on new energy is imminent.
Under the new electrical power system architecture, the interaction of renewable energy
generations, energy storage and flexible load resources is becoming more frequent. The
accuracy and reliable challenges posed by the higher penetration of renewable energy
and flexible load resources should be considered significantly. Short-term load forecast is
the basis work of power grid dispatching, and it is becoming more important in the new
electrical power system [1–3].

Various short-term load forecasting models and methods have been proposed and
applied during the past decades. Typically, load forecasting methods are divided into
statistical-based and machine learning-based forecasting methods [4–7]. Statistical methods
include multiple linear regression [8], autoregressive moving average [9], and autore-
gression [10,11]. These methods have a distinctive feature with faster calculation speed.
However, they also have a weak expressive ability for nonlinear problems. With the de-
velopment of artificial intelligence technology recently, machine learning methods such
as gray system [12], recurrent neural network [13], and extreme learning machine [14] are
focused and widely used in load forecasting areas. However, there are gradient extinction
and gradient explosion problems in the back propagation of recurrent neural network with
the layer increase in the deep structure. Extreme learning machine is a combined stochastic
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prediction and multiple regression method; its performance reduces with the increasing
complexity of load forecasting considering various meteorological and electrical consump-
tion behaviors. The k-fold cross-validation estimator is widely used in classification and
regression problems. A global support vector regression metamodeling approach based on
the sorted k-fold method is proposed in [15], in which the k number of SVR metamodels
are constructed based on a cross-validation technique. A k-fold cross-validation approach
based on the DCNN algorithm is used for predicting the melanoma classes in [16], and the
k-fold method can achieve a better performance on a small skin cancer data set.

Furthermore, load forecasting methods based on combined algorithms emerge contin-
uously, which have achieved results with a faster calculation speed and higher precision. A
deep learning bidirectional LSTM neural network is proposed in [17]; the method gives
a deep learning structure of bidirectional LSTM to avoid the gradient explosion problem.
A hybrid short-term load forecasting is proposed in [18], which uses the combination of
correlation analysis and appropriate inputs to the individual Bayesian neural network,
but the parallel training and its weight of Bayesian neural network introduce an extra
computational burden. A novel hybrid with a new signal decomposition and correlation
analysis technique method is proposed in [19]; T-copula is used to compensate the peak
load to reduce the forecasting error. A combined method based on the maximum informa-
tion coefficient, factor analysis, gray wolf optimization and generalized regression neural
network is proposed in [20]; the proposed method has a strong global search ability, but it
needs enough time for the training and forecasting.

The variation of electrical price will influence the consumption of electrical power,
which depends on the electrical power curves. So, the electrical price is a key point for
the load forecasting. A new approach combining parametric and nonparametric function
autoregressive models for the prediction of electricity price is proposed in [21]; it provides
insights into the scale and purchase mechanism with the price and demand formation
process. The paper provides a new solution from the purchase curve side to improve
the forecasting accuracy. A load forecasting model based on least square support vector
machine and chaotic time series is proposed in [22], and the real-time price of power load
and chaotic characteristics is considered. A short-term load forecasting method based on
price-responsive load is proposed in [23], and the response of the aggregate load to price is
modeled by a set of marginal utility curves and power consumption limitations. The price
response factors are estimated using a generalized inverse optimization scheme.

Power load time-series data is a non-stationary random process, which has the char-
acteristics of quasi-periodicity, non-stationarity and nonlinearity. In order to improve the
stationarization of power load time-series data, empirical mode decomposition (EMD) [24]
and the frequency domain decomposition algorithm [25] are used to decompose the original
load time series. A data-driven deep learning framework to load forecasting is proposed
in [26], Box–Cox transformation is used to process data, and deep belief network is used
for the load forecasting. A user-side load prediction method that integrates empirical mode
decomposition and deep belief network is proposed in [27]; by decomposing the original
load data into several eigenmode functions with different frequencies and amplitudes, the
deep belief network is used to feature extraction and time-series prediction for each modal
function. A load forecasting method based on ensemble empirical mode decomposition
(EMMD) and Elman network is proposed in [28], the EEMD sample entropy was used to
decompose the original power load sequence into a series of subsequences. A fault feature
extraction method based on VMD optimized with information entropy is proposed in [29],
and several intrinsic model functions were obtained by signal decomposition. Variable
mode decomposition is used to generate 2D time frequency spectrograms from the various
fault conditions of bearing in [30], and deep convolutional neural network is applied for
fault diagnosis.

With the development of deep learning theory in the field of time-series data process-
ing, CNNs have an outstanding performance in comparison with traditional RNN models
such as LSTM. It is believed that sequence tasks should be reconsidered with RNN and
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the CNN method. The CNN neural network is seen as a new solution for the sequence
modeling tasks [31]. Furthermore, a temporal convolutional network (TCN) is proposed,
which accelerates the feedback and convergence of the deep network through the setting
of the residual unit, and it solves the degradation phenomenon caused by the increase
in the network level [32]. A short-term load forecasting model for industrial customers
based on the temporal convolutional network (TCN) and Light Gradient Boosting Machine
(LightGBM) is proposed in [33]; the proposed method can extract the hidden information
and long-term temporal relationships in the electrical load. In [34], convolution neural
networks (CNNs) and gated recurrent unit (GRU) is combined for probabilistic residential
load forecasting, and a deep model based on the mixture density network is used to directly
predict probability density functions. An improved stacked gated recurrent unit-recurrent
neural network (GRU-RNN) for both univariate and multivariate scenarios is proposed
in [35]; the modified algorithm establishes an accurate mapping between the selected
variables and load through its self-feedback.

In this paper, a hybrid load forecasting method based on variational modal decompo-
sition (VMD), temporal convolutional network (TCN) and gated recurrent unit (GRU) is
proposed, and the contributions of this paper are as follows: (1) Variation modal decom-
position is used for the original electrical load decomposition with different frequencies.
(2) A combined load forecasting method based on TCN and GRU neural network is pro-
posed in this paper, the two neural networks are used for the forecasting of different IMF
components based on its frequency characteristics, and it can extract the characteristics
of electrical load in different frequency modes. (3) The simulation based on the actual
electrical load is implemented in this paper; the proposed method can improve the forecast
result both in accuracy and speed.

The structure of the paper is arranged as follows: The variational modal decomposition
method and its application in the power load are discussed in Section 2. In Section 3, the
hybrid neural network method based on GRU and TCN is introduced, and the reasons for
the application of each neural network for the low and high-frequency load decomposition
signal are discussed. In Section 4, two experiment data sets are used to verify the proposed
method; the results show that the proposed method can catch the dynamic of electrical load
in different frequency bandwidths and improve the accuracy of the electrical load forecasting.

2. Variational Modal Decomposition of Electrical Load

With the deepening of the re-electrification process of the energy system, more and
more renewable generations will connect into power system. The power consumption
characteristics in the user side are changing significantly. It is difficult to forecast the load
profile in the power station with large-scale renewable generations. On the one hand, the
output power of renewable energy is volatile, which causes fluctuation of the power load
in the power station. On the other hand, the power load data contain a lot of random noise
from users’ individual electricity habits. For example, the yearly and daily periodicities can
be seen in Figure 1.
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Figure 1. Yearly seasonality load profiles.

Load profile is essentially a comprehensive reflection of the dynamic response of
various electrical resources in the load-side system. The principle output power of different
components is similar and can be distinguished easily. It is mature to forecast a single
specific component based on its physical mechanism. Therefore, the load forecast accuracy
can be improved by decomposing the total load profile into a series of component levels
with certain characteristics. VMD is an adaptive, non-recursive method for modal variation
and signal processing. The number of modal decompositions of the signal sequence is
determined by the change of the actual signal sequence. The optimal frequency center and
limited bandwidth of each mode are adaptive matched and iterated to separate the intrinsic
modal components (IMFs) and residuals. As a result, the frequency domain division of the
power load time-series signal is obtained.

It assumes that all signal sub-components are narrowband signals which concentrated
around their respective center frequencies in the VMD method. As a result, a constrained
optimization problem based on the components’ narrowband condition is established.
The center frequencies of the different components and reconstructing their respective
components is the core of VMD. It can effectively reduce the complexity of decomposition
for the non-stationary random sequences compared with the EMD, and the subsequences
have different frequency scales and stationary characteristics. The establishment and
optimization of the Variational Problem (VP) are the two cores of the VMD method.

2.1. Variational Problem Establishment

In this paper, the alternating direction multiplier method is used to continuously
update each mode and its center frequency. The corresponding fundamental frequency
band of each mode is gradually demodulated to obtain the center frequency. We assume
that the original signal sequence is f (t), K is the number of center frequencies, and {uk(t)}
represent the components of IMF in the limited bandwidth. Based on the Hilbert transform,
the one-sided spectral signal of envelope signal uk(t) can be rewritten as

[
δ(t) + j

πt

]
∗ uk(t).

The frequency of each IMF is modeled to the baseband based on the center frequency ωk. It
can be written as

[([
δ(t) + j

πt

])
∗ uk(t)

]
e−jωkt.

The Variational Problem (VP) based on each IMF component signal bandwidth can be
written as

min
{υk},{ωk}

{
K

∑
k=1
‖∂t

[(
δ(t) +

j
πt
⊗ υk(t)

)]
e−jωkt‖

2

2

}
(1)

s.t.
K

∑
k=1

uk = f (2)
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where {uk} is the IMF component, {ωk} is the center frequency of each IMF component, ⊗ is
the convolution operator, δ(t) is the Dirac distribution, and ∂t is the partial derivative function.

Lagrange Multiplier λ(t) and bandwidth parameters α are introduced to turn the con-
strained Variational Problem into an unconstrained Variational Problem, and the extended
Lagrangian function for the Variational Problem can be written as:

L({uk}, {ωk}, λ) = α∑
k
‖∂t

[(
δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt‖

2

+‖ f (t)−∑
k

uk(t)‖2

2
+ < λ(t), f (t)−∑

k
uk(t) >

(3)

2.2. Variational Problem Solution

The IMF component uk(t) and center frequency ωk(t) of each mode are updated based
on the alternating direction multiplier method, and the new modal components can be
written as:

ûn+1
k (ω) =

f̂ (ω)− ∑
i 6=k

ûi(ω) + (λ̂(ω)/2)

1 + 2α(ω−ωk)
2 (4)

where, f̂ (ω), ûi(ω), λ̂(ω) and ûn+1
k are the estimated value of f (t), ut(t), λ(t) and un+1

k
after Fourier transform, n is the number of iterations, and v is the frequency. The VMD
calculation process is shown in Figure 2, and parameter estimation can be written as:

ω̂n+1
k =

∫ ∞
0 ω|ûk(ω)|2dω∫ ∞

0 |ûk(ω)|2dω
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3. Load Forecasting Based on GRU and TCN Hybrid Network
3.1. Gate Recurrence Unit (GRU)

A long short-term memory (LSTM) network can solve the gradient explosion and
gradient disappearance problem in RNN, and LSTM has been widely used in the area of
data processing in recent years. GRU is a variant of LSTM with fewer internal units; it
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combines the input gate and forget gate into one update gate. It is easier to perform the
training process and save computing time compared with LSTM. The substructure of GRU
is shown in Figure 3; there are only two gates: namely, the update gate and the reset gate.
Its mathematical description is shown in Formula (6).

rt = σ(Wr · [ht−1, xt])
zt = σ(Wz · [ht−1, xt])

h̃t = φ(Wh · [rt × ht−1, xt])

ht = (I − zt)× ht−1 + zt × h̃t
yt = σ(Wo · ht)

(6)

where zt and rt are the update gate and reset gate, σ is the Sigmoid function, φ is the
hyperbolic tangent function, xt, ht−1, ht and yt are the vector of input data, state memory
variable in time t − 1 and t, and output data, respectively. Wr, Wz, Wh and Wo are the
weight factor of the connection matrix between xt and ht−1 in the update gate, reset gate,
memory unit, and output gate, respectively. I is the identity matrix. The update gate is
used to control the information percentage of the previous moment when it is brought into
the next moment. The reset gate controls how much information from the previous state is
reserved to the current candidate set h̃t.
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3.2. Temporal Convolutional Network

Temporal convolutional network (TCN) is a variant of convolutional neural network
(CNN). The core of TCN is atrous convolution and residual block. TCN has a larger causal
convolution than traditional causal convolution with the same network depth, and it can
flexibly adjust the size of the receptive field. The TCN model solves the gradient explosion
and gradient disappearance problem by initializing weight parameters and regularization
layers in time-series data prediction. The residual module is used to make the network
information directly and deeply transmitted through the cross-layer form in TCN.

The convolution process of standard convolution and atrous convolution is shown
in Figure 4. By injecting holes into the convolution, atrous convolution allows interval
sampling in the input data, which increases the receptive field without going through the
pooling layer. The convolution output contains a large range of information to ensure the
authenticity of the information.



Appl. Sci. 2022, 12, 6647 7 of 16

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 17 
 

 
Figure 3. Basic structure of GRU. 

3.2. Temporal Convolutional Network 
Temporal convolutional network (TCN) is a variant of convolutional neural network 

(CNN). The core of TCN is atrous convolution and residual block. TCN has a larger causal 
convolution than traditional causal convolution with the same network depth, and it can 
flexibly adjust the size of the receptive field. The TCN model solves the gradient explosion 
and gradient disappearance problem by initializing weight parameters and regularization 
layers in time-series data prediction. The residual module is used to make the network 
information directly and deeply transmitted through the cross-layer form in TCN. 

The convolution process of standard convolution and atrous convolution is shown 
in Figure 4. By injecting holes into the convolution, atrous convolution allows interval 
sampling in the input data, which increases the receptive field without going through the 
pooling layer. The convolution output contains a large range of information to ensure the 
authenticity of the information. 

 
Figure 4. Comparison of CNN and TCN convolution. 

The receptive field can be written as: 

maxsR k d s=  (7)

For 1D sequence input X  and filter f , atrous convolution operation F  on the 
input sequence can be written as: 

1

0
·( ) ( )

k

s d i
i

F s f i X
−

−
=

=  (8)

where R  is the size of the receptive field, sk  is the size of the convolution kernel, maxd  
is the maximum number of hollows, s  is the number of convolutional layers, d is the 

Figure 4. Comparison of CNN and TCN convolution.

The receptive field can be written as:

R = ksdmaxs (7)

For 1D sequence input X and filter f , atrous convolution operation F on the input
sequence can be written as:

F(s) =
k−1

∑
i=0

f (i)Xs−d·i (8)

where R is the size of the receptive field, ks is the size of the convolution kernel, dmax is
the maximum number of hollows, s is the number of convolutional layers, d is the hollow
coefficient, k is the filter size, and s− d·i is the direction of past data. It can be seen that the
receptive field is positively correlated with the size of the convolution kernel, the maximum
number of holes and the number of convolution layers.

The residual connection module uses the previous information and converted them as
the current input to ensure the training efficiency; the residual connection module can be
written as:

o = Activation(x + χ(x)) (9)

where o is the output of residual block, Activation is the activation function, x is previous
information, and χ(x) is converted information.

3.3. Load Forecasting Based on VMD-GRU-TCN

After VMD decomposition, different IMF components have different frequency charac-
teristics. In this paper, different neural networks are selected for the data training and load
forecasting based on the different frequency characteristics of the load modal components.
As mentioned above, the GRU network can better capture the time-series characteristics
and variation rules of stationary signals, and it can obtain higher prediction accuracy
when the model parameters do not change much. It is suitable for the forecasting of the
low-frequency load components. The convolutional layer of TCN has both atrous convolu-
tion and causal convolution structures. Atrous convolution allows the volume to obtain
different receptive fields by controlling the sampling rate; it covers a suitable range of
sequence values. In addition, through the parallel performance of hole convolution, the
time-series tracking of high-frequency fluctuation signals can be improved significantly.
The forecasting results of the high and low-frequency load components are rebuilt for the
result of the load forecast; the process of the proposed method is shown in Figure 5. The
specific forecast steps are as follows:
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(1) Data preprocessing. The original load data contain abnormal data and missing data.
First, the data are cleaned by DBSCAN clustering, the abnormal data are eliminated
and the missing data are supplemented.

(2) Decomposition of time-series load data. The load time series data are decomposed by
VMD to obtain the different f (t), uk(t), and λ(t), corresponding to the characteristic
data with different frequencies.

(3) Load forecasting. We construct a load forecasting model based on the GRU network
and TCN network, select the load data on similar days to determine the training date
and carry out model training to obtain the load forecasting model; then, the load data
of different components in the future day are forecasted.

(4) Load reconstruction. The forecast data of different components are superimposed and
reconstructed to obtain the forecast daily load data.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 17 
 

 
Figure 5. VMD-GRU-TCN based forecasting process. 

4. Experiment Simulation and Data Analysis 
4.1. Experimental Environment and Load Data 

The experiment was completed using Python 3.8 n and the open source library 
vmdpy to write the VMD program. The neural network was implemented in Keras 2.6. 
The data set contains two parts in this experiment: the GEFCom2012 [36] load data and 
the actual load data of the power station in the southwest province in China during 1 
January 2016 to 31 December 2018. The sampling time of the data set is 15 min. 

Firstly, the load data are classified by the density-based clustering algorithm 
(DBSCAN). The clustering result is shown in Figure 6. Normal data are divided into one 
cluster, and the remaining clusters can be regarded as abnormal data. For anomalous data, 
it will be replaced by the mean of before and after data. 

 
Figure 6. DBSCAN clustering diagram. 

Figure 5. VMD-GRU-TCN based forecasting process.

4. Experiment Simulation and Data Analysis
4.1. Experimental Environment and Load Data

The experiment was completed using Python 3.8 n and the open source library vmdpy
to write the VMD program. The neural network was implemented in Keras 2.6. The data
set contains two parts in this experiment: the GEFCom2012 [36] load data and the actual
load data of the power station in the southwest province in China during 1 January 2016 to
31 December 2018. The sampling time of the data set is 15 min.

Firstly, the load data are classified by the density-based clustering algorithm (DB-
SCAN). The clustering result is shown in Figure 6. Normal data are divided into one cluster,
and the remaining clusters can be regarded as abnormal data. For anomalous data, it will
be replaced by the mean of before and after data.
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The root mean square error (RMSE) and mean absolute percentage error (MAPE)
are used as the evaluation indicators in this paper. The smaller the value of evaluation
indicators, the higher the forecast accuracy.

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (10)

MAPE =
1
n

n

∑
i=1
|yi − ŷi| (11)

where yi represents the actual data, and ŷi represents the forecast data.
It is necessary to determine the value of the decomposition quantity to perform VMD

decomposition. In general, the value is between 5 and 20 based on the literature. In
this experiment, the center frequency value of each component is calculated with the
decomposition quantity starting from 5. It can be seen that some important information
in the original signal will be filtered when the decomposition quantity is too small, which
will result in insufficient precision for the load forecast. However, the center frequencies
of adjacent modal components will be too close, adding noise when the decomposition
quantity increases.

Table 1 shows the center frequency of each IMF component when the decomposition
quantity is between 5 and 10. It can be seen that the center frequency decreases when
K < 8, which indicates that the IMF mode may be under-decomposed. When K = 9, IMF6
and IMF7 have similar modes, so the modal decomposition number K = 8 is suitable in the
experiment in this paper. The dynamic profile of different component is shown in Figure 7.

Table 1. The center frequency of each IMF component under different K.

K IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10

5 0.02 83.15 41.51 288.77 165.29
6 0.02 83.14 41.51 208.46 290.39 164.28
7 0.01 41.51 83.14 208.44 290.29 164.29 374.00
8 0.01 41.51 83.14 164.31 208.44 290.29 373.77 457.30
9 0.01 41.53 83.11 164.32 208.40 290.19 327.33 374.47 457.41

10 0.01 41.52 83.14 164.34 208.04 248.93 291.26 329.93 374.67 457.53
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The penalty parameter α is generally set to be about twice the amount of data, and
it will be 2000 in this paper. The other parameters will be set as follows: initial center
frequency ω = 0, and the convergence parameter is r = 1 × 10−7. The first 1000 pieces of
data in this data set are decomposed, and the modal components diagram is shown in
Figure 6. It can be seen that the modal components decomposed by VMD are smoother
than the original data, which is useful and helpful for subsequent neural network training.
Among them, the component IMF1 is close to the trend of the original load sequence profile,
and it reflects the overall load trend.
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4.2. Analysis of Complementary Characteristics of Hybrid Algorithms

In order to verify the reliability of the proposed model, the actual operation load data
of a certain province are used as data set 1, the data from 0:00 on 1 January 2016 to 18:00
on 26 May 2018 are used as the training data set and a total of 50 h of data from 19:00 on
26 May to 20:00 on 28 May 2018 is used as the test data set; the sampling frequency is 1 h,
and the iterative prediction is performed 6 h in advance.

The GEFCom2012 data are used as data set 2. The load data from 0:00 on 1 January
2009 to 23:45 on 25 January 2009 are used as the training data set and the load data at
23:45 on 7 February 2009 are used as the test set; the sampling frequency is 15 min. The
iterative prediction is carried out 2 h in advance. The GRU network and TCN network
parameters used, respectively, in the experiment are determined by training and testing.
The parameters of the two neural networks are shown in Table 2.

Table 2. Parameters of neural networks.

Parameter GRU TCN

hidden layer 3 3
batch size 128 128
epoch 100 100
learning rate 0.01 0.01
dropout 0.1/0.2 0.1/0.2
activation function relu relu
dilation rate - 1/2/4

Figure 8 shows the load forecasting results of the eight IMF components in data set
1 using the GRU model and the TCN model, respectively. For the low-frequency load
components, the error between actual and forecasting data based on the GRU network is
smaller than that of the TCN forecasting model. However, the prediction accuracy of GRU
will decrease with the frequency increase such as IMF5 to IMF 8.
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Furthermore, the GRU model and the TCN model are used for the load forecasting of
high-frequency components and low-frequency components in data set 2. The results are
shown in Figures 9 and 10, respectively. It can be seen that in the low-frequency component,
the forecasting result of the GRU model is more accurate than that of the TCN model.
Figure 10 shows that the GRU model has a larger prediction error when the time-series
data fluctuate too fast.
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4.3. The Comparison of Different Forecasting Models

In order to verify the validity of the proposed method in this paper, GRU, TCN, LSTM,
Prophet, VMD-GRU, and VMD-TCN were selected for experimental comparison, and the
forecasting results are shown in Table 3. It can be seen that after the VMD decomposition,
the forecasting errors of the GRU and TCN neural networks are lower than that without
VMD decomposition. The performance of the forecasting is significantly improved, which
indicates the feasibility of using VMD to decompose the original load sequence. Among
the individual algorithms, the forecasting error of the GRU model is the smallest with the
RMSE of 50.38 MW and MAPE of 1.12% in data set 1.
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Table 3. Comparison of different forecasting methods.

Method
Data Set 1 Data Set 2

RMSE/MW MAPE Time/s RMSE/MW MAPE Time/s

GRU 58.43 1.19 120 25.21 1.83 169
TCN 77.08 1.32 131 44.24 2.50 146

LSTM [37] 64.05 1.27 157 33.54 2.09 190
Prophet [38] 144.58 4.71 172 87.25 4.41 231

XG Boost [38] 125.23 1.68 185 36.25 2.35 199
VMD-GRU 50.38 1.12 982 11.43 1.21 1292
VMD-TCN 56.64 1.14 374 24.72 1.75 495

VMD-GRU-TCN 32.14 0.42 731 10.19 0.97 1007

Due to the high randomness and non-stationarity of the original load profile, the
forecasting model constructed by a separate algorithm cannot fit the actual load situation
very well. The results show that the hybrid model combined with the GRU and TCN
network is the smallest both in data set 1 and data set 2. The RMSE of the forecasting
result of VMD-GRU is reduced by 36.20% and 10.8%, respectively, while the MAPE of the
forecasting result of VMD-GRU is reduced by 62.5% and 19.8%.

At the same time, the training and operation time of different prediction models is
shown in Table 3. It can be seen that the operation time of the model proposed in this
paper is slightly longer than that of the other non-decomposition prediction. The time-
series load data are decomposed into eight components by VMD, and the process is serial,
which increase the calculation time. However, if the different components are calculated in
parallel, then the operation time will be greatly reduced. From Table 3, the TCN network
itself has the ability of parallel calculation. Therefore, the computation time of the VMD-
GRU-TCN model is reduced compared with the VMD-GRU model. Figures 11 and 12 show
the comparison of different models based on data set 1 with 24 sample points and data set
2 with 96 sample points on the next day. It can be seen from Figures 11 and 12 that the load
forecasting result has a high similarity with the original load profiles.
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5. Conclusions

This paper proposes a short-term load forecasting method based on a VMD and
GRU-TCN combined network, which effectively solves the problem of low accuracy of
traditional forecasting models due to the high randomness and non-stationarity of original
load data. The variational modal decomposition is used to decompose the noisy original
load sequence data into intrinsic IMF modal components with different frequencies and
amplitudes, which can effectively reduce the complexity of the original time-series data.
The gated recurrent unit (GRU) and temporal convolutional network (TCN) are used to
extract, train and predict the IMF modal components. The simulation results show that
the combined method has a certain degree of improvement in the prediction accuracy
compared with the single prediction model.

However, there are some limitations of the proposed method in this paper. (1) The
future work will focus on the coordination mechanism of the combined neural network. The
forecasting results of different IMF models based on TCN and GRU will be linearly combined
together for the result of electrical load forecasting, and the adaptive combined method will
be a more suitable strategy. (2) From Table 3, which shows a comparison with the VMD–TCN
method, the proposed model needs more time to obtain a better result. Thus, we will build a
parallel computing framework for the proposed method in future work.
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