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Abstract: The research on helicopter rotor aerodynamic noise becomes imperative with the wide
use of helicopters in civilian fields. In this study, a signal enhancement method based on cyclic
Wiener filtering was proposed given the cyclostationarity of rotor aerodynamic noise. The noise was
adaptively filtered out by performing a group of frequency shifts on the input signal. According to
the characteristics of rotor aerodynamic noise, a detection function was constructed to realize the
long-distance detection of helicopters. The flight data of the Robinson R44 helicopter was obtained
through the field flight experiment and employed as the research object for analysis. The detection
range of the Robinson R44 helicopter after cyclic Wiener filtering was increased from 4.114 km to
17.75 km, verifying the feasibility and effectiveness of the proposed method. The efficacy of the
proposed detection method was demonstrated and compared in the far-field flight test measurements
of the Robinson R44 helicopter.

Keywords: rotor; aerodynamic noise; cyclic Wiener filtering; long-distance detection

1. Introduction

The noise problem has become an important factor affecting the lives of residents.
Erickson examined the effects of background noise on infants and children [1]. Minichilli
investigated the impact of background noise on school students aged between 11 and
18 years, and their level of annoyance was often related to background noise [2]. Rossi
analyzed the effect of low-frequency noise on cognitive performance of young people aged
19 to 29 years, based on changes in their heart rates [3]. Petri studied the effects of exposure
to road, railway, airport, and recreational noise on blood pressure and hypertension, espe-
cially for people aged 37 to 72 years [4]. Furthermore, literature [5] investigated seafarers’
cognition and attitude towards ship noise emission and raised seafarers’ perceptions of
the impact of noise on their health. In addition, if the background noise is too strong, the
target signal will be overwhelmed, affecting our ability to obtain information. When the
background noise is too strong, on the one hand, it affects the health of the listener, on the
other hand, in order to obtain the target signal more effectively, some methods need to be
used to filter the background noise. During the flight of the helicopter, there is a strong
background noise, which will limit the detection distance of the helicopter. Therefore,
in order to achieve helicopter detection at a longer distance, it is necessary to filter the
background noise.

Helicopters, as an air transport platform, usually make full use of terrain and other
conditions to fly at low or ultra-low altitudes when performing rescue missions. They
have the advantage of being difficult to be detected by radar, infrared, and other detection
methods. The helicopter adopts the rotor to provide lift, propulsion, and control force,
with a unique vertical take-off and landing, as well as hovering, high maneuverability, and
low-altitude and low-speed flight performance [6]. However, the rotor generates strong
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medium- and low-frequency noise, the attenuation in the air is slow, and the propagation
distance is long [7–9]. The rotor aerodynamic noise presents time-varying, non-stationary,
and multi-harmonic characteristics under the influence of various conditions such as the
atmosphere, mountainous environments, fuselage scattering, and flight state when the
helicopter is flying in complex environments, such as mountainous areas [10]. Therefore,
the investigations of helicopter rotor aerodynamic noise have become a crucial topic of
research nowadays.

Helicopter flight noise is mainly derived from the main rotor, tail rotor, and engine.
Among them, the former two belong to rotor noise, and the latter is non-rotor noise.
The engine noise is related to the high-frequency part and attenuates rapidly in the air.
Meanwhile, the noise reduction of the engine can be achieved through the engine design.
The aerodynamic noise of the main and tail rotor is mainly in low frequency and slowly
attenuates in the air; it is the focus of helicopter noise research [11]. The SNR (signal-to-
noise ratio) is extremely low when the helicopter noise signal is received over long distances
due to attenuation, since it propagates through the atmosphere. However, the frequency
component of rotor aerodynamic noise is low and propagates far in the air during the
long-distance detection of the helicopter. Hence, it is the key to helicopter detection.

According to the different generation mechanisms and propagation directions of
various noises, helicopter rotor aerodynamic noise can be divided into thickness noise,
loading noise, blade vortex interaction (BVI) noise, high-speed impulse (HSI) noise, and
broadband noise [8,9]. Thickness noise and loading noise are also commonly referred to
as rotation noise [7]. The rotation process of the blade aerodynamic force and the rise of
the air volume pulsation constitute the low frequency part of the rotor noise. BVI noise is
generated due to the mutual interference between the aerodynamic characteristics of the
blades and the vortex shedding from the tip of the propeller. HSI noise usually refers to a
kind of impulse noise caused by the surge wave when the helicopter flies forward at a high
speed [12]. Turbulence near the blade surface creates broadband noise [13].

A cyclostationary signal is a kind of special non-stationary signal with hidden pe-
riodicity. The cyclostationarity signal is a powerful tool for processing random signals
with hidden periodic phenomena. Cyclostationary signal processing methods are used in
various fields such as bearing fault diagnosis and mechanical source separation [14–21].
However, there is little research on its application to the aerodynamic noise of helicopter
rotors. Few people might have linked rotor aerodynamic noise to cyclostationarity before.
While the helicopter is flying and hovering, the rotor aerodynamic noise has the character-
istics of cyclostationarity ascribed to the periodic movement of the rotor [22,23]. Therefore,
the application of cyclostationary analysis methods in aeroacoustics has gradually received
extensive attention [19–25]. Antoni, as a top scholar in the field of cyclostationary sig-
nals, proposed a variety of methods to extract cyclostationary signals [24], and gradually
applied them to the field of aeroacoustics [25]. However, compared with reference [25],
the cyclic Wiener filter only needs one microphone to extract the acoustic signal, and the
implementation of this method is simpler. Reference [26] gives a method for detecting
helicopters by radar, but helicopters are not easy to detect by radar when helicopters fly at
an ultra-low altitude. However, we use acoustic signals to detect the helicopter in this paper,
because there must be a noise signal when the helicopter is flying. Yu et al. proved the
cyclostationarity of rotor aerodynamic noise [22] and proposed a cyclostationary modeling
method of helicopter rotor aerodynamic noise [23].

The cyclic Wiener filter can effectively extract the signal with cyclostationarity from
the noise signal without cyclostationarity [27–29]. Therefore, this method has a significant
enhancement effect on the rotor aerodynamic noise signal with cyclostationary characteris-
tics. Envelope spectrum analysis based on the Hilbert transform is effective in extracting
feature frequency, and it is frequently applied in bearing fault diagnosis [30]. However, the
characteristic frequencies of bearing faults are generally cyclostationary [31,32]. Therefore,
it can be adopted for rotor aerodynamic noise spectrum analysis.

The innovations and main contributions of this paper are described as follows:
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1. Aiming at the cyclostationary characteristics of helicopter rotor aerodynamic noise, a
cyclic Wiener filter is proposed to be used in the field of helicopter rotor aerodynamic
noise enhancement.

2. The cyclic frequency of helicopter rotor aerodynamic noise at different distances is
obtained by the cyclostationary analysis method, and it is used for frequency shifting
in cyclic Wiener filtering.

3. It is proposed to use the envelope spectrum based on the Hilbert transform to analyze
the effect before and after filtering, because the envelope spectrum can eliminate some
unnecessary frequency interference and highlight the rotor aerodynamic noise signal
with cyclostationarity.

4. According to the harmonic characteristics of helicopter rotor aerodynamic noise, a
simple and practical detection method is constructed and combined with cyclic Wiener
filtering, which can greatly improve the detection distance of helicopters.

In this paper, a cyclic Wiener filter was constructed and used for the enhancement of
helicopter rotor aerodynamic noise, and the filtering effect was analyzed through the enve-
lope spectrum. Furthermore, a detection function was constructed under the consideration
of the characteristics of rotor aerodynamic noise, so as to realize the long-distance detection
of helicopters. In Section 2, the related theories and methods of cyclic Wiener filtering
were introduced in detail, as well as how to realize the filtering of rotor aerodynamic noise.
In Section 3, why the envelope spectrum was used for analysis and how to obtain the
envelope spectrum through the Hilbert transform were explained. Afterward, through the
experiment, the cyclic Wiener filter was completed, and the long-distance detection of the
helicopter was realized in Section 4. Finally, conclusions were drawn in Section 5.

2. Theory

The operation of rotating machines determines that any type of rotating machine can
be modeled with cyclostationary. Antoni summarized the research on the cyclostationary
mechanism of various rotating machines [14–17]. Given the periodic motion of the rotor
when the helicopter is flying and hovering, the aerodynamic noise of the rotor presents
cyclostationarity. However, ambient noise can be filtered out by the cyclic Wiener filter
since it is not cyclostationary.

2.1. Spectral Coherence Theory

Antoni obtained the cyclic spectral coherence theory [15–17] when he studied the
analysis method of cyclostationary signals. The time average correlation coefficient ρα

x( f )
of signal x(t) at f − α/2 and f + α/2 is called spectral correlation function, defined as

ρα
x( f ) =

Sα
x( f )

[〈Sx〉( f + α/2)〈Sx〉( f − α/2)]1/2 (1)

where ρα
x( f ) denotes the Fourier transform of the cyclostationary autocorrelation func-

tion, Sα
x( f ), of the signal, x(t), with respect to the time delay, τ, called the cyclic spectral

correlation density function:

Sα
x( f ) =

∫ ∞

−∞
Rα

x(τ)e
−j2π f τdτ (2)

〈·〉 represents the time average factor:

〈·〉 = lim
W→∞

1
W

∫ W/2

−W/2
·dt (3)

The spectral coherence function satisfies:

0 ≤ |ρα
x( f )| ≤ 1 (4)
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|ρα
x( f )| = 1 indicates that the two spectral lines of a random process x(t) are com-

pletely correlated at frequencies centered on spectral frequency, f, and separated by a cyclic
frequency, α; |ρα

x( f )| = 0 suggests that the two spectral lines are completely uncorrelated.
There must be a non-zero |ρα

x( f )| when the random process, x(t), is cyclostationary. In other
words, the two discrete frequencies of the random process are correlated, and the distance
between these two discrete frequencies must be equal to a certain cyclic frequency of the ran-
dom process (f + α/2)− (f − α/2) = α. Therefore, the cyclic frequency of the cyclostationary
signal can be obtained by this method and then used for cyclic Wiener filtering.

2.2. Cyclic Wiener Filter

The cyclic Wiener filter is optimal in the sense of the least mean square, and it is pro-
posed based on the spectral coherence theory of cyclostationary signals. The characteristic
cyclic frequencies of cyclostationary signals are only required in advance. Then, the original
signal traverses all characteristic cyclic frequencies to perform a set of frequency shifts.
Finally, the adaptive filtering of the signal is realized through a filter bank.

If the target signal is cyclostationary, the adaptive filter for the stationary signal will
no longer be applicable. Some researchers applied the basic ideas of Wiener filters, such
as the Wiener–Hough equation, the steepest descent method, and the LMS (least mean
square) algorithm, to cyclostationary signals and gradually formed the theory of cyclic
Wiener filters that can be used for adaptive filtering of cyclostationary signals [27–30].

The so-called cyclic Wiener filter first shifts the frequency of the input signal, x(t),
with cyclostationarity:

xη(t) = x(t)·ej2πηt (5)

where η contains all the cyclic frequencies of x(t). The shifted signal, xη(t), is selected as the
new input signal. Then, xη(t) is passed through the filter bank, hη(t), to obtain the respective
output signal, yη(t), and yη(t) is summed to acquire the total output signal, y(t). The error
function of e(t) is obtained by performing the difference operation with the expected output
signals, d(t) and y(t). The filter coefficients of each group are adaptively adjusted following
e2(t) to achieve optimal filtering. Figure 1a,b demonstrates the structural block diagrams of
the adaptive filter and cyclic Wiener filter, respectively.
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Figure 1. (a) Diagrams of the adaptive filter; (b) diagrams of the cyclic Wiener filter.

As observed in Figure 1, the cyclic Wiener filter is equivalent to the superposition of
multiple adaptive filters.

However, the cyclic Wiener filter in practical applications is always implemented in a
discrete form. Therefore, the relationship between the input and output of the cyclic Wiener
filter can be obtained:

y(n) = ∑
η

M−1

∑
m=0

wη,m·
[

x(n−m)ej2π·η(n−m)
]

(6)
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where ∑ indicates the summation operator, and wη ,0, wη,1, . . . , and wη,L−1 represent the
weight coefficient of the filter, hη(t), corresponding to each cyclic frequency, η = α0, α1, . . . ,
and αL−1, respectively.

2.3. Cyclic Wiener Filter Adaptive Algorithm

The standard LMS adaptive iterative algorithm is used for cyclic Wiener filters. The
iterative relationship of the LMS weight coefficients of the cyclic Wiener filter is:

w(n + 1) = w(n) + µ[x∗αi(n− k)e(n)] (7)

where µ denotes the step factor and is adopted to adjust the weight coefficient; w denotes
a weight vector representing filter coefficients; x* suggests taking the conjugate of x; xαi
represents the new signal after the frequency shift, a, of αi. The iterative relationship of the
weight coefficients is more intuitively demonstrated by expanding Equation (7) as:

 wα0,0(n + 1)
...

wα0,M−1(n + 1)


 wα1,0(n + 1)

...
wα1,M−1(n + 1)


... wαL−1,0(n + 1)
...

wαL−1,M−1(n + 1)





=



 wα0,0(n)
...

wα0,M−1(n)


 wα1,0(n)

...
wα1,M−1(n)


... wαL−1,0(n)
...

wαL−1,M−1(n)





+ µe(n)



 x∗α0
(n)
...

x∗α0
(n−M + 1)


 x∗α1

(n)
...

x∗α1
(n−M + 1)


... x∗αL−1
(n)

...
x∗αL−1

(n−M + 1)





(8)

3. Envelope Spectrum Analysis

Envelope spectrum analysis based on the Hilbert transform is a very effective method
to extract characteristic frequencies, which have been widely used in bearing fault diagnosis.
However, the characteristic frequency of bearing fault is often cyclostationary [31,32]. The
Hilbert transform is the output response of s′(t), obtained by passing a continuous-time
signal s(t) through a linear system with an impulse response of 1/πt. Make the original
signal, x(t), the real part of the envelope signal, the Hilbert transform, h(t), of x(t) the
imaginary part of the envelope signal, and then take the modulo to obtain the complex
envelope signal of E(t). Then, the envelope spectrum can be obtained by the Fourier
transform of E(t).

h(t) is obtained by Hilbert transformation of signal x(t):

h(t) =
1
π
·
∫ ∞

−∞

x(τ)
t− τ

dτ =
1

πt
∗ x(t) (9)

where ∗ indicates the convolution operator. The signals x(t) and h(t) form a new complex
signal, z(t), as the analytical signal:

z(t) = x(t) + jh(t) (10)

The envelope of the complex signal z(t) is defined as:

E(t) = |z(t)| = |x(t) + jh(t)| =
√

x2(t) + h2(t) (11)

The envelope spectrum is obtained by spectral analysis of the envelope signal, E(t),
which is sensitive to events related to impact force. The distribution of each frequency
amplitude in the envelope spectrum is different from that in the spectrum. Specifically,
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the amplitude of fault characteristic frequency in the spectrum diagram is small, and the
amplitude of fault characteristic frequency in the envelope spectrum diagram is very high.
This is easy to identify. Nevertheless, the fault characteristic frequency is generally consis-
tent with the cyclic frequency. Therefore, the envelope spectrum eliminates unnecessary
frequency interference and highlights the noise signal with cyclostationarity, compared to
the spectrum analysis. Figure 2 exhibits the difference between the envelope spectrum and
the spectrum of the Robinson R44 helicopter.
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Figure 2. (a) Spectrum diagram of the Robinson R44 helicopter at 0.89 km; (b) envelope spectrum
diagram of the Robinson R44 helicopter at 0.89 km.

Figure 2 reveals that the characteristics of rotor aerodynamic noise can be observed
more clearly from the envelope spectrum.

4. Experiment

A helicopter outfield flight test was conducted at an airport in Beichuan to verify the
effectiveness of the proposed method for rotor aerodynamic noise signal enhancement.
The flight data of the Robinson R44 helicopter was obtained. Robinson R44 helicopter is
displayed in Figure 3.
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There are many devices in the whole helicopter acoustic target experiment. Table 1
gives the names, quantities, and uses of most of these devices. The sensitivity of the
microphone is about 4 mV/Pa; the RTK (real-time kinematic) of the handheld GPS is
2.5 cm + 1 ppm, and its tracking sensitivity is 158 dBm; the RTK of the differential position-
ing device is 1.5 cm + 1 ppm; the heading accuracy is less than 0.2◦. As we all know, the
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most important device for collecting acoustic signals is the microphone, which is a sensor
that converts acoustic signals into electrical signals. Therefore, it is necessary to analyze the
uncertainty of the microphone, which is ±0.06 dB at a 250 Hz acoustic input signal. The
experimental process is presented in Figure 4.

Table 1. Experimental devices.

Measurement Equipment Amount Purpose

Data acquisition host computer 1 Running the helicopter acoustic detection data acquisition and
processing software.

Controller/power box 1 Data acquisition equipment control and power supply.
Data acquisition equipment 9 Controlling microphones to capture noise/data relay.

Microphone array frame 9 Supporting and mounting the microphones.
Array transmission cable 9 Equipment power supply and signal transmission.

Microphone 9 × 15 Acquiring noise signals.
Dedicated mobile hard disk 1 Data storage.

Handheld GPS device 1 Recording helicopter position.
Differential positioning device 1 Recording the position of the microphone array.
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The SNR is high when the helicopter is close to the microphone. However, the SNR
gradually decreases with the increase in the distance between the helicopter and the
microphone, due to the attenuation of the helicopter acoustic signal when it propagates
in the air. During the field flight test, the helicopter first started from a short distance,
gradually flew farther, and then flew back. Additionally, the distance between the Robinson
R44 helicopter and the microphone is provided in Figure 5.
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4.1. Cyclic Frequency Detection

Antoni proposed a fast computation of the spectral correlation [33]. Therefore, the
cyclic spectral correlation density function, Sα

x( f ), and spectral coherence function, ρα
x( f ),

of the target signal were obtained quickly. The detection method of the cyclic frequency
was derived from the detection function:

T(α) =
∫ fs/2

0
|ρα

x( f )|
2

d f (12)

where ρα
x( f ) indicates the cyclic spectral coherence function of the target signal, obtained

by Equation (1), and fs indicates sampling frequency, which is defined as 2500 Hz in the
experiment.

The time period from far to near (18 km to 0 km) was selected for analysis. The cyclic
frequencies were first obtained at a close distance and then gradually detected farther away,
until the limit distance where the cyclic frequency can be detected was found.

First, the cyclic frequency detection was performed at 0.89 km. Figure 6 exhibits the
cyclic spectrum coherence function graph and the cyclic frequency detection result. The
abscissas of these peaks in Figure 6b denote the cyclic frequencies. Liang Yu concluded
that rotor aerodynamic noise is characterized by the fundamental cyclic frequency and its
multiplier [22,23]. Thus, the cyclic frequency detection result in Figure 6 was correct.
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Figure 6. (a) The cyclic spectrum coherence function graph of the Robinson R44 helicopter at 0.89 km;
(b) the cyclic frequency detection results of the Robinson R44 helicopter at 0.89 km.

Then, the cyclic frequency detection was conducted at 1.548 km. Figure 7 presents the
cyclic spectrum coherence function graph and the cyclic frequency detection result of the
Robinson R44 helicopter at this distance.

The cyclic frequency detection was also achieved at 3.568 km, and the results are
demonstrated in Figure 8.

After a lot of tests, the limit distance was revealed to be 4.114 km. Figure 9 illustrates
the spectral coherence function and cyclic frequency at this distance. It was suggested that
the multiple relationships of the cyclic frequency were not significant.

Finally, the detection results of cyclic frequency at 17.75 km were obtained, as exhibited
in Figure 10. The cyclic frequency of the Robinson R44 helicopter is completely invisible
from this graph.
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Figure 10. (a) The cyclic spectrum coherence function graph of the Robinson R44 helicopter at
17.75 km; (b) the cyclic frequency detection results of the Robinson R44 helicopter at 17.75 km.

As suggested in Figures 6–10, the characteristic of the cyclic frequency gradually
changed from clear to fuzzy. This can be explained because with the increase in the
distance, there was more and more attenuation as it traveled through the air, resulting
in a lower and lower SNR. The comparison of Figures 6–8 demonstrated that the cyclic
frequency deviated when the cyclic frequency was detected at different distances. This was
induced by the phenomenon of a Doppler frequency shift. The result of cyclic frequency
detection was gradually blurred with the increase in the distance. In Figure 10, the cyclic
frequency was completely invisible at 17.75 km. This result was consistent with the result
of envelope spectrum analysis.

4.2. Filtering

The cyclic frequencies of rotor aerodynamic noise at different distances were obtained,
and then the frequency shift was carried out according to the cyclic frequency detection
method in Section 4.1. The detection results of several groups of cyclic frequencies are
given in Table 2, which are used in the following cyclic Wiener filter.

Table 2. Detection results of cyclic frequencies at different distances.

Distance/km Cyclic Frequency/Hz

0.89 η = [14.5 29.0 43.5 57.99 72.49]
1.548 η = [15.0 29.5 44.5 58.99 73.99]
3.568 η = [15.5 31.0 46.5 61.99 77.49]
4.114 η = [15.5 31.0 46.5 61.99 77.49]

Since the aerodynamic noise of the main rotor of the helicopter is mainly in low
frequency, it should be band-pass filtered first to filter out some irrelevant background noise,
followed by cyclic Wiener filtering. The cyclic frequency, η, was inputted for frequency
shifting, and the signal after the band-pass filter was taken as the expected response, so
as to filter out the background noise adaptively. The filtering effects of the three distance
points are exhibited in Figures 7, 9 and 10, respectively.

Figure 11 displays the envelope spectrum of the Robinson R44 helicopter before and
after filtering at 1.548 km. Compared with Figures 11a and 11b, there was less attenuation
when propagating in the air owing to the short distance, contributing to a high SNR.
Therefore, the characteristics before filtering were significant. Moreover, the characteristics
of target information can be observed more clearly through the envelope spectrum after
cyclic Wiener filtering.
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Figure 11. (a) Envelope spectrum of the Robinson R44 helicopter before filtering at 1.548 km; (b) En-
velope spectrum of the Robinson R44 helicopter after filtering at 1.548 km.

At the distance of 4.114 km, the cyclic frequency obtained from Table 2 is
η = [15.5 31 46.5 61.99 77.49], and it is applied to the frequency shift of cyclic Wiener
filtering. The filtering result is shown in Figure 12.
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Figure 12. (a) Envelope spectrum of the Robinson R44 helicopter before filtering at 4.114 km; (b) En-
velope spectrum of the Robinson R44 helicopter after filtering at 4.114 km.

The filtering effect of the Robinson R44 helicopter at 4.114 km is presented in Figure 12.
As revealed by comparing Figures 12a and 12b, there was more attenuation when prop-
agating in the air because the position here is far away, leading to a low SNR. Therefore,
the characteristics before filtering are not significant, and the characteristics of helicopter
rotor aerodynamic noise can be observed through the envelope spectrum after cyclic
Wiener filtering.

After cyclic Wiener filtering is performed point by point, it was discovered that the
limit distance of the rotor aerodynamic noise characteristic observed through the envelope
spectrum after filtering was 17.75 km, in line with Figure 10. At 17.75 km, the cyclic
frequency cannot be detected at all. However, in comparison with Figures 6–8, it can be
seen that the farther the distance is, the higher the cyclic frequency is, relatively. Therefore,
when inputting the cyclic frequency to conduct a frequency shift over a long distance,
the cyclic frequency needs to be increased properly. After multiple attempts, the cyclic
frequency, η = [15.75 31.13 44.98 62.19 77.82], was finally selected to conduct a frequency
shift. The envelope spectrum before filtering with a distance of 17.75 km is provided
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in Figure 13a. The characteristics of the target information were not observed through
this envelope spectrum. The filtered envelope spectrum is exhibited in Figure 13b. The
characteristics of the target information were observed through several spectral lines
in the figure.
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4.3. Helicopter Long-Distance Detection

The rotor aerodynamic noise will exhibit the harmonic characteristics of the blade pass-
ing frequency and its higher-order harmonics in the frequency domain when the helicopter
is in operation. Therefore, the detection algorithm was constructed following the envelope
spectrum and combined with the harmonic characteristics of the rotor aerodynamic noise
to display the detection results intuitively, so as to avoid looking at the envelope spectrum
whenever viewing the filtering effect. Next, the spectral peaks were discovered by con-
structing the spectral peak search function, and whether the helicopter signal was detected
was judged according to the constructed, complete detection function. The flow chart of
the detection algorithm is provided in Figure 14.

The part of the Robinson R44 helicopter flying close from a long distance was in-
tercepted, and the detection results were obtained based on the distance, as illustrated
in Figure 15. Specifically, one indicates that a helicopter signal was detected, and zero
indicates that no helicopter signal was detected. Moreover, the detection rate was cal-
culated every 100 s, allowing it to more clearly judge whether the helicopter signal was
effectively detected.

Before filtering, in Figure 15, the detection rate prior to t = 1947 s (corresponding to
a distance of 4.114 km) was relatively low, indicating that the helicopter signal cannot be
effectively detected. However, the detection rate after filtering was considerable, reflecting
that the helicopter signal can be effectively detected. This further confirmed that the
cyclic Wiener filter exerted a good enhancement effect on the helicopter rotor aerodynamic
noise signal.

During the field flight experiment, the background noise signal was collected deliber-
ately, and the correctness of the detection code was verified by the background noise signal.
The detection rate of the background noise signal is also called the false alarm rate. The
false alarm rate of the background noise signal is presented in Figure 16.
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As demonstrated in Figure 16, the false alarm rate with the background noise as the
input signal for helicopter detection was extremely low, suggesting that the detection
algorithm did not judge the background noise signal as the helicopter signal, consistent
with the established fact. Figures 15 and 16 revealed that the filtered detection rate for the
helicopter noise signal varied from low to high. Meanwhile, the false alarm rate before
and after filtering for background noise signals was relatively low. This implied that the
detection algorithm effectively distinguished the helicopter signal from the background
noise signal, fully verifying the correctness of the detection algorithm.

5. Conclusions

In this paper, a cyclic Wiener filter was proposed for its signal enhancement accord-
ing to the cyclostationary characteristics of rotor aerodynamic noise. Additionally, how
to achieve filtering by cyclic Wiener filter was theoretically investigated. Furthermore,
the necessity of envelope spectrum analysis was analyzed. According to the harmonic
characteristics of rotor aerodynamic noise, a detection function was constructed to re-
alize helicopter detection. Based on the data of the helicopter acoustic target detection
experiment, the main conclusions can be summarized as follows:

1. The cyclic frequencies were first obtained at a close distance and then gradually
detected farther away, until the limit distance where the cyclic frequency can be
detected was found. This limit distance was revealed to be 4.114 km. Meanwhile,
when comparing the cyclic frequencies at different distances, it is found that due to
the influence of the Doppler frequency shift, the cyclic frequencies will be higher in
the case of long distances than in the case of short distances.

2. The collected noise signal was subjected to cyclic Wiener filtering, and its filtering
effect is analyzed combined with envelope spectrum. When cyclic Wiener filtering
is performed at a close range, the frequency shift can be performed according to the
detected cyclic frequency. However, For the case that the distance exceeds the limit
distance of 4.114 km, it is necessary to appropriately increase the cyclic frequencies for
correction, because in this case, the rotor aerodynamic noise with cyclostationarity has
been submerged by the strong background noise, so the cyclic frequency detection
is unable to detect its cyclic frequencies normally. Before filtering, the limit distance
of the features of rotor aerodynamic noise through envelope spectrum analysis was
4.114 km, which is consistent with the limit distance at which the cyclic frequencies
can be detected. The detection distance after cyclic Wiener filtering reaches 17.75 km,
which is greatly improved compared to before filtering.
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3. According to the helicopter detection algorithm constructed in this paper, the collected
helicopter noise signals are used for helicopter detection. The comparison before
and after the cyclic Wiener filtering shows that the cyclic Wiener filter can effectively
improve the detection rate of helicopters. For the time period when the helicopter flew
from 18 km to 0 km, the detection rate before filtering was 44.2%, and the detection rate
after filtering was 80.6%. Moreover, the cyclic Wiener filter can effectively improve the
detection distance of the helicopter. In order to verify the correctness of the detection
code, the background noise signal was collected separately during the experiment.
The detection function is used to detect this background noise signal. The false alarm
rate before and after cyclic Wiener filtering is very low, which is 12.4% before filtering
and only 18.2% after filtering, which is consistent with the established fact.

Due to the cyclostationarity of helicopter rotor aerodynamic noise, the application of
other cyclostationarity analysis methods to helicopter rotor aerodynamic noise can certainly
be further studied. In addition, regarding the use of helicopter acoustic signals to detect
helicopters, the rest of the acoustic signal processing methods will also be further explored.
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