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Abstract: Based on the relevant data in the construction process of the south of the Qinling tunnel
of the Hanjiang-to-Weihe River Diversion Project, this article obtains the main influencing factors
of the tunnel boring machine (TBM) performance of the deep-buried tunnel. According to the
characteristics of deep-buried tunnel excavation, the random forest algorithm is used to select the
features of the factors affecting the TBM penetration rate, and the four factors with large influence
weights including total thrust, revolutions per minute, uniaxial compressive strength and volumetric
joint count, are used as TBM penetration rate prediction models input parameters, which can improve
the prediction accuracy and convergence speed of the model, and enhance the engineering practicality
of the prediction model. Three types of TBM penetration rate prediction models are established:
multiple regression model (MR), back propagation neural network model (BPNN) and support vector
regression model (SVR). The prediction accuracy of the three models is compared and analyzed.
The BPNN prediction model exhibits better prediction performance and generalization ability than
the multiple regression model and SVR model, which manifest higher prediction accuracy and
prediction stability.

Keywords: tunnel boring machine; penetration rate prediction; machine learning; deep-buried tunnel;
feature selection

1. Introduction

Since the beginning of the 21st century, the world has been facing the challenges
of water shortages, excessive population growth, energy crises and many other issues.
The demand for water conservancy projects, underground transportation, deep-energy
exploitation and so on is growing. Therefore, underground engineering has become an
important development direction of infrastructure construction in the world, and tunnel
construction is the key control point of these major projects [1].

Due to the wide application of the TBM in tunnel construction and the practical
needs of construction projects, many experts and scholars at home and abroad have
researched and developed many TBM performance prediction models since the 1970s.
Forecasting research can be divided into two categories: theoretical research and empirical
model research.

Most of the theoretical model research is based on laboratory tests and numerical
simulations, or semi-theoretical research based on engineering knowledge, and then it
carries out the prediction of the TBM performance. Sanio [2] thought that the rock breaking
of the TBM hob is caused by the tensile failure of rock, and based on this assumption, the
performance prediction formula of the TBM hob in the stratified and schistose rock mass
is proposed. Hughes [3] explored the influence of hob size on the TBM penetration rate.
Boyd [4] proposed the prediction formula of the TBM penetration rate based on rock mass
specific energy, cutterhead power, tunnel cross-sectional area and the machine efficiency
factor by using the dimensional analysis method. Ozdemir [5] and Rostami [6,7] proposed

Appl. Sci. 2022, 12, 6599. https://doi.org/10.3390/app12136599 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12136599
https://doi.org/10.3390/app12136599
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3693-3104
https://doi.org/10.3390/app12136599
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12136599?type=check_update&version=3


Appl. Sci. 2022, 12, 6599 2 of 21

and improved the famous Colorado school of mines (CSM) model. The model summarized
a large number of laws through the full scale linear cutting machine to obtain the hob load
and combined this with the specific rock mass parameters and mechanical parameters to
obtain the prediction formula of the TBM penetration rate.

The theoretical analysis based on laboratory tests and numerical simulation is helpful
to further reveal the rock breaking mechanism of the TBM hob. However, TBM construction
is a systematic construction method integrating tunnel excavation, design and support,
so the research on the TBM construction site is the mainstream research direction of TBM
performance prediction.

In addition, a variety of empirical models are used to predict the TBM driving speed.
Based on the geological data and the TBM performance parameters of eight TBM tunnels,
Farmer et al. [8] proposed that the rock tensile strength (σt) and average thrust of cutter-
head (Fn) should be used to calculate the penetration. Based on 112 groups of rock mass
parameters and TBM performance parameters of five TBM tunneling projects in Italy, Innau-
rato et al. proposed a method to calculate the TBM penetration rate by using the rock structure
score (RSR) and uniaxial compressive strength (UCS). Gong and Zhao [9] quantitatively ana-
lyzed the influence of the uniaxial compressive strength (UCS), rock brittleness index (Bi),
number of unit volumetric joints (Jv) and angle between joint surface and tunnel axis (α) on
penetration based on the relevant mechanical-rock parameters collected during the TBM
excavation of the Deep Tunnel Sewerage System (DTSS) Project in Singapore. Combined with
the above parameters, the prediction formula of the specific rock mass drivability index was
proposed by using a non-linear regression analysis. Du Lijie et al. [10] analyzed the relevant
data of TBM tunneling in a granite lithology in Northeast China, and the research showed
that the penetration index (FPI) had a strong correlation with uniaxial compressive strength
(UCS), rock integrity coefficient (Kv), and cutterhead thrust (F) and established a multiple
regression relationship. Luo Hua and Chen Zuyu et al. [11] divided TBM cutterhead rock
breaking into three stages: extrusion, initiation and breaking. Combined with the relevant
data of the TBM cutterhead crushing stage in the TBM section of the Jilin Yinsong Project,
the prediction model of the TBM penetration rate was established with uniaxial compressive
strength (UCS), intactness index of rock mass (Kv) and cutterhead thrust (F) as parameters.

With the more and more extensive application of the TBM, TBM related research has
entered the era of big data. With the continuous development of machine learning theory
and the emergence of 5G technology, the application of machine learning in TBM tunneling
has a broad prospect.

Liu et al. [12] established the prediction model of rock mass parameters during TBM
excavation by using the intelligent algorithm of single target stacking (SST) and improved
support vector regression (SVR). The model was based on 180 sets of data sets of the Jilin
Yinsong Project. The improved SVR algorithm showed higher prediction accuracy for rock
mass parameters such as uniaxial compressive strength (UCS) and the rock mass brittleness
index (BI). Goh et al. [13] proposed to use the multiple adaptive regression spline method
(MARS) to predict the maximum ground settlement of the earth pressure balance shield
tunnel. The model was established by using 148 sets of data from three independent earth
pressure balance shield tunnel projects in Singapore. Compared with other methods such
as the artificial neural network (ANN) and relevance vector machine (RVM), the model is
simple to operate and easy to calculate the input rate of target contribution. Hassanpur
et al. [14] developed a prediction model of the TBM jamming risk based on the Bayesian
network (BN) and error back propagation neural network (BPNN) algorithm to predict the
jamming risk index (Jr) to evaluate the design thrust value more reasonably in the design
stage of TBM equipment. Zhang Na et al. [15] developed the intelligent control system of
TBM tunneling parameters, which uses the combination of artificial neural network (ANN),
support vector machine (SVM) and a least square regression to realize the prediction of TBM
tunneling parameters. The system has been preliminarily applied in the TBM construction
of the Jilin Yinsong Project and has certain feasibility.
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In this paper, machine learning is used as the main technical means, relying on the
south of the Qinling tunnel of the Hanjiang-to-Weihe River Diversion Project to carry out
the relevant research. Based on a theoretical analysis and on-site actual data, the relevant
methods of machine learning are used to develop the TBM tunneling efficiency prediction
model of the deep-buried tunnel. By establishing the database of TBM performance in the
south of the Qinling tunnel of the Hanjiang-to-Weihe River Diversion Project, the TBM
mechanical parameters (thrust of cutterhead, torque of cutterhead, cutting speed, etc.) and
rock mass parameters (uniaxial compressive strength, number of unit volumetric joints,
angle between joint surface and tunnel axis, etc.) which affect TBM tunneling efficiency
are quantitatively analyzed. Based on the quantitative analysis, the main influencing
factors of TBM driving efficiency are obtained. After that, there are many influencing
factors of the TBM penetration rate in the database of TBM performance. The random
forest (RF) algorithm is used to select the characteristics of the influencing factors of the
TBM penetration rate, and the factors that have a great influence on the TBM penetration
rate are screened out. The input parameters are determined for the TBM penetration
rate prediction model based on machine learning. Finally, based on the input parameters
analyzed above, three prediction models of TBM penetration rate are established, which are
multiple regression (MR), BP neural network (BPNN) and support vector regression (SVR).
The prediction effect of the model is evaluated by the mean square error of the model and
the absolute error and relative error of the prediction samples. It is concluded that the
BPNN model has the best prediction effect.

2. Analysis of Influencing Factors and Feature Selection of TBM Performance
2.1. Establishing TBM Driving Efficiency Database

In order to analyze the TBM performance in the south of Qinling tunnel of the
Hanjiang-to-Weihe River Diversion Project, the TBM performance database was estab-
lished based on the data collected from the construction site. As shown in Table 1, the
database is mainly composed of two categories: the first category is TBM mechanical
parameters. By sorting out the TBM automatically recorded driving data and combin-
ing it with TBM construction time records, the corresponding operation parameters of
TBM operation data and mileage number are obtained, mainly including cutterhead
thrust (TF), penetration (P), torque (T), rotational speed (RPM), penetration rate (PR)
and TBM utilization ratio (U), etc.

Table 1. Structure of the TBM performance database.

TBM Mechanical Parameters Rock Mass Parameters

Cutterhead thrust TF (kN) Rock uniaxial compressive strength UCS (MPa)
Penetration P (mm/r) Rock abrasion resistance index Ab (10−1 mm)

Torque T (N·m) Specific work of chiseling a (J/cm3)
Rotational speed RPM (r/min) Number of rock volume joints Jv (pieces/m3)

Rotational speed PR (m/h) Angle between joint surface and tunnel axis α (◦)
Construction speed AR (m/d) Quartz content q (%)

TBM utilization ratio U (%) P-wave velocity of rock mass Vpm
Penetration index FPI (kN·r·mm−1·m−1) P-wave velocity of rock block Vpr

Number of tool change of cutterhead (N/d)

The second type is the rock mass parameters corresponding to each driving mileage
of TBM, which are composed of a geological investigation in the early stage of construc-
tion; field investigation during construction and geophysical prospecting; and rock mass
parameters that characterize the physical and mechanical properties of driving rock mass
measured in the laboratory, mainly including rock uniaxial compressive strength (UCS),
number of rock volume joints (Jv), angle between joint surface and tunnel axis (α), rock
abrasion resistance index (Ab), specific work of chiseling (a), and quartz content (q), etc.
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Table 2 lists the basic information of various parameters in the TBM tunneling efficiency
database collected in the 8521 m statistical section of the Lingnan Project in the TBM
construction section.

Table 2. Basic information of parameters in TBM performance database.

Parameters Minimum Value Maximum
Value

Average
Value

Standard
Deviation

Cutterhead thrust TF (kN) 3672 21,000 11,665.48 4436.8
Penetration P (mm/r) 0.2 22 7.13 9.23

Torque T (kN·M) 420 4645 2453 1046.84
Rotational speed RPM (r/min) 0.7 7.9 3.99 1.53

Rotational speed PR (m/h) 0.23 3.4 1.57 0.72
Construction speed AR (m/d) 0.7 25.3 8.3 4.29

TBM utilization ratio U (%) 4.17 65.97 29.72 13.43
Penetration index FPI

(kN·r·mm−1·m−1) 11.28 660.63 178.85 133.18

Number of tool change of
cutterhead (N/d) 0 26 6.69 6.48

Rock uniaxial compressive
strength UCS (MPa) 89.3 306.04 177.36 42.39

Rock abrasion resistance index Ab
(10−1·mm−1) 4.58 5.9 5.23 0.39

Specific work of chiseling a
(J/cm3) 453.7 598.4 546.61 27.03

Number of rock volume joints Jv
(pieces/m3) 2 27 12.88 4.76

Angle between joint surface and
tunnel axis α (◦) 0 90 57.27 18.03

Quartz content q (%) 43.5 87.3 65.68 10.23
P-wave velocity of rock mass Vpm 4200 6000 - -
P-wave velocity of rock block Vpr 3500 4898 3956 612.85

2.2. Feature Selection of Influencing Factors of TBM Net Driving Speed Based on Random Forest
2.2.1. Parameter Setting of Random Forest

There are two important parameters that need to be optimized in the random forest:
the number of regression trees n_estimators in the sample data set extracted by the bootstrap
method, and the maximum number of features max_features used on each node, which
have four options, namely Auto/None, sqrt and 0.2. Liaw et al. [16] proposed that in order
to balance the diversity of a single decision tree and the convergence speed of the algorithm,
generally, max_features select sqrt, which can be calculated according to Formula (1).

sqrt =
√

M (1)

where M is the number of input parameters of the model.
According to the previous analysis, there are 9 factors affecting the penetration rate of

TBM. Therefore, sqrt is 3. In order to determine the best prediction model, the statistical
section is divided into 170 driving units. According to the TBM performance database, the
corresponding driving mileage, rock mass parameters and mechanical parameters of each
driving unit are obtained. In total, 140 groups of data are used as training sets to train the
RF model, and 30 groups of data are used as test sets to measure the prediction performance
of the model. The prediction mean square errors of the random forest models with different
combinations of the regression tree number n_estimators are compared. Firstly, the random
forest models with a different number of regression trees n_estimators are numbered, and
the value of n_estimators is from 1 to 1000 in 50 steps. The mean square error (MSE) is
used to evaluate the prediction accuracy of the model, and the comparison results are
shown in Figure 1. With the increase in the number of n_estimators, the mean square error
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(MSE) of the RF model decreases gradually, and the overall error tends to be stable when
n_estimators are greater than 350. Therefore, the number of n_estimators is determined; that
is, the number of trees in the random forest is 350.
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2.2.2. Feature Selection of Influencing Factors of TBM Penetration Rate Based on
Random Forest

After the parameters of the random forest are determined, the weight of each parame-
ter is generated on the whole sample set by using the random forest. The weight ranking
table of each parameter is shown in Table 3. It can be seen from Table 3 that cutterhead
thrust TF is the most important factor affecting the TBM penetration rate, and its weight
proportion is 23.86%. The weight of the angle between joint surface and tunnel axis α
is 7.97%. However, with the specific work of chiseling a rock abrasion resistance index Ab
and quartz content q, the influence weights of these three rock mass parameters on the
TBM penetration rate are relatively small, and are 3.35%, 1.11% and 0.96%, respectively.
According to the weight table analysis, the total weight of the four parameters TF, Jv, UCS
and RPM is 75.99%, and they are the most important parameters affecting the penetration
rate of the TBM.

Table 3. TBM penetration rate influencing factors’ weight ranking.

Input Parameter Weight/%

Cutterhead thrust TF (kN) 23.86
Number of unit volumetric joints Jv (pieces/m3) 19.71

Uniaxial compressive strength UCS (MPa) 17.89
Rotational speed RPM (r/min) 14.53

Torque T (kN·M) 10.62
Angle between joint surface and tunnel axis α (◦) 7.97

Specific work of chiseling a (J/cm3) 3.35
Rock abrasion resistance index Ab (10−1·mm−1) 1.11

Quartz content q (%) 0.96

Therefore, based on the random forest algorithm, the nine influencing factors of
the TBM penetration rate are selected. Finally, four parameters are selected as the input
parameters of the TBM penetration rate prediction model based on machine learning,
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including cutterhead thrust TF, number of rock volume joints Jv, uniaxial compressive
strength UCS and cutterhead speed RPM.

3. Prediction Model of TBM Penetration Rate Based on Machine Learning
3.1. Prediction Model of TBM Penetration Rate Based on Multiple Regression (MR)
3.1.1. Correlation Analysis of Penetration Index (FPI) and Rock Mass Parameters

Firstly, the correlation between the penetration index (FPI) and rock mass in the TBM
driving efficiency database is explored, and the rock mass parameters which have a great
influence on the FPI are obtained. The correlation between the penetration index (FPI)
and rock mass parameters is shown in Figure 2. It can be seen from Figure 2 that there
is a good correlation between the penetration index (FPI) and the uniaxial compressive
strength (UCS). The correlation coefficient R2 is 0.74; the correlation coefficient between
the number of rock volume joints Jv and the penetration index (FPI) also reaches 0.63; the
correlation coefficients between the penetration index (FPI) and the angle between the
joint surface and tunnel axis α, the chiseling specific work a and the rock wear resistance
index Ab are 0.36, 0.38 and 0.13, respectively. According to the above analysis, the UCS
of rock mass and the number of rock volume joints Jv of rock mass, which represent the
integrity of rock mass, will significantly affect the penetration rate of the TBM. Similarly,
these two indexes show a good correlation with the penetration index (FPI), which is used
to measure the boreability of the rock mass.
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3.1.2. Empirical Analysis of TBM Penetration Rate Prediction Model Based on
Multiple Regression

Among the mechanical parameters of the TBM, the penetration index (FPI) includes
two mechanical parameters which have the greatest impact on TBM performance, namely,
cutterhead thrust TF and penetration P. There is a good correlation between them and the
uniaxial compressive strength (UCS) and penetration index (FPI) in rock mass parameters,
which can be used as a bridge connecting rock mass parameters and TBM mechanical
parameters. Therefore, the penetration index (FPI) is used to explore the relationship
between TBM mechanical parameters and rock mass parameters.

The uniaxial compressive strength (UCS) of rock mass and the number of rock volume
joints Jv representing the integrity of rock mass will be used as independent variables in
the multiple regression analysis of the penetration index (FPI), and the empirical prediction
formula based on the penetration index (FPI) will be established, namely Formula (2).

FPI = 1971.32− 703.36 ln Jv + 3.07UCS (2)

where Jv is the number of rock volume joints.
After the multiple regression analysis, the empirical formula shows good accuracy,

and the goodness of fit R2 is 0.76, which means that 76% of the change of the penetration
index (FPI) can be explained by the uniaxial compressive strength (UCS) and the number
of rock volume joints Jv.

After obtaining the penetration index (FPI), the expression of penetration P (3) can
be obtained.

P =
TF− f
FPI·D (3)

where TF is the cutterhead thrust, f is the friction force to be deducted from the total thrust,
and D is the cutterhead diameter. The weight of the TBM studied in this paper is 1300 t,
which is calculated according to f = 2600 kN.

Furthermore, according to the definition of penetration P (3), the expression of the
penetration rate PR (4) can be obtained:

PR =
P·60·RPM

1000
=

(TF− f )·60·RPM
(1971.32− 703.36 ln Jv + 3.07UCS)·1000

(4)

In this way, the prediction model of the TBM penetration rate based on multiple regres-
sion is obtained. The input parameters of the prediction model are cutterhead thrust (TF),
rotational speed (RPM), uniaxial compressive strength (UCS) and number of rock volume
joint Jv. Through the correlation of the penetration index (FPI) with rock mass parameters
and mechanical parameters, it is verified that the random forest model is scientific and
reasonable in ranking the weight of influencing factors of the penetration rate.

To evaluate the accuracy of the prediction model of a penetration rate based on
multiple regression, the predicted value of the model is compared with the measured
penetration rate value in the data set. The comparison results are shown in Figure 3. It
can be seen from Figure 3 that the correlation coefficient between the predicted value and
the measured value of the TBM penetration rate (PR) is 0.7, and the deviation between
the predicted value and the measured value is small in the range of 0.5–1.5 m/h, which
may be due to a large number of samples in this range included in the sample set. After
the penetration rate is greater than 2 m/h, the deviation between the predicted value and
the measured value is large. In general, the predicted value can reflect the variation law
of the actual net driving speed PR of the TBM within a certain range, indicating that the
empirical prediction formula of the penetration rate (PR) of the TBM determined by the
method of multiple regression analysis can be applied to the preliminary prediction of the
penetration rate of the TBM in the south of the Qinling tunnel of the Hanjiang-to-Weihe
River Diversion Project.
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3.2. Prediction Model of TBM Penetration Rate Based on BP Neural Network
3.2.1. Principle of Back Propagation Neural Network Algorithm

The back propagation neural network (BPNN) was proposed by Rumelhart et al. [17]
in 1986. It is a neural network that continuously modifies the connection weights between
various neurons through the training method of error back propagation. The neuron
model is shown in Figure 4. f (x) is called the activation function, which enables the neural
network to deal with nonlinear problems. si is the input from the previous neuron, wij
is the connection weight between the two neurons and θj is the threshold of the neuron.
If Yj is the output value of si after passing through a neuron, the output signal Yj of the jth
neuron can be calculated by Equation (5).

Yj= f
(
∑ wijsi − θi

)
(5)
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The structure of the back propagation neural network is obtained by extending a single
neuron, as shown in Figure 5. It includes three layers, namely the input layer, hidden layer
and output layer.

For a training sample (x, y) ∈ Rd × Rl, the corresponding output vector is
ŷ = (ŷ1, ŷ2 . . . , ŷn). After each neuron connection calculation, the loss function on the
output node can be expressed by the three most common loss functions: mean square error,
mean absolute percentage error and mean absolute error. The specific expressions are in
Equations (6)–(8).
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MSE =
1
n

n

∑
j=1

(yj − ŷj)
2 (6)

MAPE =
100%

n

n

∑
j=1

∣∣∣∣∣yj − ŷj

yj

∣∣∣∣∣ (7)

MAE =
1
n

n

∑
j=1

∣∣yj − ŷj
∣∣ (8)

The essence of the back propagation neural network algorithm is gradient descent.
When training the neural network, the iterative update formula of any parameter is:

wnew = wold + ∆w (9)

The iterative process of the weight wij from the hidden layer to the output layer is
shown in Equations (10)–(16):

∆wij = −η
∂E

∂wij
(10)

According to the chain derivation rule:

∆wij = −η
∂βj

∂wij

∂ŷj

∂βj

∂E
∂ŷj

(11)

∂βj

∂wij
= bi (12)

∂ŷj

∂βj
= ŷj(1− ŷj) (13)

∂E
∂ŷj

= (ŷj − yj) (14)

Therefore, after error back propagation, the change of the neuron connection
weight wij is:

∆wij = ηŷj(1− ŷj)(ŷj − yj) (15)

Similarly, the change of the neuron connection threshold is expressed by
Formula (16):

∆θj = −ηŷj(1− ŷj)(ŷj − yj) (16)

At this time, the error is propagated back to the hidden layer. Similarly, the connection
weight wij and the connection threshold from the hidden layer to the input layer can be
calculated θjo It can be seen from the algorithm principle of the BPNN model that BPNN
can learn and store a large number of input–output mode mapping relationships without
knowing the mathematical expression of this mapping relationship in advance. Its learning
rule is to use the steepest descent method to continuously correct the weight wij and
threshold between each neuron through back propagation error θj. That is, the mapped
expression makes the loss function of the BPNN model reach the minimum value, and
finally outputs the prediction result.
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3.2.2. BPNN Model Structure and Parameter Setting

The structure of the BPNN model will significantly affect the accuracy and convergence
rate of the prediction model. The input data are composed of four parameters screened by a
random forest algorithm, namely thrust (TF), rotational speed (RPM), uniaxial compressive
strength (UCS) and number of rock volume joint Jv. The output parameter is the penetration
rate (PR) of the TBM. After the input and output layers are determined, the number of
hidden layers and the number of hidden neurons need to constantly adjust the parameter
settings to determine the best settings; otherwise, the prediction model will be overfitting
or underfitting [18]. George [19] proposed that the BPNN of a single hidden layer can
approximate a continuous nonlinear function within a limited number of hidden neurons,
so the hidden layer is determined as 1. The number of hidden neurons is determined
according to the empirical Formula (17) proposed by Matias [20].

K =
√

a + b + c (17)

where a and b are the number of input and output nodes, c is a constant between 1 and 10
and K is the number of hidden neurons.

The numbers of nodes in the input layer and output layer are 4 and 1, respectively.
Then, K is a constant between 3 and 13. The selection of the activation function also has a
crucial impact on the accuracy of the BPNN [21]. The common activation functions include
tanh, sigmoid and ReLU functions. In order to determine the best prediction model, the
statistical section is divided into 170 driving units, in which 110 groups of data are used as
training sets to train the BPNN model, and 30 groups of data are used as test sets to measure
the prediction performance of the model under different parameter settings. The number
of hidden neurons and different combinations of the activation function of the BPNN are
compared. BPNN models with different combinations of hidden neuron numbers and
activation functions are numbered. A, B and C, respectively, mean tanh, sigmoid and
ReLU functions selected as activation functions. Numbers represent the number of hidden
neurons. The mean square error (MSE) and mean absolute percentage error (MAPE) are
selected to evaluate the prediction accuracy of the model. The comparison results are
shown in Figure 6. It can be seen from Figure 6 that when the activation function is the tanh
function and the number of hidden neurons is 11, the BPNN model obtains the minimum
mean square error and average absolute percentage error, and the prediction effect is the
best. Accordingly, by adjusting the parameters, batch size, that is, the number of samples
for a training, is set to 5; learning rate, that is, the learning rate, is set to 0.001.
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3.2.3. Empirical Analysis of TBM Penetration Rate Prediction Model Based on
BPNN Model

After 110 data sets of 170 data sets are used as training sets to train the BPNN model,
30 data sets are used as test sets to measure the prediction performance of different param-
eter combinations, and the remaining 30 data sets are used as verification sets to measure
the prediction performance of the model.

Validation by validation set, the mean absolute percentage error (MAPE) and mean
square error (MSE) of the BPNN model are 22.95% and 0.3445, respectively. The comparison
curve between the predicted value and actual value of 30 groups of samples is shown in
Figure 7. The variation trend of absolute error ∆ of each sample is shown in Figure 8, and
the relative error δ of each sample is shown in Figure 9.

It can be seen from Figure 7 that the predicted value of the penetration rate based on the
BPNN model can reflect the changing trend of the actual value. Except for sample number 6,
the prediction performance of the predicted value between sample number 1 and 20 is better
than that between sample number 20 and 30. It can be seen from Figure 8 that the absolute
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error of 19 samples is less than 0.5 m/h, and the absolute error of sample 2 and 3 are 0.017 m/h
and 0.021 m/h, respectively. The absolute error of 11 samples is more than 0.5 m/h, among
which the absolute error of sample 22 and 23 is 1.27 m/h and 1.19 m/h, respectively. It can
be seen from Figure 9 that the relative error of 16 samples is less than 20%, among which the
relative errors of No. 2 and No. 7 samples are all 1.42%, and the relative error of 14 samples is
more than 20%, among which the relative error of No. 6 sample is the largest, reaching 72%.
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Figure 9. The relative error variation curve of penetration rate based on BPNN model and actual
value of penetration rate. (The horizontal axis represents the number of thirty groups of samples in
the test set).
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3.3. Prediction Model of TBM Penetration Rate Based on Support Vector Regression
3.3.1. Principle of Support Vector Regression Algorithm

As a general method to solve the problem of high-dimensional function estimation,
support vector regression is established based on the Vapnik chervonenkis (VC) theory [22].
If the dimension of VC is low, the expected error probability is also low, which indicates
that the generalization ability is strong. Support vector regression is an optimization
problem. First, define ε-insensitive loss function, minimize it, and then find the narrowest
one containing most of the training data sets ε-insensitive zone. Therefore, according to the
geometric characteristics of the loss function and the ε-insensitive zone, a multi-objective
function is constructed.

Given a training set {(x1, y1), . . . , (xn, yn)} ⊂ RM × R, where RM is the input space
of the input feature xi and yi is the observed object, the goal is to find a function f (x) that
is within the deviation range of ε from the actual target value yi, and make it as gentle as
possible. f (x) can be expressed in linear form, as shown in Equation (18).

y = f (xi) = 〈wi, xi〉+ b (18)

where wi represents the weight vector of the linear function whose unit length is at right
angles to the hyperplane, and b represents the threshold. A support vector regression
approximates the data set with a linear function. The form of the linear function in the
high-dimensional feature space is shown in Equation (19).

y = f (x) = ∑N
i=1 wi(xi) + b (19)

where (xi) transfers the input vector to the feature space, that is, non-linear mapping from
the input space RM to the high-dimensional feature space.

Using the ε-insensitive loss function in the error risk minimization with regularization,
the support vector regression function can be established more conveniently. Only the
samples in the ε-insensitive band have non-zero relaxation variables. Generally, if the
predicted value is within the region, the loss is zero; if the prediction point is outside the
insensitive band, the error is the difference between the prediction value and the insensitive
band radius ε.

Loss function represents less than ε. There is no loss for the deviation, and the larger
deviation will be subject to linear penalty [23], as shown in Formula (20):

L(ζ) =

{
0 i f |ζ| < ε

|ζ| − ε otherwise
(20)

where the parameter ε is equivalent to the approximate accuracy of the training data points.
When the data points are within the range of ±ε, it will not cause errors.

The support vector regression describes the function approximation problem as an
optimization problem by finding the narrowest insensitive band centered on the surface
and minimizing the prediction error, that is, the distance between the prediction and the
expected output. The objective function is shown in Equation (21).

min
1
2
‖w‖2 (21)

The goal of the support vector regression algorithm is to find the optimal linear hyper-
plane, and the optimal hyperplane can be guaranteed by comprehensively considering the
regression error and flatness [23]. Combined with Formulas (22)–(25), this can be achieved
by minimizing the objective function:

min
w,b

[
1
2
‖w‖2+C

m

∑
i=1

(ζ+i + ζ−i )

]
(22)
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Constraints are (23)–(25):
f (xi)− yi ≤ ε + ζ+i (23)

yi− f (xi) ≤ ε + ζ−i (24)

ζ+i , ζ−i ≥ 0, i = 1, 2, . . . , m (25)

The constant c > 0 is a penalty parameter used to adjust the regression error and
flatness weight. The relaxation variables ζ+i and ζ−i are the training errors calculated
from the ε-insensitive loss function. Here, 1

2‖w‖
2 represents the structural risk, which is

used to control the smoothness or complexity of the function (regularization term); and

C
m
∑

i=1
(ζ+i + ζ−i ) represents the empirical risk. Therefore, the support vector regression can

be understood as the minimization of the structural risk and empirical risk.
Because the hyperplane of support vector regression is linear, the prediction accuracy

of the linear equation may not be high for most nonlinear problems. This problem can be
solved by mapping samples to high-dimensional space through the kernel function, and
then the objective function can be transformed as shown in Formula (26) and constraint (27).

max
α,α∗

m

∑
i=1

[yi(α
∗
i − αi)− ε(α∗i + αi)]−

1
2

m

∑
i=1

m

∑
j=1

(α∗i − αi)(α
∗
j − αj)K(xi, xj) (26)

m

∑
i=1

(α∗i − αi) = 0 α∗i , αi ∈ [0, C] (27)

Among them, αi and α∗i are Lagrange multipliers, and K(xi, xj) is the kernel function
of input vector x. Its main function is to convert data points from low-dimensional space to
high-dimensional space, so that data points can be divided by linear functions.

3.3.2. SVR Parameter Setting

In the support vector regression (SVR) algorithm, the kernel function determines the
result of sample transformation. Therefore, the choice of kernel function is one of the
important factors affecting the accuracy of the SVR model. The prediction accuracy and
generalization ability of the support vector regression model also depend on the selection of
loss function parameter ε and penalty parameter C [24]. Therefore, it is necessary to adjust
and test ε, C and K

(
xi, xj) to obtain good prediction performance and the generalization

ability of the SVR model.
The most commonly used kernel functions of the SVR are the radial basis function

(RBF) and polynomial kernel function (Poly). The penalty parameter C is generally between
0.1 and 100, and the loss function parameter ε is generally between 0.01 and 0.1. To
determine the best prediction model, the statistical section is divided into 170 driving
units, in which 110 groups of data are used as training sets to train the SVR model, and
30 groups of data are used as test sets to measure the prediction performance of the model
under different parameter settings. The SVR models with different combinations of kernel
functions, penalty parameter C and loss function parameter ε are compared. The SVR
models with different kernel functions, C and ε combination are numbered. A and B,
respectively, mean RBF and Poly functions are selected as kernel functions. The value
of C is in the range of 0.1–100 in steps of 10; the value of ε takes 0.05 as the step, takes the
number between 0.01 and 0.1, and the number is 1–3. The mean square error (MSE) and
mean absolute percentage error (MAPE) are used to evaluate the prediction accuracy of the
model. The comparison results are shown in Figure 10. It can be seen from Figure 10 that
when the kernel function is the RBF function, C is 10 and ε is 0.1, the SVR model obtains
the minimum mean square error and mean absolute percentage error, and the prediction
effect is the best.
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3.3.3. Empirical Analysis of TBM Penetration Rate Prediction Model Based on SVR Model

Similarly, 110 data sets of 170 data sets are used as training sets to train the SVR model,
30 data sets are used as test sets to measure the model prediction performance under
different parameter settings and the remaining 30 data sets are used as verification sets to
measure the model’s prediction performance.

Validation by validation set, the mean absolute percentage error (MAPE) and mean
square error (MSE) of the SVR model are 26.59% and 0.4085, respectively. The comparison
curve between the predicted value and actual value of 30 groups of samples is shown in
Figure 11. The variation trend of the absolute error ∆ of each sample is shown in Figure 12,
and the relative error δ of each sample is shown in Figure 13.

It can be seen from Figure 11 that the predicted value of the penetration rate based
on the SVR model can reflect the changing trend of the actual value, and the prediction
performance of the predicted value between sample numbers 1–5 is better. It can be seen
from Figure 12 that the absolute error of 19 samples is less than 0.5 m/h, and the absolute
error of No. 12 and No. 28 samples are 0.034 m/h and 0.05 m/h, respectively. The absolute
error of 11 samples is greater than 0.5 m/h, among which the absolute error of the No. 22
and No. 23 sample is 1.23 m/h and 1.32 m/h, respectively. It can be seen from Figure 13
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that the relative error of 15 samples is less than 20%, of which the relative error of No. 1
and No. 28 samples are 2.87% and 2.82%, respectively. The relative error of 15 samples is
more than 20%, of which the relative error of the No. 6 sample is 65%.
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Figure 12. The absolute error variation curve of the predicted value of penetration rate based on
SVR model and actual value of penetration rate (the horizontal axis represents the number of thirty
groups of samples in the test set).
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Figure 13. The relative error variation curve of a penetration rate based on SVR model and actual value
of penetration rate (the horizontal axis represents the number of thirty groups of samples in the test set).
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3.4. Comparative Analysis of Prediction Performance of Penetration Rate Prediction Models

In order to compare and analyze the prediction performance of the TBM penetration
rate prediction models based on multiple regression, BPNN and SVR, the comparison
curves between the predicted value of the TBM penetration rate and the field measured
value of the three prediction models are drawn as shown in Figure 14, the absolute error
change curve is shown in Figure 15 and the relative error change curve is shown in Figure 16.
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It can be seen from Figure 14 that both the BPNN model and SVR model can reflect the
changing trend of the actual value of the TBM penetration rate, but the deviation between
the predicted value and the actual value of the multiple regression prediction model is
large, and the prediction ability to reflect the change trend of the actual value is poor.
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It can be seen from Figure 15 that the absolute error of the prediction value of the
multiple regression prediction model is the largest at 20 sample points, and the absolute
error of 6 sample points is greater than 1 m/h, of which the absolute error of sample
point 23 is the largest, reaching 1.45 m/h. Only 4 sample points have the smallest absolute
error compared with the other two prediction models, of which the absolute error of sample
point 13 is the smallest, reaching 0.15 m/h. There are only 13 points with an absolute error
less than 0.5 m/h, and there are no sample points with an absolute error less than 0.1 m/h.
The absolute errors of three sample points of the BPNN model are greater than 1 m/h, and
the maximum absolute error of 1.27 m/h is obtained at sample point 22; compared with
the other two prediction models, the absolute error of 18 sample points is the smallest. The
absolute error of 5 sample points is less than 0.1 m/h, and the minimum absolute error
of 0.02 m/h is obtained at sample point 3. The absolute error of 5 sample points of SVR
model is greater than 1 m/h, and the maximum absolute error of 1.33 m/h is obtained at
sample point 23. The absolute error of 8 sample points is the smallest compared with the
other two prediction models. The absolute error of 5 sample points is less than 0.1 m/h.
The minimum absolute error of 0.03 m/h is obtained in sample 12. Thus, compared with
the multiple regression model and SVR model, the BPNN model has fewer sample points
in the range of the absolute error greater than 1 m/h and more sample points in the range
of the absolute error less than 0.1 m/h.

It can be seen from Figure 16 that among the predicted values of the multiple regression
prediction model, the relative errors of 21 sample points are the largest, and the relative
errors of 5 sample points are more than 50%. Among them, the relative error of sample
point 19 is the largest, reaching 78.18%, and the relative errors of all sample points are more
than 10%, and the minimum relative error of sample point 13 is 11.9%. The relative error of
5 sample points of the BPNN model is less than 5%, the minimum relative error is 1.42% at
sample point 2 and the relative error of 3 sample points is greater than 50%. The relative
error of 4 sample points of the SVR model is less than 5%, the minimum relative error is
2.82% at sample point 28, the relative error of 5 sample points is more than 50% and the
maximum relative error is 58.15% at sample point 20. Thus, compared with the multiple
regression model and SVR model, the BPNN model has fewer sample points in the range
of a relative error greater than 50% and more sample points in the range of a relative error
less than 5%. Therefore, compared with the multiple regression model and SVR model,
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the BPNN prediction model has better prediction performance and generalization ability,
especially in higher prediction accuracy and stability.

4. Conclusions

This paper takes machine learning as the main technical means, relying on the south
of the Qinling tunnel of the Hanjiang-to-Weihe River Diversion Project to carry out the
relevant research on TBM penetration analysis and prediction. Based on the field data,
this paper analyzes and summarizes the influencing factors of the TBM performance of
the deep-buried tunnel and uses the relevant methods of machine learning to establish
the prediction model of the TBM penetration rate of the deep-buried tunnel. The main
conclusions are as follows.

(1) Based on the establishment of the database of TBM performance in the south of the Qin-
ling tunnel of the Hanjiang-to-Weihe River Diversion Project, the factors influencing
TBM performance are quantitatively analyzed, including TBM mechanical parameters
(cutterhead thrust (TF), cutterhead torque (T), cutterhead speed (RPM), etc.) and rock
mass parameters (uniaxial compressive strength (UCS), the number of rock volume
joints (Jv), angle between joint surface and tunnel axis (α), etc.).

(2) Since there are many influencing factors on the TBM penetration rate, and the cur-
rent situation is that the input parameters of the prediction model are determined
artificially and the subjectivity is strong, the random forest (RF) algorithm is used to
select the characteristics of the influencing factors on the TBM penetration rate, and
the weight of the influencing factors is sorted to obtain the parameters of cutterhead
thrust (TF), the number of rock volume joints (Jv), uniaxial compressive strength
(UCS) and rotational speed (RPM). The total weight is 75.99%, which is comprised of
the most important four parameters affecting the TBM penetration rate. The input
parameters are determined for the TBM penetration rate prediction model based on
machine learning.

(3) The prediction model of the TBM penetration rate based on multiple regression (MR)
is established. The penetration index (FPI) is used as a bridge to connect the rock
mass parameters and TBM mechanical parameters. The empirical formula of the
TBM penetration rate prediction with independent variables of cutterhead thrust
(TF), the number of rock volume joints (Jv), uniaxial compressive strength (UCS) and
rotational speed (RPM) is obtained. The empirical formula can be applied to the
preliminary prediction of the TBM penetration rate in the south of the Qinling tunnel
of the Hanjiang-to-Weihe River Diversion Project.

(4) Based on the input parameters selected by the random forest algorithm, the prediction
models of the TBM penetration rate are established based on the BP neural network
(BPNN) and support vector regression (SVR). After training the training set and
setting the parameters on the test set, the mean absolute percentage error (MAPE)
and mean square error (MSE) of the BPNN prediction model are 22.95% and 0.3445,
respectively. The mean absolute percentage error (MAPE) and mean square error
(MSE) of the SVR model are 26.59% and 0.4085, respectively.

(5) Through the comparative analysis of the three prediction models, the BPNN predic-
tion model shows better prediction performance and generalization ability than the
multiple regression model and SVR model, which are embodied in higher prediction
accuracy and stability.
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